RECOMMENDATION CCTF PSFS 2 (2021)

Updates to the CIPM list of standard frequencies¹

The Consultative Committee for Time and Frequency (CCTF), at its 22nd session in 2020 and 2021,

considering that

- a common list of "Recommended values of standard frequencies for applications including the practical realization of the metre and secondary representations of the second" has been established,
- the CCL-CCTF Frequency Standards Working Group (WGFS) has reviewed several candidates for updating the list;

recommends

that the following transition frequencies shall be updated in the list of recommended values of standard frequencies:

- the unperturbed optical transition $5s^2$ $^1S_0 5s5p$ 3P_0 of the $^{115}In^+$ ion with a frequency of $f_{I15In+} = 1267402452901041.3$ Hz and an estimated relative standard uncertainty of 4.3×10^{-15} ;
- the unperturbed optical transition $6s^2$ $^1S_0 6s6p$ 3P_0 of the 199 Hg neutral atom with a frequency of $f_{199Hg} = 1$ 128 575 290 808 154.32 Hz and an estimated relative standard uncertainty of 2.4×10^{-16} (this radiation is already endorsed as a secondary representation of the second);
- the unperturbed optical transition $3s^2$ $^1S_0 3s3p$ 3P_0 of the $^{27}Al^+$ ion with a frequency of $f_{27Al^+} = 1$ 121 015 393 207 859.16 Hz and an estimated relative standard uncertainty of 1.9×10^{-16} (this radiation is already endorsed as a secondary representation of the second);
- the unperturbed optical transition $5d^{10}6s^2S_{1/2} 5d^96s^2^2D_{5/2}$ of the ¹⁹⁹Hg⁺ ion with a frequency of $f_{199Hg^+} = 1\,064\,721\,609\,899\,146.96$ Hz and an estimated relative standard uncertainty of 2.2×10^{-16} (this radiation is already endorsed as a secondary representation of the second);
- the unperturbed optical transition 6s $^2S_{1/2}$ (F = 0, m_F = 0) 5d $^2D_{3/2}$ (F = 2, m_F = 0) of the 171 Yb⁺ ion with a frequency of f_{171Yb^+} (quadrupole) = 688 358 979 309 308.24 Hz and an estimated relative standard uncertainty of 2.0×10^{-16} (this radiation is already endorsed as a secondary representation of the second);
- the unperturbed optical transition $6s^2S_{1/2} 4f^{13}6s^2^2F_{7/2}$ of the ¹⁷¹Yb⁺ ion with a frequency of f_{171Yb^+} (octupole) = 642 121 496 772 645.12 Hz and an estimated relative standard uncertainty of 1.9×10^{-16} (this radiation is already endorsed as a secondary representation of the second);
- the unperturbed optical transition $6s^2$ $^1S_0 6s6p$ 3P_0 of the 171 Yb neutral atom with a frequency of $f_{171Yb} = 518$ 295 836 590 863.63 Hz and an estimated relative standard uncertainty of 1.9×10^{-16} (this radiation is already endorsed as a secondary representation of the second);
- the unperturbed optical transition 5s $^2S_{1/2} 4d$ $^2D_{5/2}$ of the $^{88}Sr^+$ ion with a frequency of $f_{88Sr+} = 444\,779\,044\,095\,486.3$ Hz and an estimated relative standard uncertainty of 1.3×10^{-15} (this radiation is already endorsed as a secondary representation of the second);

¹ These values were agreed by the CCTF in March 2021 and became active on April 13, 2022

- the unperturbed optical transition $5s^2$ $^1S_0 - 5s5p$ 3P_0 of the ^{88}Sr neutral atom with a frequency of $f_{88Sr} = 429\ 228\ 066\ 418\ 007.01$ Hz and an estimated relative standard uncertainty of 2.0×10^{-16} ;

This radiation is now endorsed as a secondary representation of the second;

- the unperturbed optical transition $5s^2$ $^1S_0 5s5p$ 3P_0 of the ^{87}Sr neutral atom with a frequency of $f_{87Sr} = 429\ 228\ 004\ 229\ 872.99$ Hz and an estimated relative standard uncertainty of 1.9×10^{-16} (this radiation is already endorsed as a secondary representation of the second);
- the unperturbed optical transition 4s $^2S_{1/2} 3d$ $^2D_{5/2}$ of the $^{40}Ca^+$ ion with a frequency of $f_{40Ca^+} = 411\ 042\ 129\ 776\ 400.4$ Hz and an estimated relative standard uncertainty of 1.8×10^{-15} ;

This radiation is now endorsed as a secondary representation of the second;

- the unperturbed ground-state hyperfine transition of 87 Rb with an unchanged frequency of $f_{87Rb} = 6\,834\,682\,610.904\,312\,6$ Hz and an estimated relative standard uncertainty of 3.4×10^{-16} (this radiation is already endorsed as a secondary representation of the second).

that the BIPM publish in electronic form:

- the list of recommended values of standard frequencies updated accordingly,
- the list of publications reporting measurements from which these values are obtained by least square fit adjustment,
- the output covariance matrix derived from this least square adjustment

and informs the CIPM accordingly.