

Use of radionuclide sources in neutron metrology

Neil Roberts Vice-chair CCRI(III)

CCRI webinar Radioactive Sources in Metrology: Applications and Alternative Technologies 19 April 2022

Neutron source types

Applications in neutron metrology

Alternatives

Types of radionuclide neutron source

- Encapsulated ²⁵²Cf or mixture of α or γ emitter and target material (e.g. ²⁴¹Am and Be, ²²⁶Ra and Be)
- Produce neutrons via spontaneous fission, (α,n) or (γ,n) reactions
- Place source in Mn bath to measure emission rate
- Rates up to $\sim 10^9$ s⁻¹ from a ²⁵²Cf source (~ 12 mSv.h⁻¹ at 1m)
- Approximately a point source
- Cylindrical geometry so not isotropic
- Sources have broad energy spectra
- Can modify spectrum \rightarrow thermal or workplace fields

Reference standards for neutron fluence and neutron dose

- Fundamental method in use at all NMIs and secondary labs with neutron facilities (cannot measure neutron dose directly)
- Source with emission rate and anisotropy calibration placed a fixed distance from a device in a low scatter area
- Determine fluence from decay corrected emission rate, anisotropy factor and air attenuation
- Determine dose from spectrum-averaged fluence to dose conversion coefficients
- Can produce simulated workplace fields using D₂O sphere and/or shadow block)

Thermal neutron fields

- Use one or more radionuclide neutron sources (Am-Be or Pu-Be) in a graphite or PE assembly
- Requires characterisation to determine fluence and dose
- Very stable field
- Low intensity
- Low maintenance

LNMRI

PTB

Figure 1: Thermal neutron standard at NRC.

Activation foils

- Metal foil placed in neutron field
- Activity of foil measured later by β , γ or β - γ counting
- Neutron fluence derived from activity and spectrum-averaged cross-section
- Select foil based on neutron energy
 Gold or manganese for thermal neutrons
 Iron or aluminium for 14.8 MeV neutrons
- Usually short half-lives and low activities

As part of quality system

- Verifying performance
- Demonstrating long term stability
- For example:

Mn bath using Ra-Be or Am-Be source
Mn bath Nal detectors using ¹³⁷Cs sources
Long counters using Am-Be sources
Activation foil beta counters using ⁶⁰Co source
Bonner sphere detectors using an Am-Be source

Determining efficiency of Mn bath system

- Mn-56 solution produced in reactor or other thermal field
- Standardised by coincidence counting or in ion chamber
- Enables neutron emission rate to be derived from Nal count rate
- Measurements made several times per year

\F-42, Issue 1, March 2022

Alternatives to radionuclide neutron sources

- Accelerators
 - Large, expensive, high maintenance, output traceable to radionuclide sources
- Portable DT or DD generators
 - Smaller, less expensive, low maintenance, output traceable to radionuclide sources, are they reliable enough for metrology?
- Reactor

Very expensive, high maintenance, only thermal neutrons

Neutristor

Very small, new technology, inexpensive, low output, limited lifespan

Department for Business, Energy & Industrial Strategy

FUNDED BY BEIS

The National Physical Laboratory is operated by NPL Management Ltd, a wholly-owned company of the Department for Business, Energy and Industrial Strategy (BEIS).