Radionuclide Metrology Projects

The SIR for comparing γ-emitting radionuclides

Nuclear medicine: ¹³¹I, ¹⁷⁷Lu, ²²³Ra,...

Environment: ¹³⁷Cs,...

Industry: ⁶⁰Co, ¹⁵²Eu, ²³⁷Np,...

SIR = comparator based on **pressurized ionization chambers** maintained at the BIPM since 1976.

Increased use in 2020-2023:

34 comparisons (+9) 16 NMIs/DIs involved (+5)

Automated SIR reports

New database of SIR data and metadata in machine-readable format

New SIR DAQ interface Comparison results obtained in a few clicks

SIR service more efficient:

- ~30 comparison reports (+24) for 2020-2023
- Report produced within a few month (if NMI data available)

Plans for the future

The SIR is unique as custodian of most activity comparison results for the last 45 years. However, no instrument can last forever so, the **construction of a second SIR** that is better suited to today's safety constraints has started and will use new technology for low current measurement.

The SIR Transfer Instrument for comparing short-lived radionuclides

Mainly nuclear imaging: 99mTc, 18F, 64Cu,...

SIRTI = comparator based on NaI(TI) scintillator, linked to the SIR and travelling to NMIs.

To date, the SIRTI enabled 15 NMIs from 5 RMOs to compare

standards of 5 short-lived radionuclides with half-lives from 20 min to 13 h.


Increased use in 2020-2023:

16 comparisons (+4) 6 radionuclides involved (+2)

Restart of the SIRTI KC programme

SIRTI calibration for more radionuclides

Support of EURAMET laboratories and a secondee from Brazil

NEW: Remote mode to continue comparisons even in case of travelling

First ¹²³I comparison at the KRISS in 2022, a short-lived radionuclide used for thyroid imaging, in remote mode.

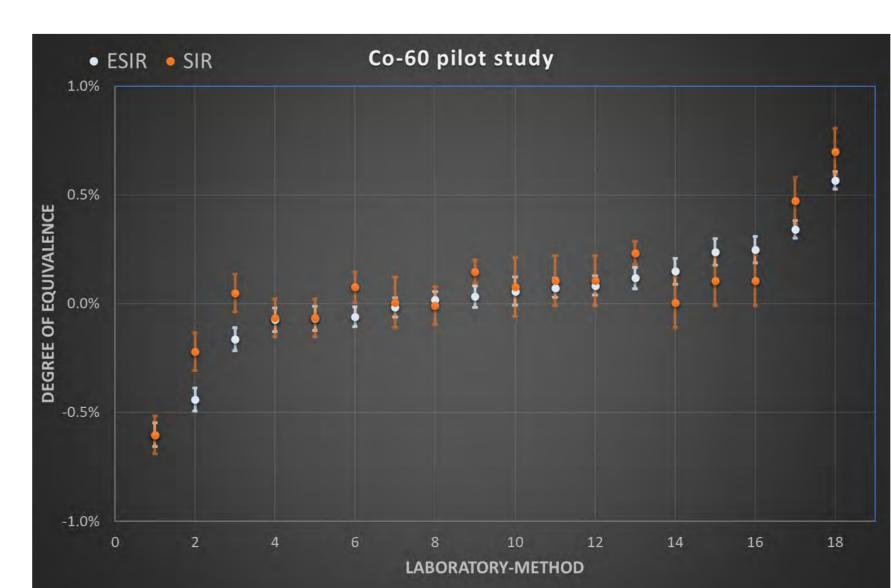
restrictions (e.g. COVID-19)

Plans for the future

The BIPM is supporting **RMOs** to develop their own copy of the SIRTI. This will enable more comparisons of short-lived radionuclides in future.

The Extension of the SIR to β -emitting radionuclides

Nuclear therapy: 89Sr, 90Y, 135La, 165Er,...


*In-vitr*o diagnostics: ³²P, ³⁵S,...

Environment: ²¹⁰Po, ²⁴¹Am,...

ESIR = comparator based on liquid scintillation counting, able to measure pure \(\beta\)-emitters not suited for the SIR

Recently tested in a 60Co pilot study involving 13 NMIs/DIs and showing good agreement with the SIR results.

Plans for the future

It is planned to use this system as an alternative to the SIR for **low energy beta** (e.g. ¹⁰⁹Cd) **and pure alpha** (e.g. ²⁴¹Am) **emitters** for which the SIR shows certain limitations.