

METPO

Test of digitizer in the framework of the ESIR

Digitizer implementation at BIPM

• Test of the CAEN DT5730SB digitizer in the ESIR framework

The CAEN DT5730SB

- Characteristics of the ADC:
 - 8 channels
 - Sampling rate = 500 MS s^{-1}
 - Bandwidth = 250 MHz
 - Resolution = 14 bits
 - Voltage range = 2 Vpp
- FPGA = Arria V GX
- Firmware = DPP-PSD

FPGA online processing

- Signal from 3 channels are processed
- Pulse are detected using digital CFDs parametrized by a threshold express in lbs (least significant bit)
- The **trigger time** (timestamp) is measured using the ADC sampling clock (500 MHz) stabilized with an external 10 MHz clock liked the BIPM atomic clock
- The **energy** is estimated by summation of the pulse over two gates
- The digitizer provides a **list mode data** file including the two information that are used for TDCR metrology

{Channel, Timestamp}

				ENERGYS		
BOARD	CHANNEL	T	<mark>TIMETAG</mark>	ENERGY	HORT	FLAGS
(D I	0	<mark>7.9E+11</mark>	1410)	00x4400
(D 1	0	1.55E+12	295	6 40	0950x4480
(D I	0	1.62E+12	1283	5	670x4000
(D I	0	1.73E+12	1319)	30x4400
() (1	1.79E+12	1423	5	510x4400
(D I	0	<mark>2.18E+12</mark>	1438	5	110x4400
(D I	0	<mark>2.58E+12</mark>	1411		410x4400
(D I	0	<mark>2.92E+12</mark>	1305	i <u>í</u>	1820x4400
(D I	0	3.86E+12	1147	,	10x4000

Offline processing

- The TDCR approach requires to implement
 - the live-time measurement,
 - the extended dead-time,
 - the coincidence detection among channels.
- A TDCR processing software has been developed (Python code)

Validation against the Yantel nanoTDCR

- The detection efficiency is lower when compared the analog front-end nanoTDCR device
 - ~0.15% for ^{14}C and ~1% for $^{3}H,$
- However, the TDCR metrology is robust against this loss of count rate.

About the loss of counts

- The loss increases with the decrease of the deposited energy per decay
- Tritium signal is mainly composed of single electron pluses thinner than the exponentially decaying pileup pulse observed at higher energy

100 photoelectrons

Perspective for the SIRTI

Perspective for the SIRTI

- The loss of counts observed with the TDCR system would be dramatic for the SIRTI
- However, this should not happen because the NaI(TI) signal has
 - Light yield = 38000 photons /MeV
 - Energy of Nb-93m = 16.6 keV
 - So, an average of 630 photons will be at least produced.
 - Considering an optical efficiency of 80% and a quantum efficiency of 20%,
 - 630*0.8*0.2 = 100 photoelectrons are expected to be produced by the photocathode during a scintillation decay period of 230 ns.

Impact of the ADC on the energy resolution

- A resolution of 14 bits encodes the 2 V range with 16384 channels
- If the saturation is set at 2 MeV => 122 eV per bin.
- Also, the impact of the sampling rate on the energy estimation is negligeable

Monte-Carlo estimation of the energy resolution from sampling at 16 keV

Impact of the ADC on the live-time measurement

 The sampling rate of 500 MS/s should ensure a live time measurement up to 100 000 s⁻¹ with an error below 1e-3.

Conclusion

- The CAEN DT5730 has been tested for TDCR measurement
- Although a significant loss of counts the TDCR method remains robust
- As the count rate loss seems to concern only the narrow SEPs, the SIRTI should not be impacted
- According to these tests and approximate calculations, it could be interesting to test our DT5730SB/DPP-PSD with the SIRTI

- If this build-in commercial solution fit the need, it is good news.
- Otherwise, "open-FPGA" solutions or "laboratory-developed" cards will be investigated.