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Note: X-ray spectrometry can also refer to 

measurement of characteristic radiation in 

material analysis (for example X-ray 

fluorescence, XRF)
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Introduction

• Photon fluence/flux spectrum: how many photons at each energy

– Energy distribution of photons

• The fluence spectra from an X-ray machine can be measured, but not “directly”

– Spectra measured with a spectrometer require further processing
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Introduction

Applications

• Calibration of radiation protection dosimeters 

(operational quantities)

– Dose equivalent from air-kerma by using a conversion 

coefficient (radiation-quality specific)

– Low X-ray tube voltages: the coefficients need to be 

determined from experimental fluence spectra

• Attenuation in air

– Corrections for free-air-chambers

– Correction to NTP conditions for low energies

• Detector development, research…
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Introduction

Spectrometry: Most information about the radiation

– What energies the photons hitting the chamber/detector have
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Steps in determining fluence spectra

1.Measurement of uncorrected spectra

2.Monte Carlo modelling of the spectrometer

3.Response simulations

4.Unfolding procedure
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X-ray generation and spectrum

• Electrons accelerated in an electric field and collided 

with the anode

– Electron kinetic energy 𝐸𝑘𝑖𝑛 = 𝑉𝑒, where 𝑉 is the tube 

voltage and 𝑒 electron charge

• Photon production through Bremsstrahlung, photon 

energies between 0 and 𝐸𝑘𝑖𝑛
• Excitation of inner shell electrons in the anode

– Characteristic X-rays

– Only if 𝐸𝑘𝑖𝑛 is higher than the ionization energy of the shell

– For tungsten, K-edge at approximately 70 keV

• Attenuation in the anode, tube window and filters
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X-ray generation and spectrum

• A: Generated photons

• B: photon spectrum emitted from the anode

• C, D: Spectrum after attenuation in filters
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Semiconductor detector materials

• Germanium

– Good photon absorption

– Best energy resolution

– Large crystal sizes possible

– Has to be cooled down

• Liquid nitrogen (77 K) or electric cooling

• Cadmium Telluride (CdTe)

– High Z material, very good photon absorption

– Can be used in room temperatures

– Good energy resolution

– Problems with higher energies

– Difficult material, available in relatively small sizes
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Semiconductor detectors and spectrometry

• Photon interaction inside a semiconductor

– Secondary electron

– Secondary electron excites more electrons from valence 

band to conduction band → electron-hole pairs

– Electric field collects the charge → charge pulse

• Energy needed to create one electron-hole pair is 

independent of the photon energy (2.96 eV for Ge)

→ Charge is proportional to the energy imparted by the 

photon

• Photoelectric interaction: photon energy from the size of 

the charge pulse
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Formation of spectrum

• Monoenergetic photon source
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Steps in determining fluence spectra

1.Measurement of uncorrected spectra

2.Monte Carlo modelling of the spectrometer

3.Response simulations

4.Unfolding procedure
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Energy calibration

• Radionuclide sources: Photons with 

accurately known energies

• Bin number of spectrum calibrated into 

energy by determining the center bin of a 

peak

• Multiple peaks, multiple calibration points

– Linear, or second order polynomial fit

– Second order more precise, but calibration 

curve very close to linear
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X-ray spectrum measurements

• High fluence → collimation
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X-ray spectrum measurements
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Fluence spectrum
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Measured (uncorrected) spectrum
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Measured (uncorrected) spectrum
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3.Response simulations
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Monte Carlo modelling

• Accurate model of the spectrometer

– Manufacturer data, X-ray images

– The front of the detector most important

• Window, electric contact, dead layer

• Validation of the model with radionuclide source 

spectrum measurements

– Detection efficiency (how many of the emitted 

photons are detected in the photopeak), and 

spectrum shape comparison

– Interest in low energies: Co-57, Am-241, Fe-55…

– Simulation in the same geometry as the 

measurements
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Monte Carlo modelling

• Penelope, EGSnrc (egs_phd, DOSRZ), Geant4, 

MCNP

• Simulations for validation of the model can be 

run easily on a laptop

• CdTe: radiation transport MC might not be 

sufficient for comparison to measured spectra
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Detector response simulations

• Simulation of the detected spectrum shape in the whole 

energy range

• Mono-directional, mono-energetic (parallel beam) source

• Source energy from 0 to Emax in constant intervals

– For example, 1 keV intervals: simulation with 

energies 0.5 keV, 1.5 keV, 2.5 keV… up to some 

maximum energy

– Our calculations: 0.2 keV intervals

• Response of the detector for photons in the X-ray 

measurement geometry with energy of each bin of the 

measured spectrum
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Detector response simulations

• Electron transport has an effect also at low energies

• Simulations run, and results collected automatically with 

a script

• Results can be gathered into a response-matrix

– Spectrum form each simulation fills one column of the matrix

– In order from smallest to largest source energy

– Separate matrix for the simulation uncertainties

• Table-top computer works, laptop not preferable



Measured (uncorrected) spectrum
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Steps in determining fluence spectra

1.Measurement of uncorrected spectra

2.Monte Carlo modelling of the spectrometer

3.Response simulations

4.Unfolding procedure
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Spectrum unfolding

Method 1: inverse response-matrix method

• 𝑠 = 𝐌𝜙 ֜ 𝜙 = 𝐌−1𝑠

• s is the measured spectrum, 𝜙 the fluence spectrum and 

M the response-matrix collected from the response 

simulations

• Software must be able to do the matrix inversion
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Spectrum unfolding

Method 2: peeling method

• Highest bin: only full absorption events →

Subtract “extra” pulses (Compton and X-ray 

escape) from lower bins
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Spectrum unfolding

• Full-energy peak-efficiency (FEPE, 𝜀): what 

portion of the photons are detected in the 

photopeak

• Fluence spectrum is obtained from the 

corrected spectrum with 𝜀 and the collimator 

hole area A:

𝜙(𝐸) =
𝑠𝑐𝑜𝑟𝑟(𝐸)

𝐴𝜀(𝐸)

• FEPE is defined for photons coming through 

the collimator hole, and hence is quite high
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Applications

31.5.2022

[Esitys, Esittäjän nimi]
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Tube voltage

• Maximum energy of photons with tube voltage V

is 𝐸𝑚𝑎𝑥 = 𝐸𝑘𝑖𝑛 = 𝑉𝑒

• Tube voltage obtained from the edge of the 

spectrum 𝑉 =
𝐸𝑚𝑎𝑥

𝑒

• Not considered accurate enough for ISO 4037 at 

low voltages
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Mean energy and spectrum width

• 𝐸𝑚𝑒𝑎𝑛 = σ𝑠𝑖𝐸𝑖/ σ 𝑠𝑖
– Weighed mean, the weights are the counts in 

each channel

• Width

– Find the half value of the maximum on rising 

and falling edge

– The width (full-width at half maximum, FWHM) 

is the difference in energy between these points
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Air-kerma

• Air-kerma used mainly for further calculations

• For monoenergetic photons 𝐾𝑎 = 𝜙𝐸𝜇𝑒𝑛 𝐸

– 𝜇𝑒𝑛 𝐸 is the mass-energy attenuation coefficient with 

photon energy E

– Air-kerma calculated for each bin: air-kerma spectrum

• Spectrum: sum over the air kerma in each channel

– 𝐾𝑎 = 𝜙𝐸𝜇𝑒𝑛 𝐸 𝑑𝐸

– Or in practice: 𝐾𝑎 = σ𝑖𝜙𝑖𝐸𝑖𝜇𝑒𝑛(𝐸𝑖)
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HVL

• HVL can be solved numerically with the air-kerma 

spectrum

• Give an initial guess for the HVL

• Attenuate the spectrum in each bin

• Calculate air-kerma for the attenuated spectrum and 

compare the air-kerma to the original

– If the ratio is more than half, increase the guessed width

– If less than half, decrease the width

• Continue until the ratio is close enough to 0.5

• HVLs from spectrometry are slightly smaller than from 

dosimetric measurements
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Dose equivalent and conversion coefficients

• Hp(10), Hp(3), Hp(0,07), H*(10)…

• Monoenergetic photons: 𝐻 = 𝐾𝑎ℎ𝐸
– ℎ𝐸 is the monoenergic conversion coefficient for energy 𝐸

(given in ISO 4037-3)

• Calculate dose equivalent in each bin (𝐻𝑖), and 𝐻 = σ𝐻𝑖
• Conversion coefficient from air-kerma to dose-equivalent for 

a radiation quality: ℎ =
𝐻

𝐾𝑎

• Similar procedure works also for effective dose from 

ICRP116
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Conclusions

• Spectrometry answers question: what is coming out of the tube?

• Allows determination of multiple quantities for your spectra

– Same methods can be applied to sealed radionuclide sources, or other 

sources with continuous spectrum

• Research, detector development…

• Establishing the method is not straightforward

– Requires (learning) a wide range of skills: gamma-ray spectrometry, pulse 

processing, dosimetry, Monte Carlo, scripting…

• Support from radioactivity/gamma lab helps a lot

– Pulling all this off requires resources
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Conclusions

• EURAMET Mentoring scheme award (MSA): 

Collaboration with ENEA on X-ray spectrometry

• Goal: Publish material (MC models, scripts, 

documentation) as open source

• Make spectrometry easier for others!
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Future

Could simulated spectra be used instead of measured ones?
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