

CCRI Webinar Series Mass spectrometry in Radionuclide Metrology

Developments in mass spectrometry relevant reference materials

Ben Russell Nuclear Metrology Group National Physical Laboratory 17th February 2022

Mass spectrometry at NPL

- Tandem ICP-MS/MS
- Operating since September 2015
- Measurement of medium and long-lived radionuclides (>30 years) as a rapid alternative to decay counting techniques
- Expands number of radionuclides measurable compared to decay counting techniques alone
- Tandem mass spectrometry design and integrated reaction cell reduces or removes need for relatively time-consuming offline chemical separation
- New projects, services and standards

Expansion of measurement services

- Existing standards re-measured for ICP-MS related impurities
- Spiking of standards with known interferences e.g.
 ⁹⁰Sr spiked with ⁹⁰Zr isobaric interference
- Proficiency test exercises:
 - Dilution checks
 - Comparison with decay counting techniques
 - More participants reporting the use of mass spectrometry for long lived radionuclides

Applications of mass spectrometry

Application	Radionuclides currently measurable	Industry need
Actinides	 ²³¹Pa, ²³²Th, ²³⁷Np, ²³⁵U, ²³⁶U, ²³⁸U, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Am, ²⁴³Am 	Fuel reprocessing, decommissioning, NORM
Medium-lived radionuclides	⁹⁰ Sr, ¹⁵¹ Sm, ²²⁶ Ra, ⁶³ Ni	Waste characterisation and decommissioning
Isotope ratios	¹³⁵ Cs/ ¹³⁷ Cs, ¹²⁹ I/ ¹²⁷ I, ²³⁹ Pu/ ²⁴⁰ Pu	Nuclear forensics
Long-lived, low abundance radionuclides	¹²⁹ I, ⁹³ Zr, ⁹⁹ Tc	Decommissioning, long-term waste monitoring
Stable analogues of short-lived nuclides	Rare earth elements	Nuclear medicine- rapid development and validation of procedures
Material characterisation	Various (recent examples ²²⁶ Ra and ⁹⁹ Tc)	Reference material characterisation, separation materials e.g. resins, graphene. nanomaterials
Radionuclide standards	Nuclides with half-life >30 years	High purity mass spectrometry standards for validation

Examples of radionuclides measurable by mass spectrometry at NPL

Origin	Nuclide	Half life (years)	
	⁴¹ Ca	99.4(15) × 10 ⁴	
Activation products	⁵⁹ Ni	7.6(5) × 10 ⁴	
	⁶³ Ni	101.2 (15)	
	⁷⁹ Se	3.27(28) × 10 ⁵	 Iviethod in
	⁹⁰ Sr	28.91 (3)	nlace
	⁹³ Zr	1.61(5) × 10 ⁶	place
Fiscion products	⁹⁹ Tc	211.5(11) × 10 ³	
	¹²⁶ Sn	2.30 (14) × 10 ⁵	• Mork in
	129	1.57(4) × 10 ⁷	
	¹³⁵ Cs	$2.3(3) \times 10^{6}$	progress
	¹⁵¹ Sm	90(8)	P. 9. 000
	²¹⁰ Pb	22.20(22)	
NORM	²²⁶ Ra	1,600(7)	 No method
	²³¹ Pa	3.276(11) × 10 ⁴	
	235	$7.04(1) \times 10^8$	(yet)
	236 U	2.342(4) × 10 ⁷	
	²³⁷ Np	2.144(7) × 10 ⁶	
Actinidae	238	4.468(6) × 10 ⁹	
Actinides	²³⁹ Pu	24,110(30)	
	²⁴⁰ Pu	6,561(7)	
	²⁴¹ Pu	14.329(29)	5
	²⁴¹ Am	432.6(6)	

Range of instrument designs

Sample introduction

Membrane desolvation

Online chemical separation (flow injection/sequential injection, capillary electrophoresis

Laser ablation

'Cold' plasma

Electrothermal vaporisation

Instrument design

Quadrupole ICP-MS

Tandem ICP-MS

Sector field ICP-MS

Multi-collector ICP-MS

Thermal ionisation MS

Secondary ionisation MS

Accelerator MS

Resonance ionisation MS

Time of flight MS

 Differences in sensitivity, isotope ratio precision, interference removal capability, mass bias...

The need for mass spectrometry reference materials 0.55

- Increasing application of mass spectrometry for radionuclide measurement
- Underpinning standards e.g. ISO TC147/SC3/WG14
- Expanded number of radionuclides measurable
- Opportunity for comparison with decay counting techniques and between mass spectrometer designs
- There is a need to develop and evolve standards and reference materials to reflect this

Mass spectrometry reference materials

- RM: 'material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process'
- CRM: 'reference material, accompanied by documentation issued by an authoritative body and providing one or more specified property values with associated uncertainties and traceabilities, using valid procedures'
- There are mass spectrometry and radioactivity RM and CRM providers (CETAMA, JRC, NIST, PTB, NPL...)
- However, RMs for 'amount' and activity are rare

NMIs & Accredited CRM producers. Refs, ISO 17034, ISO Guide 35

Challenges for reference materials characterised for activity and mass

- What is being measured?
 - Activity concentration (Bq g⁻¹)
 - Amount concentration
 - Isotopic ratios (e.g. ²³⁵U/²³⁸U)
- Differences in interferences
 - Similar emission energies (e.g. ²³⁹Pu+²⁴⁰Pu by alpha spectrometry)
 - Isobaric, polyatomic and tailing
- Purity considerations
 - Contamination during preparation
 - Use of carriers and stable isotopes (may introduce interferences)
- Radionuclides of interest
 - Range in half-lives
 - Difference in activities and amount of material required
 - Current mass spec RM's- stable elements, actinides

Next stages

Existing materials

Can these be measured to include mass spectrometry-relevant radionuclides?

Resources available

- Enriched and pure isotopes available
- Can be measured for concentration and isotopic composition
- Future reference materials
 - Can be certified for decay counting and mass spectrometric
 - What radionuclides and materials are a priority?
 - Application area? Decommissioning, forensics, environmental...

Radionuclide	Characterisation
²³¹ Pa (doi: <u>10.1007/s10967-019-06711-6</u>)	Mass spectrometry (LLNL) Activity measurement (NIST, NRC, NPL)
233U (<u>https://doi.org/10.1016/j.talanta.2020</u> .121638)	Titration (ORNL) Isotope dilution mass spectrometry (LLNL)
²⁴⁴ Pu (<u>10.1007/s10967-020-07075-y</u>)	Mass spectrometry (LLNL, LANL, CEA)

- Mass spectrometry increasingly used for measurement of radionuclides
- Expands the number of radionuclides measurable compared to decay counting techniques alone
- Reference material development offers opportunities for:
 - Investigating links between decay counting and mass spectrometric techniques
 - Report on advantages and limitations of different instrument designs
 - Underpin methods that have demonstrated the increasing number of radionuclides measurable using mass spectrometry

References

- ISO, 2017, International Organization for Standardization, ISO GUIDE 35:2017
- ISO, 2016, International Organization for Standardization, ISO 17034:2016
- Essex, R.M., Williams, R.W., Rogers, K.T., Hexel, C.R., Parsons-Davis, T., Treinen, K.C., 2021, A new highly enriched ²³³U reference material for improved simultaneous determination of uranium amount and isotope amount ratios, *Talanta*, 221
- Essex, R.M., Williams, R.W., Treinen, K.C., Hubert, A., Humphrey, M. A., Inglis, J.D., Kinman, W.S., Maassen, J., Penkin, M.V., Steiner, R.E., 2020, A highly-enriched ²⁴⁴Pu reference material for nuclear safeguards and nuclear forensics measurements. Journal of Radioanalytical and Nuclear Chemistry, 324:257-270.
- Essex, R.M., Williams, R.W., Treinen, K.C., Collé, R., Fitzgerald, R., Galea, R., Keightley, J., LaRosa, J., Laureano-Pérez, L., Nour, S., Pibida, L., 2019, Preparation and calibration of a ²³¹Pa reference material, Journal of Radioanalytical and Nuclear Chemistry, 322:1593-1604.
- Lavelle, K. B., Essex, R. M., Carney, K. P., Cessna, J. T., Hexel, C. R., 2018, A Reference Material for Evaluation of Cs-137 Radiochronometric Measurements. *Journal of Radioanalytical and Nuclear Chemistry*, 318: 195-208
- Raptis, K., · Mayer, K., · Hendrickx, F., De Bièvre, P., 1998, Preparation and certification of new thorium isotopic reference materials, Fresenius J Anal Chem, 361: 400–403
- Croudace, I.W., Russell, B.C., Warwick, P.E., 2017, Plasma source mass spectrometry for radioactive waste characterisation in support of nuclear decommissioning: a review. *Journal of Analytical Atomic Spectrometry*, 3
- Hou, X., Roos, P., 2008, Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. *Analytica Chimica Acta*, 608(2), 105-139
- Lariviere, D., 2006, Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Spectrochimica Acta Part B: Atomic Spectroscopy, 61(8), 877-904

Thank you for your attention

Department for Business, Energy & Industrial Strategy

FUNDED BY BEIS

The National Physical Laboratory is operated by NPL Management Ltd, a whollyowned company of the Department for Business, Energy and Industrial Strategy (BEIS).

