Dead-time processing in the MTR2 module

BIPM Workshop on digital electronics for the RMO SIRTIs
MTR2 module in short

- Multi-purpose dead-time module developed by J. Bouchard (LNHB)

- Main features
 - Extendable dead-time combined to live time measurements
 - Dead-time processing close to the real behavior of a nuclear instrumentation
 - Protection against saturated signals
 - Protection against dead-time in series (pile-ups, after-pulses)
 - Can be connected with an MCA for the acquisition of spectra

- LNHB: implemented in $4\pi\beta-\gamma$ anticoincidence and $4\pi-\gamma$ detection systems

- Dead-time circuitry extended in the MAC 3 module (TDCR measurements)
Dead-time processing in the MTR2 module

Basic idea for the design of the MTR2 module: fixed dead-time does not exist in a real nuclear instrumentation

- Variability of the duration of counter paralysis: saturated pulses, pile-ups, after-pulses

Counter paralysis ≈ 300 / 400 μs
Dead-time processing in the MTR2 module

Large well-type NaI(Tl) After the shaping amplifier

Counter paralysis > 50 μs
Dead-time processing in the MTR2 module

MRT2 module designed to include the discrimination duration in the dead-time processing

Dead-time processing in the MTR2 module

MRT2 module designed to include the discrimination duration in the dead-time processing
Dead-time processing in the MTR2 module

- The prolongation of the dead time at the end of the discrimination signal implemented for protection against after-pulses
Dead-time processing in the MTR2 module
Dead-time processing in the MTR2 module

To summarize, the extendable dead-time processing is implemented:

- By including the duration of the positive and negative discrimination signals for protection against saturated pulses, pile-ups and undershoots;
- By extending the dead-time using the positive and negative edges of the discrimination signal for protection against after-pulses.

The dead-time electronics was tested in the case of coincidence counting (Co-60) using a proportional counter in the β-channel with a counting rate of \(\sim 10^6 \text{ s}^{-1} \)
Total dead-time \(\sim 95\% \) - relative uncertainty on activity \(\sim 0.1\% \)

Two MTR2 modules in the case of anticoincidence counting
Digital transition of the MTR2 module

Home-made digital prototype at LNHB for complete on-line processing based on the same dead-time processing of the MTR2 module

- All the functionalities are implemented in the FPGA circuit
- Validated for different methods: TDCR, γ-spectrometry, anticoincidence counting, $4\pi-\gamma$ counting: difference with analog systems at LNHB lower than 0.05%

Front-end electronics

2 ADCs (14 bits – 125 MHz)
FPGA: Stratix III

Not compact enough for the SIRTI

Dead-time triggering based on a fast channel

Spectrum of 241Am in a detector similar to the SIRTI
Digital transition of the MTR2 module

FPGA dead-time processing can be adapted in a more compact device
- Redpitaya StemLab 125-14 (~ 400 €)
- First development showed that γ-spectrometry is possible but not available yet (need more testing)
The nanoMCAII could be tested with the SIRTI
- Commercial MCA module
- Compact
- On-line processing
- 16-bit ADC 125 MHz
- Dead time processing: not based on extendable dead time
 - Possible contact with the designer to implement extendable dead-time as in the nanoTDCR module
THANK YOU FOR YOUR ATTENTION