

Latest developments in beta-radiation metrology

(primary dosimetry, ISO 6980 revision, and ICRU 95 impact)

Rolf Behrens

ORCiD: 0000-0002-4905-7791 PTB, Department "Radiation protection dosimetry" (6.3)

Hyperlinks written in blue and underlined (PDF and video will be available at <u>CCRI's website</u>)

Introduction

Primary and secondary beta dosimetry

International comparison BIPM EURAMET.RI(I)-S16

Revision of ISO 6980 \Leftrightarrow correction factors for beta dosimetry

Newly proposed operational quantities (ICRU 95)

Introduction

Primary and secondary beta dosimetry

International comparison BIPM EURAMET.RI(I)-S16

Revision of ISO 6980 \Leftrightarrow correction factors for beta dosimetry

Newly proposed operational quantities (ICRU 95)

PTB Types of radiation and their characteristics

Beta radiation: what's that?

https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html

90 Sr

38 52

Beta particle = electron (beta⁻) or positron (beta⁺) from a nuclear decay

Beta radiation: spectrum emission

Beta particle spectra in ICRP 107

PB Beta dosimetry for radiation protection: why?

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

Introduction

Primary and secondary beta dosimetry

International comparison BIPM EURAMET.RI(I)-S16

Revision of ISO 6980 \Leftrightarrow correction factors for beta dosimetry

Newly proposed operational quantities (ICRU 95)

PTB Particle tracks in air: photons vs. electrons

Beta radiation: Significant absorption and scattering of betas in rather small air volumes

10 keV photons

Air cube of 1 cm x 1 cm x 1 cm

Collimated beam (from left to right): opening angle $\alpha = \pm 11^{\circ}$

10 keV electrons

PTB Principles of primary beta dosimetry

Beta radiation: Significant absorption and scattering of betas in ionization volume V => Measurement at different chamber depth *l* and *extrapolation* to *l* = 0

Ionization chamber with variable volume: Extrapolation chamber

Active air volume

Beta Primary Standards of PTB: BPS1, <u>Böhm chamber</u> (commercially available, PTW; word wide in use)

(developed at PTB)

PTB Principles of primary beta dosimetry

Beta radiation: Significant absorption and scattering of betas in ionization volume V => Measurement at different chamber depth *l* and *extrapolation* to *l* = 0

Ionization chamber with variable volume: Extrapolation chamber

Beta Primary Standards of PTB: BPS1, <u>Böhm chamber</u> (commercially available, PTW; word wide in use)

⁽developed at PTB)

Realization of the Gray: Principle of extrapolation chamber

ISO 6980-2:2004: Absorbed dose rate to tissue: $\dot{D}_{R\beta} = \frac{(\bar{W}_0/e) \cdot s_{t,a}}{\rho_{a0} \cdot a} \left[\frac{d}{dl} \{k \cdot k' \cdot I(l)\} \right]$

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

Realization of the Gray: Principle of extrapolation chamber

ISO 6980-2:2004:
Absorbed dose rate to tissue:
$$\dot{D}_{R\beta} = \frac{(\bar{W}_0/e) \cdot s_{t,a}}{\rho_{a0} \cdot a} \left[\frac{d}{dl} \{k \cdot k' \cdot I(l)\} \right]_{l=0}$$
 many correction factors ...

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

Realization of the Gray: correction factors k' (constant with chamber depth l) and k (variable with l):

Table 3 — Correction factors which are constant for the entire extrapolation curve measurements						Table 4 — Correction factors which can vary during the extrapolation curve measurements							
	Influencing parameters related to							Influencing parameters relating to					
Symbol	Description	Extrapolation chamber	Condition of use	Source	Irradiation conditions	tion	S	Symbol	Description	Extrapolation chamber	Condition of use	Source	Irradiation conditions
k _{ba}	Correction factor for the difference in backscatter between tissue and the material of the collecting electrode	+		+	+			k _{abs}	Correction factor for variations in the attenuation and scattering of beta par- ticles between the source and the col- lecting volume and inside the collection volume due to variations from reference conditions and for differences of the entrance window to a tissue-equivalent	÷	÷	+	÷
k _{br}	Correction factor for the effect of bremsstrahlung from the beta-parti- cle source			+									
k _{el}	Correction factor for the electrostatic attraction of the entrance window due to the collecting voltage	+	+					k _{ad}	Correction factor for the variations of the air density in the collecting volume		+		
k _{hu}	Correction factor for the effect of humid- ity of the air in the collecting volume on the average energy required to produce		+		130.0	700-	- Z	k _{de}	Correction factor for the radioactive decay of the beta-particle source			+	
k.	an ion pair Correction factor for interface effects between the air in the collecting volume	+						k _{ih}	Correction factor for the inhomogeneity of the absorbed dose rate inside the collecting volume	+		+	+
	and the adjacent entrance window and collecting electrode Correction factor for the change of the							$k_{ m pe}$	Correction factor for the perturbation of the beta-particle flux density by the side walls of the extrapolation chamber	+		+	+
k _{ph}	source to chamber distance once absorb- ers are placed in front of the chamber (to increase the phantom depth)			+	+			k _{SA}	Correction factor for the stopping power ratio to use the Spencer-Attix theory instead of the Bragg-Gray theory			+	+
k _{Sta}	Correction factor for the change of the stopping power ratio at different phantom depth		+	+	+			$k_{\rm sat}$	Correction factor for ionization losses due to ionic recombination	+	+		+

Absorbed dose rate to tissue:
$$\dot{D}_{R\beta} = \frac{(\bar{W}_0/e) \cdot s_{t,a}}{\rho_{a0} \cdot a} \left[\frac{d}{dl} \{k \cdot k' \cdot I(k) \} \right]$$

many correction factors ...

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

CCRI Webinar 2022-09-07

l=0

Realization of the Gray: Interpolation to relevant tissue depths: 0.07 mm & 3 mm Absorbers of increasing thickness in front of chamber

Realization of the Gray: Interpolation to relevant tissue depths: 0.07 mm & 3 mm Absorbers of increasing thickness in front of chamber

Realization of the Gray: Interpolation to relevant tissue depths: 0.07 mm & 3 mm

Secondary beta dosimetry: Dissemination

Dissemination of the Gray: D_t , and Sievert: $H_p(0.07)$, H'(0.07), $H_p(3)$ and H'(3) (operational quantities)

BSS2 in general: J. Instrum. 2, P11002 (2007) Irradiation facility: **Beta Secondary Standard 2** (commercially available, EZN)

BSS2

Main characteristics

- Developed at PTB
- Traceable to PTB
- Quality assured
- All parameters controlled (single-board computer)
- Dose corrected for radioact. decay and amb. cond. ۲
- Safe source handling
- Beam flattening filter for homog. radiation fields ullet
- Rod and slab phantom included
- Sources: ¹⁴⁷Pm, ⁸⁵Kr, ⁹⁰Sr/⁹⁰Y (standard) and ¹⁰⁶Ru/¹⁰⁶Rh (implemented in software)
- Quantities: $H_{p}(0.07)$, H'(0.07), $H_{p}(3)$ and H'(3)

extensions: J. Instrum. 6, P11007 (2011)

PTB Secondary beta dosimetry: Dissemination

Dissemination of the Gray: D_t , and **Sievert:** $H_p(0.07)$, H'(0.07), $H_p(3)$ and H'(3) (operational quantities)

Irradiation facility: **Beta Secondary Standard 2** (commercially available, EZN)

BSS2 in general: <u>J. Instrum. 2, P11002 (2007)</u> extensions: J. Instrum. 6, P11007 (2011)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PTB Secondary beta dosimetry: Dissemination

Dissemination of the Gray: D_t , and **Sievert:** $H_p(0.07)$, H'(0.07), $H_p(3)$ and H'(3) (operational quantities)

Irradiation facility: **Beta Secondary Standard 2** (commercially available, EZN)

BSS2 in general: <u>J. Instrum. 2, P11002 (2007)</u> extensions: J. Instrum. 6, P11007 (2011)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PB Secondary beta dosimetry: Dissemination

Dissemination of the Gray: D_t , and **Sievert:** $H_p(0.07)$, H'(0.07), $H_p(3)$ and H'(3) (operational quantities)

Irradiation facility: Beta Secondary Standard 2 (commercially available, EZN)

BSS2 in general: <u>J. Instrum. 2, P11002 (2007)</u> extensions: <u>J. Instrum. 6, P11007 (2011)</u>

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PTB Secondary beta dosimetry: Dissemination

Dissemination of the Gray: D_t, and Sievert: H_p(0.07), H'(0.07), H_p(3) and H'(3) (operational quantities)

Irradiation facility: Beta Secondary Standard 2 (commercially available, EZN)

BSS2 in general: <u>J. Instrum. 2, P11002 (2007)</u> extensions: <u>J. Instrum. 6, P11007 (2011)</u>

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

Introduction

Primary and secondary beta dosimetry

International comparison BIPM EURAMET.RI(I)-S16

Revision of ISO 6980 \Leftrightarrow correction factors for beta dosimetry

Newly proposed operational quantities (ICRU 95)

International comparison BIPM EURAMET.RI(I)-S16

Beta comparison 2018-2023

- $H_{\rm p}(0.07)$ and $H_{\rm p}(3)$, the latter for the first time
- Circulation of PTB's secondary ionization chamber and measuring stand
- 16 participants: <u>BIPM EURAMET.RI(I)-S16</u>
- Several delays due to Covid-19 and issues with the measuring stand: ~ 1 year
- Current status: most participants finished; CU on the way; report in 2023

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: Latest developments in beta-radiation metrology

Introduction

Primary and secondary beta dosimetry

International comparison BIPM EURAMET.RI(I)-S16

Revision of ISO 6980 ⇔ correction factors for beta dosimetry

Newly proposed operational quantities (ICRU 95)

PB Beta standards at ISO TC85 SC2 WG2

ISO 6980: Reference beta fields (2004 .. 2006), Ed.1

PTB ISO 6980: Points of revision since 2019 in TC85 SC2 WG2

PTB ISO 6980: Points of revision: ISO 29661 reference

- Alignment to ISO 29661:2012 and its Amd 1:2015:
 - → general definitions (quantities, phantoms...), terms and procedure

INTERNATIONAL STANDARD	ISO 29661			
	First edition 2012-09-01			
Reference radiation fields fo radiation protection — Defin fundamental concepts	r itions and			
Champs de rayonnement de référence pour la radioprotection — Défintions et concepts fondamentaux				
ISO	Reference number ISO 29661:2012(E)			
	© ISO 2012			

PTB ISO 6980: Points of revision: spectra included

- Alignment to ISO 29661:2012 and its Amd 1:2015:
 - → general definitions (quantities, phantoms...), terms and procedure
- Inclusion of electron and photon spectra \rightarrow detailed graphs follow

PTB ISO 6980: Points of revision: phantom harmonized

- Alignment to ISO 29661:2012 and its Amd 1:2015:
 general definitions (quantities, phantoms...), terms and procedure
- Inclusion of electron and photon spectra \rightarrow detailed graphs
- Harmonization of the substitute for the ISO water slab and cylinder phantom \rightarrow 20 cm x 20 cm x 2 cm PMMA in all three parts

PID ISO 6980: Points of revision: photon contribution

k P

ISO 6980: Reference beta fields: *minor / editorial changes*

- Alignment to ISO 29661:2012 and its Amd 1:2015:
 - → general definitions (quantities, phantoms...), terms and procedure
- Inclusion of electron and photon spectra *detailed graphs*
- Harmonization of the substitute for the ISO water slab a phantom \rightarrow 20 cm x 20 cm x 2 cm PMMA in all three
- Inclusion of photon contribution to total reference dose $\rightarrow k_{\rm br} = \frac{(I-I_{\rm br})}{I}$ and $D_{\rm R} = \frac{D_{\rm R\beta}}{k_{\rm br}}$

Photon spectrometry: J. Instrum. 6, P09006 (2011)

Photon contribution to dose: J. Instrum. 6, P11007 (2011)

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: Latest developments in beta-radiation metrology

PTB ISO 6980: Points of revision: nuclide ¹⁴C removed

- Alignment to ISO 29661:2012 and its Amd 1:2015:
 - → general definitions (quantities, phantoms...), terms and procedure
- Inclusion of electron and photon spectra \rightarrow detailed graphs
- Harmonization of the substitute for the ISO water slab and cylinder phantom \rightarrow 20 cm x 20 cm x 2 cm PMMA in all three parts
- Inclusion of photon contribution to total reference dose $\Rightarrow k_{\rm br} = \frac{(I-I_{\rm br})}{I}$ and $D_{\rm R} = \frac{D_{\rm R\beta}}{k_{\rm br}}$
- Removal of ¹⁴C (E_{beta,mean} = 0.04 MeV)
 → as not in use in any institute

ISO 6980: Reference beta fields: *major / technical changes*

ISO 6980: Reference beta fields: major / technical changes: correction factors for phantoms / quantities (EGSnrc)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

ISO 6980: Reference beta fields: major / technical changes: correction factors for phantoms / quantities (EGSnrc)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

ISO 6980: Reference beta fields: *major / technical changes:* correction factors for phantoms / quantities (EGSnrc)

 $H_{\rm p}(0.07)_{\rm slab}$

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*
PBISO 6980: Points of revision: correction factors by simulations

ISO 6980: Reference beta fields: major / technical changes: correction factors for phantoms / quantities (EGSnrc)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PBISO 6980: Points of revision: correction factors by simulations

ISO 6980: Reference beta fields: major / technical changes: correction factors for phantoms / quantities (EGSnrc)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PBISO 6980: Points of revision: addition of quantities

ISO 6980: Reference beta fields: *major / technical changes*: correction factors for phantoms / quantities (EGSnrc) Differentiate $H_p(0.07)_{slab}$, $H_p(0.07)_{rod}$ and H'(0.07) $\rightarrow k_{corr} = H(d) / H_p(0.07)_{slab}$

PB ISO 6980: Points of revision: addition of quantities

ISO 6980: Reference beta fields: *major / technical changes*: correction factors for phantoms / quantities (EGSnrc) Differentiate $H_p(0.07)_{slab}$, $H_p(0.07)_{rod}$ and H'(0.07) and inclusion of $H_p(3)$ and H'(3) $\Rightarrow k_{corr} = H(d) / H_p(0.07)_{slab}$

PTB ISO 6980: Points of revision: addition of radiation fields

ISO 6980: Reference beta fields: *major / technical changes*

- Sources and geometries in the 2004/2006 version

Actual fields, simulations: <u>J. Instrum. 8, P02019 (2013)</u> and addendum <u>J. Instrum. 14, A07001 (2019)</u>

Radionuclide (source)	10 cm, without filter	11 cm, without filter	20 cm, without filter	20 cm, with filter	30 cm, without filter	30 cm, with filter	50 cm, without filter	50 cm, with filter
¹⁴ C	x							
¹⁴⁷ Pm				x				
⁸⁵ Kr						x		
⁹⁰ Sr/ ⁹⁰ Y		x	x		x	x	x	
¹⁰⁶ Ru/ ¹⁰⁶ Rh	x							

BSS2 in general: <u>J. Instrum. 2, P11002 (2007)</u> extensions: <u>J. Instrum. 6, P11007 (2011)</u>

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PTB ISO 6980: Points of revision: addition of radiation fields

ISO 6980: Reference beta fields: *major / technical changes*

 Inclusion of additional distances and filter geometries (removal of ¹⁴C and ¹⁰⁶Ru/¹⁰⁶Rh at 10 cm) Actual fields, simulations: <u>J. Instrum. 8, P02019 (2013)</u> and addendum <u>J. Instrum. 14, A07001 (2019)</u>

New fields: J. Instrum. 15, P05015 (2020)

Radionuclide (source)	10 cm, without filter	11 cm, without filter	20 cm, without filter	20 cm, with filter	30 cm, without filter	30 cm, with filter	50 cm, without filter	50 cm, with filter
¹⁴ C	Х							
¹⁴⁷ Pm		x		x				
⁸⁵ Kr						х		x
⁹⁰ Sr/ ⁹⁰ Y		x	x		x	x	x	x
¹⁰⁶ Ru/ ¹⁰⁶ Rh	Х	x	x			x		x

BSS2 in general: <u>J. Instrum. 2, P11002 (2007)</u> extensions: <u>J. Instrum. 6, P11007 (2011)</u>

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PB ISO 6980: Points of revision: addition of radiation fields

BSS2 in general: <u>J. Instrum. 2, P11002 (2007)</u> extensions: <u>J. Instrum. 6, P11007 (2011)</u>

PTB ISO 6980: Points of revision: addition of radiation fields

ISO 6980: Reference beta fields: *major / technical changes*

- Dose rate and energy ranges in ISO 6980: 2004/2006 version

Energy and dose rate ranges (ISO 6980: 2004/2006) 5000 mSv/h ⁹⁰Sr/⁹⁰Y; 0.46 GBq 11 cm: w/o filter ⁸⁵Kr; 3.7 GBq 30 cm: with filter 20 cm; w/o filter ^{_106}Ru/¹⁰⁶Rh; 100 H_p(0.07) 30 cm: w/o filter 0.02 GBq 30 cm; with filter 10 cm; w/o filter 50 cm; w/o filter ¹⁴⁷Pm; 3.7 GBq 10 20 cm; with filter ¹⁴C: 0.01 GBq 10 cm; w/o filter 0.5 0.4 0.6 0.8 1.0 MeV 0.0 0.2 1.4 Mean beta energy

Actual fields, simulations: <u>J. Instrum. 8, P02019 (2013)</u> and addendum <u>J. Instrum. 14, A07001 (2019)</u>

New fields: J. Instrum. 15, P05015 (2020)

BSS2 in general: <u>J. Instrum. 2, P11002 (2007)</u> extensions: <u>J. Instrum. 6, P11007 (2011)</u>

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PTB ISO 6980: Points of revision: addition of radiation fields

ISO 6980: Reference beta fields: *major / technical changes*

- Dose rate and energy ranges in ISO 6980: new 202x version

Energy and dose rate ranges (ISO 6980: 202x) 5000 mSv/h -⁹⁰Sr/⁹⁰Y; 0.46 GBq 11 cm: w/o filter 11 cm: w/o filter ⁸⁵Kr; 3.7 GBq 30 cm: with filter 20 cm; w/o filter ^{_106}Ru/¹⁰⁶Rh; 100 ⁹⁰Sr/⁹⁰Y: H_p(0.07) 30 cm: w/o filter 50 cm; with filter 0.46 GBq 0.02 GBa 30 cm; with filter 11 cm: w/o filter 20 cm; 3 mm PMMA 50 cm: w/o filter ¹⁴⁷Pm; 3.7 GBq 50 cm; with filter 20 cm; with filter 10 20 cm: 4 mm PMMA 20 cm; w/o filter 30 cm: with filter 1 50 cm; with filter 0.5 0.2 0.4 0.6 0.8 1.0 MeV 0.0 1.4 Mean beta energy

Actual fields, simulations: <u>J. Instrum. 8, P02019 (2013)</u> and addendum <u>J. Instrum. 14, A07001 (2019)</u>

New fields: J. Instrum. 15, P05015 (2020)

BSS2 in general: <u>J. Instrum. 2, P11002 (2007)</u> extensions: <u>J. Instrum. 6, P11007 (2011)</u>

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: Latest developments in beta-radiation metrology

ISO 6980: Reference beta fields: *major / technical changes*

- Electron and photon spectra in ISO 6980: new 202x version: free in air (without backscatter)

Actual fields, simulations: <u>J. Instrum. 8, P02019 (2013)</u> and addendum <u>J. Instrum. 14, A07001 (2019)</u>

New fields: J. Instrum. 15, P05015 (2020)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

ISO 6980: Reference beta fields: *major / technical changes*

- Electron and photon spectra in ISO 6980: new 202x version: free in air (without backscatter)

Actual fields, simulations: <u>J. Instrum. 8, P02019 (2013)</u> and addendum <u>J. Instrum. 14, A07001 (2019)</u>

New fields: J. Instrum. 15, P05015 (2020)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

ISO 6980: Reference beta fields: *major / technical changes*

- Electron and photon spectra in ISO 6980: new 202x version: in front of a tissue phantom (including backscatter)
 - → many low energy backscatter particles

Actual fields, simulations: <u>J. Instrum. 8, P02019 (2013)</u> and addendum <u>J. Instrum. 14, A07001 (2019)</u>

New fields: J. Instrum. 15, P05015 (2020)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

ISO 6980: Reference beta fields: *major / technical changes*

- Electron and photon spectra in ISO 6980: new 202x version: at 0.07 mm tissue depth (including backscatter)
 - → significant absorption of low energy electrons; photons not significantly attenuated

Actual fields, simulations: <u>J. Instrum. 8, P02019 (2013)</u> and addendum J. Instrum. 14, A07001 (2019)

New fields: J. Instrum. 15, P05015 (2020)

ISO 6980: Reference beta fields: *major / technical changes*

- Electron and photon spectra in ISO 6980: new 202x version: at 0.07 mm tissue depth (including backscatter)
 - → significant absorption of low energy electrons; photons not significantly attenuated

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology* Actual fields, simulations: <u>J. Instrum. 8, P02019 (2013)</u> and addendum <u>J. Instrum. 14, A07001 (2019)</u>

New fields: J. Instrum. 15, P05015 (2020)

ISO 6980: Reference beta fields: *major / technical changes*

- Electron and photon spectra in ISO 6980: new 202x version:

at 3 mm tissue depth (including backscatter)

→ ¹⁴⁷Pm and ⁸⁵Kr totally absorbed; ⁹⁰Sr/⁹⁰Y and ¹⁰⁶Ru/¹⁰⁶Rh fluence and energy reduced; low energy photons attenuated

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: Latest developments in beta-radiation metrology

CCRI Webinar 2022-09-07

Actual fields, simulations: <u>J. Instrum. 8, P02019 (2013)</u> and addendum <u>J. Instrum. 14, A07001 (2019)</u>

New fields: J. Instrum. 15, P05015 (2020)

ISO 6980: Reference beta fields: *major / technical changes:* correction factors for primary dosimetry (EGSnrc) - for radiation fields of the BSS2:

Radionuclide (source)	10 cm, without filter	11 cm, without filter	20 cm, without filter	20 cm, with filter	30 cm, without filter	30 cm, with filter	50 cm, without filter	50 cm, with filter
¹⁴ C	Х							
¹⁴⁷ Pm		x		x				
⁸⁵ Kr						x		x
⁹⁰ Sr/ ⁹⁰ Y		x	x	3 mm, 4 mm	x	x	x	x
¹⁰⁶ Ru/ ¹⁰⁶ Rh	Х	x	x			х		x

Metrologia 57, 065022 (2020) Metrologia 57, 065005 (2020)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

ISO 6980: Reference beta fields: *major / technical changes:* correction factors for primary dosimetry (EGSnrc)

- for radiation fields of the BSS2:
 - → Calculation for Beta Primary Standards of PTB: BPS1 (current, Böhm chamber) and BPS2 (new, PTB made):

Photographs of the Böhm extrapolation chamber (left, BPS1) and the newly developed (right, BPS2)

Metrologia 57, 065022 (2020) Metrologia 57, 065005 (2020)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

ISO 6980: Reference beta fields: *major / technical changes:* correction factors for primary dosimetry (EGSnrc)

- for radiation fields of the BSS2:
 - → Calculation for Beta Primary Standards of PTB: BPS1 (current, Böhm chamber) and BPS2 (new, PTB made):

Model of new PTB primary standard (BPS2)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

ISO 6980: Reference beta fields: *major / technical changes*: correction factors for primary dosimetry (EGSnrc)

- for radiation fields of the BSS2 for the Böhm chamber (in ISO 6980):

Backscatter: k_{ba} Sidewall perturbation: k_{pe} Inhomogeneity in active volume: $k_{\rm ih}$ Model of new PTB primary standard (BPS2) Metrologia 57, 065022 (2020) Metrologia 57, 065005 (2020) plane here Re a θ L atio 0 space simul а Ē Phase Start σ Ð Air Files (spectra) freely available: Active air volume: $\emptyset = 3$ cm; PolyEther Ether Ketone (PEEK) *l* = 250 μm ... **2500 μm** J. Instrum. 8, P02019 (2013) & Electrically cond. PEEK (PEEK ELS) J. Instrum. 14, A07001 (2019) Polycarbonate (Makrolon)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

ISO 6980: Reference beta fields: *major / technical changes*: correction factors for primary dosimetry (EGSnrc)

- for radiation fields of the BSS2 for the Böhm chamber (in ISO 6980):

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

ISO 6980: Reference beta fields: *major / technical changes:* correction factors for primary dosimetry (EGSnrc)

- for radiation fields of the BSS2 for the Böhm chamber (in ISO 6980):

Backscatter: $k_{ba} = D_{tissue_{back}} / D_{real_{chamber}}$ Sidewall perturbation: k_{pe} Inhomogeneity in active volume: $k_{\rm ih}$ Model of new PTB primary standard (BPS2) Metrologia 57, 065022 (2020) Metrologia 57, 065005 (2020) plane n here Re a θ atio 0 space simul а **m**b Phase Start ወ Air Files (spectra) freely available: Active air volume: $\emptyset = 3$ cm; PolyEther Ether Ketone (PEEK) *l* = 250 μm ... **2500 μm** J. Instrum. 8, P02019 (2013) & Electrically cond. PEEK (PEEK ELS) J. Instrum. 14, A07001 (2019) Polycarbonate (Makrolon)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

ISO 6980: Reference beta fields: *major / technical changes*: correction factors for primary dosimetry (EGSnrc)

- for radiation fields of the BSS2 for the Böhm chamber (in ISO 6980):

Backscatter: $k_{ba} = D_{tissue_{back}} / D_{real_{chamber}}$ Sidewall perturbation: $k_{pe} = D_{chamber_without_side_walls} / D_{real_chamber}$ Inhomogeneity in active volume: $k_{\rm ih}$ Model of new PTB primary standard (BPS2) Metrologia 57, 065022 (2020) Metrologia 57, 065005 (2020) 5 plane n here side З θ σ atio Ð space mu valls witho Phase Start Ĕ Air Files (spectra) freely available: Active air volume: $\emptyset = 3$ cm; PolyEther Ether Ketone (PEEK) *l* = 250 μm ... **2500 μm** J. Instrum. 8, P02019 (2013) & Electrically cond. PEEK (PEEK ELS) J. Instrum. 14, A07001 (2019) Polycarbonate (Makrolon)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PTB ISO 6980: Points of revision: Spencer-Attix theory

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PTB ISO 6980: Points of revision: application of new corr. factors

Application of new correction factors to extrapolation curves: for both: normal incidence, i.e. 0° ...

<u>Metrologia 57, 065022 (2020)</u> <u>Metrologia 57, 065005 (2020)</u>

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PTB ISO 6980: Points of revision: application of new corr. factors

Application of new correction factors to extrapolation curves: for both: normal incidence, i.e. 0° and especially oblique (e.g., 60°)

Metrologia 57, 065022 (2020) Metrologia 57, 065005 (2020)

PB Beta standards at ISO TC85 SC2 WG2

ISO 6980: Reference beta fields <mark>(2004 .. 2006), Ed.1</mark>

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PB Beta standards at ISO TC85 SC2 WG2

ISO 6980: Reference beta fields (202x), in revision \rightarrow Ed.2

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: Latest developments in beta-radiation metrology

PID Revision of the series ISO 6980

References:

R. Behrens, 2011 Extensions to the Beta Secondary Standard BSS 2: J. Instrum. 6, P11007 (2012) and Erratum J. Instrum. 7, E04001 (2012) and Addendum J. Instrum. 7, A05001 (2012)

R. Behrens, 2011 & 2019 Simulation of the radiation fields of the Beta Secondary Standard BSS 2: J. Instrum. 8, P02019 (2013) & Addendum J. Instrum. 14, A07001 (2019)

R. Behrens, 2015 Correction factors for the ISO rod phantom, a cylinder phantom, and the ICRU sphere for reference beta radiation fields of the BSS 2: J. Instrum. 10, P03014 (2015)

T.P. Selvam et al., 2016 Monte Carlo-based Spencer-Attix and Bragg-Gray tissue-to-air stopping power ratios for ISO beta sources: Radiat. Prot. Dosim. 168, 184-189 (2016)

R. Behrens, 2020 Correction factors for primary beta dosimetry: Metrologia 57, 065022 (2020)

R. Behrens, 2020 Energy reduced beta radiation fields from ⁹⁰Sr/⁹⁰Y for the BSS 2: J. Instrum. 15, P05015 (2020)

R. Behrens, 2020 Correction factors for two new reference beta radiation fields: Metrologia 57, 065005 (2020)

T. Palani Selvam, V. Shrivastava and A.K. Bakshi, 2021 Monte Carlo calculation of Spencer-Attix and Bragg-Gray stopping-power ratios of tissue-to-air for ISO reference beta sources – an EGSnrc study: J. Instrum. 16, P03006 (2021)

List of standards:

www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung 6/6.3/information/norm lst.pdf

The author wishes to thank the members of ISO TC85 SC2 WG2 SG0 (Betas):

September 2021

May 2022

Introduction

Primary and secondary beta dosimetry

International comparison BIPM EURAMET.RI(I)-S16

Revision of ISO 6980 \Leftrightarrow correction factors for beta dosimetry

Newly proposed operational quantities (ICRU 95)

PTB Newly proposed operational quantities (ICRU 95)

PB Protection quantities vs. current operational quantities (ICRU 51 / 57)

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin
Dr. R. Behrens, PTB 6.3: Latest developments in beta-radiation metrology

PB Protection quantities vs. proposed operational quantities (ICRU 95)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PTB Primary dosimetry of operational quantities [Sv]: neutrons

	Basic quantity	Radiation field	Method to determine the operational quantities <i>H</i> & <i>D</i>
Neutron		Neutron spectrometry and / or Monte Carlo transport $ \rightarrow (\Phi_{\underline{e}} / \Phi) $	Fold spectrum with conversion coefficients for mono-energetic neutrons, $h_{\phi}(E) \& d_{\phi}(E)$ from ICRU 57 / ICRU 95 : $H = \{ [\int (\Phi_{E} / \Phi) \cdot h_{\phi}(E) \cdot dE] \} \cdot \Phi$ $D = \{ [\int (\Phi_{E} / \Phi) \cdot d_{\phi}(E) \cdot dE] \} \cdot \Phi$

^{*)}AP (associated particle) method

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PTB Primary dosimetry of operational quantities [Sv]: photons

	Basic quantity	Radiation field	Method to determine the operational quantities H & D
Photon	K _{a,IC} via free air or cavity chamber	Photon spectrometry $\rightarrow (\phi_{E}/\phi) \& K_{a,spc}$	Fold spectrum with conversion coefficients for mono-energetic photons, $h_{\mathcal{K}}(E)$, $d_{\mathcal{K}}(E) \& (\mathcal{K}_{a}/\Phi)_{E}$ from ICRU 57 / ICRU 95 : $H = \{ [\int (\Phi_{E}/\Phi) \cdot (\mathcal{K}_{a}/\Phi)_{E} \cdot h_{\mathcal{K}}(E) \cdot dE] / \mathcal{K}_{a, \text{spc}} \} \cdot \mathcal{K}_{a, \text{IC}}$ $D = \{ [\int (\Phi_{E}/\Phi) \cdot (\mathcal{K}_{a}/\Phi)_{E} \cdot d_{\mathcal{K}}(E) \cdot dE] / \mathcal{K}_{a, \text{spc}} \} \cdot \mathcal{K}_{a, \text{IC}}$

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*
PTB Particle tracks in air: photons vs. electrons

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PTB Primary dosimetry of operational quantities [Sv]: betas

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PTB Primary dosimetry of operational quantities [Sv]: betas

	Basic quantity	Radiation field		Method to determine the operational quantities <i>H</i> & <i>D</i>			
Beta	D _{t,meas} via extrapolation chamber	Monte Carlo transport $\Rightarrow k_{sim} = H_{sim} / D_{t,sim}$ $(= D_{sim} / D_{t,sim})$		Multiply absorbed dose to tissue with correction factor to account for the respective phantom $\Rightarrow D = D_{t,meas} \cdot k_{sim}$ with the phantoms from ICRU 57 / ICRU 95			
		Phase space file plane ↓ Start simulation here ↓	Phase space file pla ↓ Start simulation he	ne re↓ Phase space file plane ↓ Start simulation here↓	Phase space file plane ↓ Start simulation here ↓	Phase space file plane ↓ Start simulation here ↓	ICRU 95 Air ICRU tissue Skin Scoring vol.
	• • •	slab D _{t,sim}	slab D′ _{local skin}	pillar	rod	eye D' _{lens}	
$H_p(0.07)_{slab}$ & $H_p(3)_{slab}$ $D_{p \ local \ skin, \ slab}$			alab D _{p local skin, pillar}	$D_{ m p\ local\ skin,\ rod}$	$D_{ m p\ lens}$		
Correction factors: J. Radiol. Prot. 41, 871 (2021)							eas · K _{sim}

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PTB Primary dosimetry of operational quantities: summary

	Basic quantity	Radiation field	Method to determine the operational quantities <i>H</i> & <i>D</i>
Neutron		Neutron spectrometry and / or Monte Carlo transport $\rightarrow (\phi_{e'}\phi)$	Fold spectrum with conversion coefficients for mono-energetic neutrons, $h_{\phi}(E) \& d_{\phi}(E)$ from ICRU 57 / ICRU 95: $H = \{ [\int (\Phi_E / \Phi) \cdot h_{\phi}(E) \cdot dE] \} \cdot \Phi$ $D = \{ [\int (\Phi_E / \Phi) \cdot d_{\phi}(E) \cdot dE] \} \cdot \Phi$
Photon	K_{a,IC} via free air or cavity chamber	Photon spectrometry $ \rightarrow (\phi_{e'} \phi) \& K_{a,spc} $	Fold spectrum with conversion coefficients for mono-energetic photons, $h_{\mathcal{K}}(E)$, $d_{\mathcal{K}}(E) \& (\mathcal{K}_{a}/\Phi)_{E}$ from ICRU 57 / ICRU 95: $H = \{ [\int (\Phi_{E}/\Phi) \cdot (\mathcal{K}_{a}/\Phi)_{E} \cdot h_{\mathcal{K}}(E) \cdot dE] / \mathcal{K}_{a, \text{spc}} \} \cdot \mathcal{K}_{a, \text{IC}}$ $D = \{ [\int (\Phi_{E}/\Phi) \cdot (\mathcal{K}_{a}/\Phi)_{E} \cdot d_{\mathcal{K}}(E) \cdot dE] / \mathcal{K}_{a, \text{spc}} \} \cdot \mathcal{K}_{a, \text{IC}}$
Beta	D_{t,meas} via extrapolation chamber	Monte Carlo transport $ \Rightarrow k_{sim} = H_{sim} / D_{t,sim}$ $(= D_{sim} / D_{t,sim})$	Multiply absorbed dose to tissue with correction factor to account for the respective phantom: $H = D_{t,meas} \cdot k_{sim}$; $D = D_{t,meas} \cdot k_{sim}$ with the phantoms from ICRU 57 / ICRU 95

Take home: Procedures unchanged - "only" new conversion coefficients / correction factors
 → Response of dosemeters can be re-calculated; BUT calibration coefficient and energy dependence change!

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PTB Conversion coefficients: ICRU 95: impact

Impact to beta quantities / beta dosemeters:

Assume a perfect dosemeter for the current quantities

Dotted red lines: response limits 0.71 ... 1.67 according to IEC 61526 (active) and IEC 62387 (passive) dosemeters

For betas: J. Radiol. Prot. 41, 871 (2021) For photons: J. Radiol. Prot. 42, 011519 (2022)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PTB Conversion coefficients: ICRU 95: impact

Only minor changes above 10 keV photon energy

Assume a perfect dosemeter for the current quantities

Dotted red lines: response limits 0.71 ... 1.67 according to IEC 61526 (active) and IEC 62387 (passive) dosemeters

For betas: J. Radiol. Prot. 41, 871 (2021) For photons: J. Radiol. Prot. 42, 011519 (2022)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PTB Proposed operational quantities: implementation

Journey to implementation ...

PTB International and national requirements and legislation

→ implementation of new quantities: 5...10 years

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

CCRI Webinar 2022-09-07

ission on Radiological Pre

Adopted at the 247th meeting of the German C 24/25 February 2011

PB Standards for Reference Radiation Qualities

→ implementation of new quantities and conversion coefficients: another 5...10 years

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

PTB Standards for Procedures and for Dosemeter Requirements

→ implementation of new quantities and reference to updated ISO 4037, ISO 6980 and ISO 8529

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Dr. R. Behrens, PTB 6.3: *Latest developments in beta-radiation metrology*

Implementation, if at all, will take several years, if not decades!

Introduction

Primary and secondary beta dosimetry

International comparison BIPM EURAMET.RI(I)-S16

Revision of ISO 6980 \Leftrightarrow correction factors for beta dosimetry

Newly proposed operational quantities (ICRU 95)

```
Finally, we are done ⓒ nearly …
```

Latest developments in beta-radiation metrology

(primary dosimetry, ISO 6980 revision, and ICRU 95 impact)

Rolf Behrens

ORCiD: 0000-0002-4905-7791 PTB, Department "Radiation protection dosimetry" (6.3)

Physikalisch-Technische Bundesanstalt **Braunschweig and Berlin** Bundesallee 100 38116 Braunschweig Dr. R. Behrens Phone: +49(0)531-592-6340 E-Mail: Rolf.Behrens@PTB.de www.ptb.de

Thanks to

- CCRI for inviting me
- ISO TC85 SC2 WG2
- "Reference radiation fields" preparing ISO 6980
- ICRU RC26 preparing ICRU 95
- **PTB** staff: Phil Brüggemann Jürgen Roth Heike Nittmann Department 6.3

As of 09/2022