METROLOGICAL CHALLENGES FOR OCEAN ACIDIFICATION OBSERVATIONS: THE EXAMPLE OF pH

Paola Fisicaro
Daniela Stoica
Gaëlle Capitaine

Joint Workshop of JCGM-WG1 and WMO-ET-MU on Measurement uncertainty in meteorology and climatology, 5 and 6 April 2022
The ocean and the climate

The ocean is a heat reservoir
Storage of about 90% of the excess of energy resulting from the human induced Green House Gases content in the atmosphere

The ocean is a carbon pump
Absorption of about 25-30 % of CO$_2$ human emissions
Ocean acidification

Impact on the calcification process of marine organisms with an exoskeleton (plankton, shellfish, corals, etc.)

$$\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{HCO}_3^-$$

$$\text{H}^+ + \text{CO}_3^{2-} \rightarrow \text{HCO}_3^-$$
Ocean acidification: state of the art

- GCOS ECV* to evaluate the carbon cycle: Inorganic carbon, defined by 4 sub-variables: pH, Total Alkalinity, pCO2, Dissolved Inorganic Carbon
 GCOS required measurement uncertainty: 0.005 pH

- The Global Ocean Acidification Observing Network (GOA-ON) was established in 2012 under the umbrella of the Intergovernmental Oceanographic Commission of UNESCO (IOC)
 GOA-ON “Climate goal” standard uncertainty requirement: 0.003 pH
 ➔ Uncertainty requirements very close to the level of primary standards

- The average pH of ocean surface waters has fallen by about 0.1 units, from 8.2 to 8.1, since the beginning of the industrial revolution

Global Climate Observation System Essential Climate Variables
DEFINITION OF THE MEASURAND
Definition of the measurand

\[\text{pH} = -\log(a_{H^+}) \]

\[a_{H^+} = m_{H^+} \cdot \gamma_{H^+} \]

- Only free protons
- Solvent is water

Potentiometry

\[U (k=2) > 0.01 \]

\[\text{pH} = 8.332 \]

\[\text{@ Sp = 35 & T = 25°C} \]

Example

G.M. Marion and All, Marine Chemistry, 2011
METROLOGICAL TRACEABILITY
SI Traceability of pH measurement results

\[\text{pH} = -\log(a_H) = \left(-\log(a_H \gamma_{Cl})^0 \right) + \log(\gamma_{Cl}) \]

- Experimentally determined
- Acidity function
- Convention
- Activity coefficient

Activity coefficient: key parameter to ensure SI traceability for pH results

International consensus
Bates–Guggenheim convention validity: ionic strength < 0.1 mol/kg

Seawater ionic strength ~ 0.7 mol/kg at salinity (S) 35

Harned cell
pHₜ measurements by optical method

An **indicator dye** (usually m-cresol purple) is added to the solution

The pHₜ obtained from the resulting absorbance spectrum

\[
pH_T = pK^*_2 + \log \frac{[I^{2-}]}{[HI^-]}
\]

\[\text{pK}^*_2 = 2^{\text{nd}} \text{dissociation constant of the dye under the total scale}\]

*Liu, X. and All, *Environmental science & Technology*, 2011*
Traceability of pH_T measurement results

Traceability to the A. Dickson SOP 6b *Determination of the pH of sea water using the indicator dye m-cresol purple* (become ISO 18191:2015 standard)

Estimated from measurements with standard buffer solutions whose pH_T is known over the desired range of S and T

Quantified from absorbance spectrum

\[
pH_T = pK^*_2 + \log \frac{[I^2^-]}{[HI^-]} \]

Dye calibration

Measurement of real samples

$[I^2^-]$ and $[HI^-]$ absorbance spectra with different pH levels.
Traceability of pH_T measurement results

“Primary” buffer solutions

Indicator dye
Secondary standard?

$[I^{2-}] + [H^+]_T = [HI^-]$

Unknown sample

$pH_T = pK^*_2 + \log \frac{[I^{2-}]}{[HI^-]}$
How to establish traceability of pH₇ measurement results

I. Define an artificial matrix with a known and reproducible composition

*Composition for nominal salinity = 35

<table>
<thead>
<tr>
<th>Component</th>
<th>Molality (mol·kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>0.427531</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>0.029264</td>
</tr>
<tr>
<td>KCl</td>
<td>0.010580</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>0.054742</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>0.010751</td>
</tr>
</tbody>
</table>

*Adapted from Millero et al., Deep Sea Research Part I, 2008

II. Select a suitable buffer solution as reference material: TRIS/TRIS.H⁺

III. Implement the Harned cell measurements

\[
pH_T = \frac{(E - E^0*) \cdot F}{R \cdot T \cdot \ln(10)} + \lg\left(\frac{m_{Cl}}{m^o}\right)
\]

\[
E^0* = \lim_{m_{HCl} \to 0} [E' + k \cdot \lg(m_H) + k \cdot \lg(m_{Cl})]
\]

IV. Characterise reference materials
On-going activities

Collaboration between LNE, NIST, NMIJ, PTB
EURAMET Joint Research project *OCEAN*
(EMRP ENV05, 2011-2014)

On going CCQM P221
Measurement of the activity function and pH$_T$ of a TRIS-TRIS.HCl buffer prepared in an artificial seawater background at ionic strength ~ 0.7 mol/kg

Proposal for a CCQM EAWG task group
Aim: how to establish traceability to SI: understanding of pH$_T$ from the thermodynamic point of view (similarly to what done for pH in the past)
UNCERTAINTY ESTIMATION
Where we are with the uncertainty

- GOA-ON and GCOS uncertainty requirements: 0.003 to 0.005 pH
- Harned cell pH\(_T\) measurements: about 0.005 (k=2)
- Reproducibility of spectrophotometric method: about 0.003 but a complete uncertainty budget has not yet been established
- A preliminary interlaboratory comparison has shown an standard uncertainty not better than 0.005
EURAMET EMPIR Joint Research Project "Metrology for standardised seawater pH$_T$ measurements in support of international and European climate strategies”
(Coordinated by LNE. 2021 – 2024)

General objective: to establish robust metrological tools to improve the ISO 18191:2015 standard

- Develop uncertainty estimation of pH$_T$ measurements following the GUM and the Nordtest approaches
- Compare (and hopefully reconcile!) bottom-up and top-down approaches

http://projects.lne.eu/jrp-saphties/
ACKNOWLEDGEMENTS

@LNE
Nicolas Fischer, Severine Demeyer, Jabran Zaouali

@PTB
Steffen Seitz, Frank Bastkowski

@NMIJ
Igor Maximov, Toshiaki Asakai

@NIST
Regina Easley, Jason Waters

Thank you for your attention!