Radioactive Sources in Metrology: Applications and Alternative Technologies

CCRI(II) Measurement of Radionuclides

Freda van Wyngaardt

CCRI webinar
19 April 2022
The use of sources in Radionuclide Metrology

- Industries that rely on accurate and reliable radioactivity measurements
- The role of sources in development and maintenance of radionuclide standards
- International comparisons of radioactivity standards
- Dissemination of radioactivity standards
Accurate & reliable measurements to support health, trade, safety, environment

Diagnostic imaging (PET-CT, SPECT)
Nuclear medicine (therapy)
Radioisotope production
Nuclear power
Radiation protection
Environmental monitoring
Nuclear decommissioning
Nuclear forensics
<table>
<thead>
<tr>
<th>Element</th>
<th>Isotope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag-110m</td>
<td>Be-7</td>
<td>Cm-242</td>
<td>Cu-64</td>
<td>Ge-68</td>
<td>In-111</td>
<td>Na-22</td>
<td>Pu-238</td>
<td>Ru-103</td>
<td>Sr-85</td>
<td>Th-232</td>
<td>U-238</td>
<td></td>
</tr>
<tr>
<td>Am-241</td>
<td>Bi-207</td>
<td>Cm-243</td>
<td>Eu-152</td>
<td>H-3</td>
<td>In-113m</td>
<td>Na-24</td>
<td>Pu-239</td>
<td>Ru-106</td>
<td>Sr-87m</td>
<td>Tl-201</td>
<td>Xe-127</td>
<td></td>
</tr>
<tr>
<td>Am-243</td>
<td>Br-82</td>
<td>Cm-244</td>
<td>Eu-154</td>
<td>Hg-197</td>
<td>Ir-192</td>
<td>Nb-93m</td>
<td>Pu-240</td>
<td>S-35</td>
<td>Sr-89</td>
<td>Tl-202</td>
<td>Xe-131m</td>
<td></td>
</tr>
<tr>
<td>Ar-37</td>
<td>C-11</td>
<td>Co-56</td>
<td>Eu-155</td>
<td>Hg-203</td>
<td>K-40</td>
<td>Nb-95</td>
<td>Pu-241</td>
<td>Sb-124</td>
<td>Sr-90/Y-90</td>
<td>Tl-204</td>
<td>Xe-133</td>
<td></td>
</tr>
<tr>
<td>Ar-41</td>
<td>C-14</td>
<td>Co-57</td>
<td>F-18</td>
<td>Ho-166m</td>
<td>K-42</td>
<td>Np-237/Pa-233</td>
<td>Pu-242</td>
<td>Sb-125</td>
<td>Ta-182</td>
<td>Tm-170</td>
<td>Y-88</td>
<td></td>
</tr>
<tr>
<td>Au-199</td>
<td>Ce-139</td>
<td>Cr-51</td>
<td>Ga-68</td>
<td>I-125</td>
<td>Mn-54</td>
<td>Pa-233</td>
<td>Re-186</td>
<td>Se-75</td>
<td>Th-228</td>
<td>U-234</td>
<td>Zn-65</td>
<td></td>
</tr>
<tr>
<td>Ba-133</td>
<td>Ce-141</td>
<td>Cs-134</td>
<td>Gd-148</td>
<td>I-129</td>
<td>Mn-56</td>
<td>Pb-203</td>
<td>Re-188</td>
<td>Sm-153</td>
<td>Th-229</td>
<td>U-235</td>
<td></td>
</tr>
<tr>
<td>Ba-140</td>
<td>Ce-144/Pr-144</td>
<td>Cs-137</td>
<td>Gd-153</td>
<td>I-131</td>
<td>Mo-99/Tc-99m</td>
<td>Po-210</td>
<td>Rn-222</td>
<td>Sn-113</td>
<td>Th-230</td>
<td></td>
</tr>
</tbody>
</table>
Maintenance of radionuclide standards

Source dispensing
- Prepare counting sources for primary standardisation, calibration of secondary equipment & for customers

Secondary standard
- Ionisation chamber
 - Standards “saved” as radionuclide-specific calibration factors (pA/MBq)
 - Accuracy, reproducibility & stability < 0.1%

Keithley 6517A electrometer with SSIC
- 99mTc linearity

Primary standardisation
- Source activity determined from first principles
- Independent of prior calibration of detectors
- Bq/mg

226Ra sealed sources to account for
- Non-linearity between capacitor ranges
- Instability due to temperature fluctuations & gas leaks from pressurised IC, drifts in electronics

Gamma spectroscopy
- Calibrate gamma spec systems
- Identify & quantify radionuclides & impurities

Standards “saved” as radionuclide-specific calibration factors (pA/MBq)
Established by BIPM in 1976 to compare national standards of γ-emitting radionuclides
- Pressurised ionization chamber in lead shielding
- Participants send standardised ampoules to BIPM
- Current produced by ampoule compared to that produced by one of five reference 226Ra sources
- SIR provided 776 independent results for 72 different radionuclides

Operation relies on sealed 226Ra reference sources
- Sources are aging and indefinite use is not allowed by the regulator

Solutions:
- Fewer sources: New technology for improved current measurement linearity
- Different radionuclide: 166mHo
SIR Transfer Instrument (SIRTI)

- Established in 2013 to compare national standards of short-lived γ-emitting radionuclides
- Calibrated against SIR for 5 radionuclides
- Well-characterised NaI(Tl) well detector with data acquisition system
- Stability monitored by 94Nb reference source
- Low-energy threshold set using 93mNb X-ray peak

- SIRTI and reference source shipped to NMI
- Measurements taken by BIPM staff (or remotely)
- Limited to 2 participants per year
Large scale K2 key comparisons

- Aliquots of the same master solution distributed to participants by pilot laboratory
- Some participants submit standardised ampoules of the solution to the BIPM to provide a link to the SIR

- Intercomparisons rely on:
 - Shipping of sources around the world
 - Regulatory compliance
 - Time-bound shipping and customs clearance of short-lived radionuclides
Activity standards disseminated as certified sources

- Solutions in ampoules, vials, bottles
- Gases in ampoules, pressurized canisters
- Point sources
- Solid sources in various matrices
- Sources in natural matrices
- Sealed sources
- Large area sources

- Proficiency tests
- Onsite traceability measurements

Representative images were taken from the catalogues of a few NMIs. Please refer to the KCDB for details on radioactivity CMCs for all NMIs.
Activity standards disseminated through measurements

- Sources submitted by users and certified by NMI by primary or secondary measurement
- Calibration of radionuclide calibrators using certified reference sources
- Certification of short-lived radionuclide sources at production sites by:
 - portable primary standardisation system, or
 - using a transfer instrument with traceability to national standard