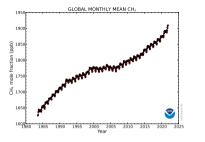


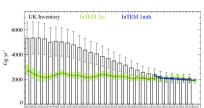
Uncertainties in greenhouse gas emissions: accounting for covariance

Maurice Cox National Physical Laboratory, Teddington, UK, and JCGM-WG1

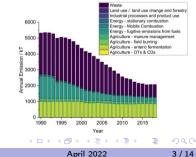
April 2022 Joint JCGM-WG1 and WMO-ET-MU workshop on Measurement uncertainty in meteorology and climatology

Maurice Cox


JCGM-WG1-WMO-ET-MU workshop


April 2022

Background


- NPL project: effect and management of error covariance structures in climate data records
- This work part of one case study in that project
- Other case studies include
 - Re-gridding: from data on source grids in different frames of reference to common grid to facilitate calculations of derived quantities
 - Sea-level rise data analysis from altimety (Emma Woolliams)
- Emphasize clear provision and communication of uncertainties (standard, expanded, relative, ...) and covariance/correlation matrices
- Concentrate on fundamentals

GHG CH₄ global and UK emissions

- DECC annual report 2020
- InTEM: UK Met Office's inversion modelling system

- Uncertainties highly relevant when estimating trends and accelerations
- Key factor: investigation of possible covariance

National GHG emissions' inventories

- Compiled according to IPCC Guidelines
- Each year updated to include latest data available
- Inventory includes the seven direct GHGs under the Kyoto Protocol:
 - Carbon dioxide (CO₂)
 - Methane (CH₄)
 - Nitrous oxide (N₂O)
 - Hydrofluorocarbons (HFCs)
 - Perfluorocarbons (PFCs)
 - Sulfur hexafluoride (SF₆)
 - Nitrogen trifluoride (NF₃)
- \bullet Three largest GHG contributors: CO_2, CH_4, N_2O
- Bulk of uncertainty from Agriculture, Land Use and Waste sectors
- \bullet CO_2, CH_4, N_2O contribute 86 % of the uncertainty in total inventory emissions

Bottom-up calculation of emissions

Total GHG emission for a given sector, geographic area and time period:

$$E=\sum_i F_i A_i G_i$$

- F_i emissions' factor for given pollutant from source category i
- A_i activity rate for source category i
- G_i 100 year Global Warming Potential (GWP) to convert emissions of various gases to 'CO₂ equivalents (CO₂e)'
 GWP100 conversion factors: CO₂: 1 CH₄: 25 N₂O: 298
- 743 emission factors and > 1700 emission sources

European and other countries moving towards metrological assessment of current uncertainty quantification including accounting for effect of correlated quantities

Critical review of current calculations

Agriculture sector data: contributions from use of two fuels Activity rate data and emission factors with expanded uncertainties U (95% confidence)

[UK National Atmospheric Emissions Inventory site]

No uncertainty attributed to the G_i (can 'add' it afterwards)

Fuel	Gas	A/(TJ)	U(A)/%	$E/{ m ktTJ^{-1}}$	U(E)/%
Gas oil	CO_2	0.020 438	38.6	2.0438×10^{-2}	2.7
Gas oil	CH_4	0.020 438	1.6	$3.5368 imes10^{-6}$	80.0
Gas oil	N_2O	0.020 438	1.6	$3.0984 imes10^{-6}$	216.3
Petrol	CO_2	67.19	50.7	$1.9127 imes10^{-2}$	$4.8654 imes10^{-5}$
Petrol	CH_4	67.19	1.6	$4.8654 imes10^{-5}$	80.0
Petrol	N_2O	67.19	1.6	3.3578×10^{-7}	216.3

What do you notice?

Agriculture sector data

Activity rate data and emission factors with expanded uncertainties U (95% confidence) [UK National Atmospheric Emissions Inventory site]

Fuel	Gas	$A/(\mathrm{TJ})$	U(A)/%	$F/{ m ktTJ^{-1}}$	U(F)/%
Gas oil	CO_2	0.020 438	38.6	2.0438×10^{-2}	2.7
Gas oil	CH_4	0.020 438	1.6	$3.5368 imes10^{-6}$	80.0
Gas oil	N_2O	0.020 438	1.6	$3.0984 imes10^{-6}$	216.3
Petrol	CO_2	67.19	50.7	$1.9127 imes10^{-2}$	$4.8654 imes10^{-5}$
Petrol	CH_4	67.19	1.6	$4.8654 imes10^{-5}$	80.0
Petrol	N_2O	67.19	1.6	3.3578×10^{-7}	216.3

Commonality: perceived correlation!

Further, question whether uncertainty attributed to the G_i can be 'added' afterwards

Maurice Cox

JCGM-WG1-WMO-ET-MU workshop

Uncertainty propagation under independence

Let A_1, \ldots, A_6 denote the activity rate data values and F_1, \ldots, F_6 the corresponding emissions' factors in the order given in table

Measurement model for total emissions:

$$E = \sum_{i=1}^{6} E_i, \qquad E_i = A_i F_i G_i$$

Apply GUM (JCGM 100):
$$E = 4282 \text{ kt CO}_{2} \text{e}$$

 $u(E) = 835 \text{ kt CO}_{2} \text{e}$
 $u_{\text{rel}} = 19 \%$

Above assumes independent inputs

Dependence since two groups (red and blue) of 3 identical A_i (perceived common source)

How to cater for perceived common sources?

Accounting for perceived correlation associated with the A_i

Reparametrize \implies change measurement model parametrically

 A_1 , A_2 , A_3 identical numerically: suspect common origin — same quantity Similarly for A_4 , A_5 , A_6

Replace A_1 , A_2 , A_3 by A_{GO} (GO = Gas Oil) and A_4 , A_5 , A_6 by A_P (P = Petrol) Apply GUM (JCGM 100):

Apply GUM (JCGM 100):
$$E = 4282 \text{ kt } \text{CO}_2\text{e}$$
 (as before)
 $u(E) = 846 \text{ kt } \text{CO}_2\text{e}$
 $u_{\text{rel}}(E) = 20\%$ (negligible increase — was 19%)

Although increase very small, important principle here

Waste Incineration sector data

- Above approach repeated for Waste Incineration sector data
- Again, little change in u(E) when accounting for correlation
- If result applied to all subsectors and when subsectors combined to give total emissions — assumption of independence would be verified
- Difficulty in sourcing data with known provenance to say one way or other
- If, as above, various contributors provide parts of inventory, likely to be analyzed *independently*
- To make the point forcibly that covariance can make a difference, need instance where it makes meaningful change
- Examined influence of GWP100 factors, the G_i , making similar assumptions as above

Global warming potential (GWP)

Index defined as the cumulative radiative forcing between the present and a future time horizon caused by a unit mass of gas emitted now, expressed relative to that of CO_2

'The uncertainty of the GWP values for the six main GHGs is estimated to be ± 35 % for the 90 % confidence interval (5 % to 95 % of the distribution)' [IPCC Fourth Assessment Report]

Under normality assumption, standard deviation of normal distribution characterized as above is 21.2%, taken as standard uncertainty associated with the GWP100 (100 y) conversion factors

IPCC notes the GWP uncertainty but seems not to take strong account of it

Companies that choose to quantify inventory uncertainty may include the uncertainty of GWP values in their calculations. [World Resources Institute]

Waste incineration: simple calculation to quantify effect Dominant contribution in waste incineration calculations is from CO₂

Replace the model used by one just involving CO_2 , obtaining the emissions due to CO_2 as

$$\begin{split} E_{\mathrm{CO}_2 \, e} &= (F_1 A_1 + F_2 A_2) G & \text{Correlation-based model} \\ E_{\mathrm{CO}_2 \, e} &= F_1 A_1 G_1 + F_2 A_2 G_2 & \text{Correlation-free model} \end{split}$$

F_1, F_2	chemical & clinical waste emissions' factors)
A_1, A_2	corresponding activity rates	Estimates, std. uncs. given
G, G_1, G_2	100 year GWP	J

	$\mathit{E}_{\mathrm{CO}_2e}/\mathrm{kt}$	$u(E_{{ m CO}_2e})/{ m kt}$	$u_{ m rel}(E_{ m CO_2e})/\%$
Uncorrelated	245	47	19
Correlated	245	58	24

Makes a	meaningful	difference
	0	

JCGM-WG1—WMO-ET-MU workshop

12/14

Conclusions

- Carefully consider origins of data
- However, difficult to source raw data from reputable sources
- Look for commonalities, perceived correlations, ...
- Be transparent and state assumptions
- Fundamental principles of covariance and correlation in EMUE compendium http://empir.npl.co.uk/emue/wp-content/uploads/sites/49/2021/07/ Compendium_M36.pdf
- Perceived correlation: $E = (F_1A_1 + F_2A_2)G$ versus $E = F_1A_1G_1 + F_2A_2G_2$
- Compare sum of quantities with equal uncertainties: quadrature and additive
- Use of multivariate LPU in matrix form (JCGM 102) simplifies computations
- Monte Carlo used to confirm calculations modulo involved uncertainties

Work supported by the Data Science programme within the National Measurement System programme of the UK Government's Department for Business, Energy and Industrial Strategy

National Physical Laboratory