Case study on implementing GUM to streamflow measurements acquired with Acoustic-Doppler Velocimeters

Marian Muste¹, Jongmin Kim², Dongsu Kim³

¹ IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, USA
 ² Korea Institute of Civil Engineering and Building Technology's River Experiment Center, Andong, South Korea
 ³ Dankook University, Yongin, Gyeonggi, South Korea

Joint Workshop of JCGM-WG1 and WMO-ET-MU on Measurement uncertainty in meteorology and climatology April 5-6, 2022 To illustrate implementation of GUM-based Uncertainty Analysis to a common hydrometric measurement

- Essentials of GUM framework
- Case Study
 - Methods & instrumentation
 - Study site & experimental conditions
 - Measurement protocols
 - Estimation of elemental uncertainty sources
 - Estimation of the expanded uncertainty in streamflow measurement
- Discussions
- Conclusions

GUM Essentials

GUM Implementation protocol (JCGM100/2008)

Case study: Methods

Case study: Instrumentation (main)

Acoustic Point Velocity Meter: 16 MHz MicroADV (www. sontek.com)

3-component point velocities (u, v, w)

Micro-ADV Specifications						
Sampling Rate	0.1 to 50 Hz					
Sampling Volume	0.09 cm^3					
Distance to Sampling Volume	5 cm					
Resolution	0.01 cm/s					
Velocity Range	3 - 250 cm/s					
Resonance Pressure Transducer (RPT) - Accuracy	0.01%					
Compass/Tilt Sensor — Heading Accuracy	±2°					
Compass/Tilt Sensor — Pitch, Roll Accuracy	±1°					
Pressure Sensor Strain Gauge - Accuracy	0.1%					
Overall Accuracy	1% velocity or 0.25 cm/s					

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = G_3^{-1} \frac{c}{f_0} \begin{bmatrix} f_{D1} \\ f_{D2} \\ f_{D3} \end{bmatrix}$$

- *G*₃ geometrical transformation matrix;
- *c* speed of sound in water;
- f_D difference in the frequency of emitted (f_0) and return (f_B) pulses due to Doppler shift.

Case Study: Study site

Civil Engineering and Building Technology's River Experiment Center (KICT-REC), Andong, Korea (https://www.kict.re.kr/menu.es?mid=a20302030000)

Test cross section & experimental conditions

'S
-
-
)

Case study: Measurement protocol & Steps 1-2 of GUM

Mid-Section VA method (102 point measurements)

 $O_{t} = U_{1} \times d_{1} \times \left(\frac{b_{2}-b_{1}}{2}\right) + \sum_{j=2}^{22} \left(U_{j} \times d_{j} \times \left(\frac{b_{j+1}-b_{j-1}}{2}\right)\right) + U_{23} \times d_{23} \times \left(\frac{b_{23}-b_{22}}{2}\right) + Q_{Re} + Q_{Le} \qquad \text{Eq. (1)}$

Case Study: Reference for UA (benchmark dataset)

KICT-REC Andong offers ideal conditions for obtaining a highquality reference (i.e., natural stream flow & boundary roughness, calibrated data acquisition equipment, trained operators, and controlled, stable, and repeatable experiments)

Cross-section distributions: mean streamwise velocity and normalized streamwise turbulence intensity

Case Study: Elemental uncertainty source

The elemental sources of uncertainty are grouped around the variables in the data reduction Equation (1):

- mean depth-averaged velocity, **U**_i
- depth of the verticals **d**_i
- distance between verticals, (b_{j+1}-b_{j-1})/2
- model for discharge estimation (includes measured & unmeasured areas), *Q_{MO}*

Estimates for all elemental uncertainty sources (17) are needed:

- 12 Type A (determined from own measurements & judgements)
- 5 Type B (other information sources)

Notes:

- 9 uncertainty sources Type A directly estimated in KICT-REC
- No uncertainty estimates for "Correlated bias errors" available
- Given the ideal measurement conditions for the KICT-REC facility, the "Operational conditions" sources are assumed negligible.

Elemental uncertainty	ID	Туре	Standard				
			uncertainty*				
i. Mean velocity in verti	cals, u(U _i)						
Instrument accuracy	u(U _{ac})	В	1.0 %				
Sampling duration	u(U _{sd})	Α	0.7 %				
Vertical sampling model	u(U _{vd})	Α	1.6 %				
Vertical velocity model	u(U _{vm})	Α	0.3%				
Correlated bias errors	r(U _i , U _{i+1})	-	N/A				
Operational conditions	u(U _{op})	Α	Negligible				
ii. Depth in verticals. <i>u</i> (<i>d</i> ;)							
Instrument accuracy	u(d _{ac})	В	0.0005 m				
Correlated bias errors	r(dj, dj+1)	-	N/A				
Operational conditions	u(d _{op})	Α	Negligible				
iii. Distance between ve	rticals, u(<i>b_j</i>)						
Instrument accuracy	u(b _{ac})	В	0.0005 m				
Correlated bias errors	r(b _j , b _{j+1})	-	N/A/				
Operational conditions	u(b _{op})	Α	Negligible				
iv. Discharge model, u((2мо)	<u>.</u>					
Discharge model	u(Q _{mo})	В	0.5%				
Number of verticals	u(Q _{nv})	Α	1.5%				
Edge discharge model	u(Q _{eg})	Α	1.7%				
Near-bed effects	u(U _{bd})	Α	2.1%				
Operational conditions	u(Q _{op})	В	Negligible				

Case Study: Step 3 of GUM

Step 3 of GUM is the most complex and expensive aspect of GUM implementation Sample of Type A uncertainty estimation: Velocity model for obtaining the depth average velocity, $u(U_{ym})$

All verticals & various distribution models for velocity profiles

	Log law	Power law	1/6 Power law	10pt. Method
Discharge (m³/s)	2.050	2.128	2.044	2.024
Discharge difference (m ³ /s)	-	0.078	-0.005	-0.026
Uncertainty [%]	-	<mark>3.82</mark>	<mark>-0.26</mark>	<mark>-1.25</mark>

Derivations for 9 other Type A uncertainty sources determined in the KICT-REC facility in: Kim, J-M, Muste, M., Kim, D. and Despax, A. (2022). Implementation of Standardized Uncertainty Analysis for Streamflow Measurements Acquired with Acoustic Doppler Velocimeters, paper in preparation & report to be submitted for input to Project-X and ET-MU teams

Case Study: Steps 4-5 GUM

Propagation of elemental uncertainties to the final result (combined standard uncertainty)

$$u_{c}(Q_{t}) = \sqrt{\sum_{j=1}^{23} u(U_{j})^{2} \left(\frac{\partial Q_{t}}{\partial U_{j}}\right)^{2} + \sum_{j=1}^{23} u(d_{j})^{2} \left(\frac{\partial Q_{t}}{\partial d_{j}}\right)^{2} + \sum_{j=1}^{23} u(b_{j})^{2} \left(\frac{\partial Q_{t}}{\partial b_{j}}\right)^{2} + 2\sum_{j=1}^{22} \sum_{j+1}^{23} \left(\frac{\partial q_{n,j}}{\partial U_{j}}\right) \left(\frac{\partial q_{n,j+1}}{\partial U_{j+1}}\right) u(U_{j}) u(U_{j+1}) r(U_{j}, U_{j+1}) + \sqrt{\left(\frac{2}{3}\right)^{2} + 2\sum_{j=1}^{22} \sum_{j+1}^{23} \left(\frac{\partial q_{n,j}}{\partial b_{j}}\right) \left(\frac{\partial q_{n,j+1}}{\partial U_{j+1}}\right) u(U_{j}) u(U_{j+1}) r(U_{j}, U_{j+1}) + \sqrt{\left(\frac{2}{3}\right)^{2} + 2\sum_{j=1}^{22} \sum_{j+1}^{23} \left(\frac{\partial q_{n,j}}{\partial b_{j}}\right) \left(\frac{\partial q_{n,j+1}}{\partial U_{j+1}}\right) u(U_{j}) u(U_{j+1}) r(U_{j}, U_{k})^{2} + u(Q_{ke})^{2} + u(Q_{ke})^{2}} \left(\frac{2}{3}\right) \sqrt{\left(\frac{2}{3}\right)^{2} + 2\sum_{j=1}^{22} \sum_{j=1}^{23} \left(\frac{\partial q_{n,j}}{\partial b_{j}}\right) \left(\frac{\partial q_{n,j+1}}{\partial b_{j+1}}\right) u(b_{j}) u(b_{j+1}) r(b_{j}, b_{j+1}) + u(Q_{MO})^{2} + u(Q_{ke})^{2} + u(Q_{ke})^{2}} \left(\frac{2}{3}\right) \frac{u(U_{j}) = \sqrt{u(U_{ac})^{2} + u(U_{sd})^{2} + u(U_{sd})^{2} + u(U_{sd})^{2} + u(U_{sd})^{2} + u(U_{sd})^{2} + u(U_{sd})^{2}} \left(\frac{2}{3}\right) \frac{u(Q_{j}) = \sqrt{u(d_{ac})^{2} + u(b_{op})^{2}}}{u(b_{j}) = \sqrt{u(b_{ac})^{2} + u(b_{op})^{2}}} \left(\frac{2}{3}\right) \frac{U(Q_{j}) = ku_{c}(Q_{j}) + ku_{c}(Q_{j})}{(2} + ku_{c}(Q_{j}) + ku_{c}(Q_{j}) + ku_{c}(Q_{j})} \right) \frac{u(Q_{j}) = ku_{c}(Q_{j})}{(2} + ku_{c}(Q_{j}) + ku_{c}(Q_{j}) + ku_{c}(Q_{j})}{(2} + ku_{c}(Q_{j}) + ku_{c}$$

Calculations executed with QMSys GUM software (equipped with an interface for hydrometry developed through WMO funding)

 Web: www.qsyst.com

 CMSys
 GUM Enterprise / GUM Calculator - User Guide

 QMSys
 GUM Enterprise / Calculator

 A professional tool for determination of uncertainties in flow measurements

Case Study: GUM execution

QMSys interface for user input: measurement definition and elemental uncertainty sources (Steps 1-2 GUM)

😪 Model Edit Fund	ctions Help						
📲 - 📑 - I	💾 🎽 🗡 🂱 🐼 - 🏷 🌞 🔀 🔓 - 🖻 🚔 - 🖻 🛃 🐂 - 🕜 🖿 -						
Name:							
Method:	GUF NL MCM Adaptive Tolerance: 1.0δ V Trials / cycle 10 000 V						
Main data	Arial \checkmark 13 \checkmark B $I \ \underline{U}$ $A \ x^2 \ x_2$ $\Omega \ f$ \checkmark \circlearrowright \circlearrowright						
Description	index n = (1:23)						
Model							
Total budget	$Q_p[n] = v[n]^*d[n]^*((b[n+1]-b[n-1])/2)$ $Q_m = SUM(Q_p[n])$						
Observation	$v[n] = v_m[n] + v_{ac}[n] + v_{sd}[n] + v_{vd}[n] + v_{vm}[n] + v_{op}[n]$ Correlations $d[n] = d_m[n] + d_{ac}[n] + d_{op}[n]$						
Correlations							
Exp. analysis	$D[n] = D_m[n] + D_{ac}[n] + D_{op}[n]$						
Budget	QLe = 0 QRe = 0						
GUF							
Charts	$Q_t = Q_m + Q_{mo} + Q_{bd} + Q_{nv} + Q_{eg} + U_{bd} + Q_{op} + Q_{Re} + Q_{Le}$						
MCM							

Case Study: GUM execution

QMSys interface for user input: values for elemental uncertainty sources (Step 3 GUM)

	Name Measured distance from reference point					
Quantity (177)	Type Type B 💙 Unit m	<				
Q	Uncertainty estimate Stand. uncertainty	*				
B[n]	Distribution 💿 Normal 🛛 t-distribution					
V _{[-1}	Value 0 m					
Om	Stand. uncertainty 0 m	*				
Qs	Degrees of freedom 💿					
V _{p[n]}	Coverage probability 95.00 %					
Q III a b Name Uncertainty due to the limited number of verticals						
Quantity (177)	Type Type B 💙 Unit m³/s	*				
Quantity (177)	Type Type B Unit m ³ /s Uncertainty estimate Stand. uncertainty	<				
Quantity (177) Q B[n] Documents	Type Type B Unit m³/s Uncertainty estimate Stand. uncertainty Distribution • Normal t-distribution	*				
Quantity (177) Q B[n] D[n]	Type Type B Unit m³/s Uncertainty estimate Stand. uncertainty Distribution • Normal t-distribution Value 0 m³/s	>				
Quantity (177) Q B[n] D[n] V[n] Qm	Type Type B Unit m³/s Uncertainty estimate Stand. uncertainty Distribution Image: Comparison of the standard uncertainty Value 0 m³/s Rel. standard uncertainty 1.6 %	>				
Quantity (177) Q B[n] D[n] V[n] Qm Qs	Type Type B Unit m³/s Uncertainty estimate Stand. uncertainty Distribution Image: Constribution on the standard uncertainty Value 0 m³/s Rel. standard uncertainty 1.6 % Degrees of freedom 0 0	*				
Quantity (177) Q B[n] D[n] V[n] Q s Vp[n]	Type Type B Unit m³/s Uncertainty estimate Stand. uncertainty Distribution Image: Construction of the standard uncertainty Value 0 m³/s Rel. standard uncertainty 1.6 % Degrees of freedom Image: Coverage probability 0 %	>				
Quantity (177) Q B[n] D[n] V[n] Q s Vp[n] Vc[n]	Type Type B Unit m³/s Uncertainty estimate Stand. uncertainty Distribution Normal t-distribution Value 0 m³/s Rel. standard uncertainty 1.6 % Degrees of freedom ∞ Coverage probability 95.00 % Coverage factor 1.96	>				
Quantity (177) Q B[n] D[n] V[n] Qm Qs Vp[n] Vc[n] Vc[n] Vc[n] Ve[n]	Type Type B Unit m³/s Uncertainty estimate Stand. uncertainty Distribution Normal t-distribution Value 0 m³/s Rel. standard uncertainty 1.6 % Degrees of freedom ∞ 0 Coverage probability 95.00 % Stand. uncertainty 1.96 1.96 Stand. uncertainty 0.5331 m³/s	× ×				

QMSys output: total uncertainty in discharge using (Step 4 GUM) obtained with:

- GUM framework (*GUF in QMSys)
- Monte Carlo method

Assessment Method	Number of trials	Estimated mean (Q _n) (m ³ /s)	Combined Standard Uncertainty $(y_{cl}(Q_{re}))$ (m^3/s)	Expanded standard uncertainty (at 95 % confidence interval)		dian	divisio	Numerical tolerance	GUF** Validated?
				(m ³ /s)	<mark>(%)</mark>			U	
*GUF	n/a	2.048	± 0.054	± 0.109	± 5.30	n/a	n/a	n/a	n/a
MCM	106	2.048	± 0.054	± 0.109	± 5.30	1.939	2.157	-	Yes

Notes:

- The relatively low values for the total discharge uncertainty are indicative for the favorable measurement environment, instrumentation, and measurement protocols used in the KICT-REC case study.
- In can be stated that the uncertainties in discharge provided by this study represent the mimimum expected uncertaitnty (baseline) compared with other measurement sites.

δ

Case Study: GUM execution

QMSys output: uncertainty budget

Discussions: GUM in Hydrometry

Unsettled Issues

- Is the use of relative uncertainties lumped as in ISO 748 for estimation of the total uncertainty equivalent to the GUM propagation using absolute values?
 Use of relative uncertainties eliminates the sensitivity coefficients prescribed in GUM, preclude probability distributions other than normal distribution for estimation of the uncertainty sources (e.g., ISO 1088)
- How to determine the "difficult-to-estimate" uncertainties? Often time these sources dominate the uncertainty budget.

Challenges

- The case specific vs. generalized UA requires conceptualization for uniform application
- Alternative approaches (more or less conform with GUM framework) continue to be used. The various approaches provide quite different uncertainties. How do we mediate the differences?
- Given the multiple approaches used for conducting UA in hydroscience, specialized institutions (such as WMO, ISO) have to agree and prescribe convergent, interoperable methodologies
- Overall there is still a considerable resistance to UA adoption (hydrometry is a special case as the measurement environment is complex)

Conclusions: Lessons learned from GUM implementation

- UA protocols converge toward common ground (compared with 50 years ago); e.g., JCGM works toward unifying and grouping standards (GUM-based) rather than expanding them (the ISO approach)
- WMO proposed the adoption of the GUM (1993) for UA for measurements and modeling of hydrologic processes (WMO Report No. 1097, 2017)
- **GUM framework implementation is doable** (irrespective of instrument and measurement protocol)
- It is possible to automate the laborious UA calculations with generic software (e.g., QMSys)
- Uncertainty analysis brings along a suite of benefits*
 - Provide confidence that the measured data can stand scientific and legal scrutinies
 - Minimize the measurement cost for a given output accuracy
 - Improve the measurement process
 - Inform field operators on optimal measurement strategy for a specific site

^{*} Kim, J-M, Muste, M., Kim, D. and Despax, A. (2022). Implementation of Standardized Uncertainty Analysis for Streamflow Measurements Acquired with Acoustic Doppler Velocimeters, paper in preparation & report to be submitted for review to Project -X and ET-MU teams

