CCQM-K10.2018 BTEX in Nitrogen at 5 nmol mol⁻¹ Draft B Report

Christina E. Cecelski¹, George C. Rhoderick¹, Antonio M. Possolo¹, Jennifer Carney¹, Miroslav Vokoun², Jitka Privoznikova², Sangil Lee³, Ji Hwan Kang³, Yong Doo Kim³, Dal Ho Kim³, Tatiana Macé⁴, Christophe Sutour⁴, Céline Pascale⁵, Napo Ntsasa⁶, James Tshilongo⁶, Mudalo Jozela⁶, Nompumelelo Leshabane⁶, Goitsemang Lekoto⁶, David R. Worton⁷, Paul J. Brewer⁷, Fred Farrow-Dunn⁷, Sergi Moreno⁷, Klaus Wirtz⁸, Volker Stummer⁸, L.A. Konopelko⁹, A.V. Kolobova⁹, Y.A. Kustikov⁹, A.Y. Klimov⁹, O.V. Efremova⁹, Janneke I.T. van Wijk¹⁰, and Adriaan M.H. van der Veen¹⁰

¹National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, Maryland 20899, United States of America.

²Czech Hydrometeorological Institute (CHMI), Generala Sisky 942/1, 143 00 Prague 4, Czech Republic.

³Korea Research Institute of Standards and Science (KRISS), 267 Gajeong ro Yuseong gu, Daejeon, Republic of Korea, 34113.

⁴Laboratoire National de Métrologie et d'Essais (LNE), 23, rue Albert Bartholomé, 75724 Paris Cedex 15, France.

 ⁵Federal Institute of Metrology (METAS), Lindenweg, 50, 3003 Bern-Wabern, Switzerland.
 ⁶National Metrology Institute South Africa (NMISA), Meiring Naudé Road, Brummeria, Pretoria 001, South Africa.

⁷National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom.

⁸Federal Environment Agency Germany Umweltbundesamt (UBA), Paul-Ehrlich-Str. 29, 63225 Langen, Germany.

⁹D.I. Mendeleyev Institute for Metrology (VNIIM), 19 Moskovsky pr., St. Petersburg 190005, Russia.

¹⁰Van Swinden Laboratorium (VSL), Thijsseweg 11, 2629 JA Delft, The Netherlands.

Coordinating laboratory

National Institute of Standards and Technology (NIST)

Subject

Comparison of BTEX in nitrogen (Track C)

Organizing body

CCQM-GAWG

Contents

1	Ove	view	3
2	Des	gn and organization of the key comparison	4
	2.1	Quantities and units	4
	2.2	Participants	4
	2.3	Schedule	4
3	Gra	imetric study	4
	3.1	Participant samples	4
	3.2	Control mixture	6
	3.3	Stability of participant samples	10
	3.4	Comparison measurements	12
		3.4.1 Instrumentation	12
		3.4.2 Measurement procedure	15
	3.5	Results	17
		3.5.1 Rationale	17
		3.5.2 Ratio-based predictions for control mixture	17
		3.5.3 KCRVs and degrees of equivalence	18
4	Con	parative study	23
	4.1	Comparative mixture	23
	4.2	Measurement protocol	24
	4.3	Participant measurements	26
	4.4	Results	27
		4.4.1 KCRVs	27
		4.4.2 Degrees of equivalence	31
5	Con	lusions	34
6	Sup	oorted claims	34
Re	eferer	ces	35

Ap	penc	lices	37
A	Grav	vimetric study calculations	37
В	Grav	vimetric participant reports	41
	B.1	KRISS	41
	B.2	LNE	45
	B.3	NIST	56
	B.4	NMISA	60
	B.5	NPL	67
	B.6	VNIIM	72
	B.7	VSL	78
С	Con	parative participant reports	89
	C.1	METAS	89
	C.2	UBA	94
	C.3	СНМІ	100

1 Overview

The key comparison CCQM-K10.2018 was designed to assess laboratory capabilities for the preparation and value assignment of primary reference mixtures (PRMs) containing BTEX (benzene, toluene, ethylbenzene, *p*-xylene, *m*-xylene and *o*-xylene) in nitrogen at a nominal amount fraction of 5 nmol mol⁻¹. It was a follow-up to the previous key comparisons CCQM-K7 [1] and CCQM-K10 [2].

Two parallel studies comprised this key comparison. The first study, deemed henceforth as the "gravimetric study", was a Model 2 comparison [3] aimed at comparing gravimetric capabilities for the preparation of BTEX PRMs. Seven participating laboratories submitted gravimetrically prepared BTEX mixtures, which were analyzed by NIST referencing a control standard. The gravimetric values of the control standard, as determined by NIST, were used as the key comparison reference values (KCRVs) for the gravimetric study.

The second study, deemed the "comparative study", was a Model 1 comparison [3] designed to evaluate analytical capabilities for the value assignment of a BTEX PRM. For this study, NIST prepared one BTEX mixture, which was measured consecutively by three participating laboratories. The KCRVs for the comparative

study were determined as a consensus value based on the participants' measurement results including any excess variance.

To provide a link to the gravimetric study, the comparative mixture was also analyzed by NIST using the control standard from the gravimetric study, and these values were incorporated into the KCRV consensus value.

This key comparison was considered to present an analytical challenge, and was therefore designated as a Specialized (Track C) Comparison.

2 Design and organization of the key comparison

2.1 Quantities and units

The measurands for CCQM-K10.2018 were the amount-of-substance fractions (hereafter abbreviated as "amount fractions") of benzene, toluene, ethylbenzene, *p*-xylene, *m*-xylene and *o*-xylene (BTEX) in nitrogen, at a nominal quantity value of 5 nmol mol⁻¹.

2.2 Participants

This key comparison included a total of 10 participants, 7 in the gravimetric study and 3 in the comparative study, which are listed in Table 1.

2.3 Schedule

The schedule for the key comparison is shown in Table 2.

3 Gravimetric study

3.1 Participant samples

For the gravimetric study, each participant was required to provide one cylinder containing a gaseous mixture of BTEX in nitrogen at a nominal amount fraction of 5 nmol mol⁻¹. The mixtures were to be prepared and verified by the participants using their usual procedures. The key comparison protocol required the final amount fractions of BTEX to be within \pm 0.2 nmol mol⁻¹ of the nominal value, and the cylinder pressure to be at minimum 10 MPa.

Study	Acronym	Country	Institute
Gravimetric	KRISS	KR	Korea Research Institute of Standards and Science
	LNE	FR	Laboratoire National de Métrologie et d'Essais
	NIST	US	National Institute of Standards and Technology
	NMISA	ZA	National Metrology Institute South Africa
	NPL	GB	National Physical Laboratory
	VNIIM	RU	D.I. Mendeleyev Institute for Metrology
	VSL	NL	Van Swinden Laboratorium
Comparative	METAS	CH	Federal Institute of Metrology
	UBA	DE	Federal Environment Agency Germany Umweltbundesamt
	CHMI	CZ	Czech Hydrometeorological Institute

Table 1. CCQM-K10.2018 participants.

Figure 1 shows the reported amount fractions of BTEX in the mixtures prepared by the participants. All participants submitted mixtures within the required interval (as indicated by the dashed lines), with the exception of NIST's reported values for benzene, toluene and *p*-xylene. An overview of the different cylinders used by the participants to prepare their mixtures is included in Table 3.

The methods by which the participants prepared their samples, including preparation procedures, purity analyses, and uncertainty budgets, are detailed in the participant reports (see Appendix B), and summarized in Table 4.

The participants were asked to verify the stability of their mixtures before shipping the cylinders to NIST, and to perform follow-up stability testing after their return. There were no reported issues regarding mixture instability, i.e., none of the participants reported any changes in the compositions of their mixtures, outside of what was already accounted for in their uncertainty budgets. Therefore, no corrections or adjustments were made to the participants' reported gravimetric values for this comparison.

Date	Gravimetric study	Comparative study
Nov–Jun 2018	NMI preparation of gravimetric standards	NIST preparation of measurement sample
Apr–Sep 2018	NMI shipment of standards to NIST	NIST shipment of sample to METAS
Jul–Oct 2018	NIST measurement of NMI standards	METAS analysis; shipment to UBA
Nov–Feb 2019	NIST analysis of key comparison data	UBA analysis; shipment to CHMI
Dec–Apr 2019	NIST return of samples to NMIs	CHMI analysis; shipment to NIST
Apr 2019	NMI reanalysis for stability	NIST reanalysis for stability
Oct 2019	Distribution of Draft A Rep	port to participants
May 2021	Distribution of Draft B Rep	port
Jan 2022	Final approval by GAWG	

Table 2. CCQM-K10.2018 schedule.

3.2 Control mixture

All participant samples were analyzed against a single analytical control, APE1228481. The control was used to monitor and correct for instrument drift, ensuring consistent sample measurements throughout the study.

The control mixture was prepared gravimetrically by NIST in a 20 L aluminum gas cylinder treated with Experis[®] by Air Products, Belgium. The amount fractions and their associated expanded uncertainties are listed in Table 5.

The control mixture was prepared by gravimetric dilution of a parent mixture, CC460929, containing nominal 250 nmol mol^{-1} BTEX in nitrogen (Table 6). The parent mixture was prepared in a 30 L aluminum gas cylinder treated with Megalife by Airgas, LLC, USA. The pure BTEX components were transferred into the cylinder by means of individual, pre-weighed glass capillary tubes. The prepared parent mixture was analyzed against previously prepared NIST standards to verify its gravimetric values (not shown).

NIST monitored the stability of the control mixture throughout the duration of the study in two ways: (i) by tracking the raw instrument response (i.e., GC peak areas) for each component, and (ii) by treating benzene as an internal standard, and

Figure 1. Gravimetrically determined amount fractions (x) of the BTEX components in the participants' samples. Error bars represent the associated expanded (k = 2) uncertainties.

Participant	Sample number	Volume / L	Pressure / MPa ^a	Treatment type	Preparation date
KRISS	D517490	10	7.6	Experis	Nov 20 2017
LNE	1029123	10	12.0	Experis	Jan 26 2018
NIST	CC412027	30	10.5	Megalife	May 30 2018
NMISA	D626613	10	11.7	Fluorination	Apr 18 2018
NPL	D618315	10	11.4	Experis	Apr 09 2018
VNIIM	5603810	5	11.0	Aculife III+IV	Jun 28 2018
VSL	VSL136606	5	12.4	Experis	Apr 04 2018

 Table 3. Cylinders used to prepare participant samples.

^a Measured upon arrival to NIST.

	lable 4. Sample prej	раганоп апи тпеаѕигешели ргосеи	uures reporteu by part	icipants.
Participant	Transfer method	Dilution steps / nmol mol ^{-1}	Analytical technique	Verification method
KRISS	Binary micro-syringes	$10000 \rightarrow 100 \rightarrow 5$	GC-FID ^a with preconcentration	Gravimetric standards
LNE	Binary syringes	$44000 \rightarrow 2000 \rightarrow 100 \rightarrow 5$	GC-FID with preconcentration	Dynamic dilution ^b
NIST	Binary capillary tubes	$250 \rightarrow 5$	GC-FID with preconcentration	Gravimetric standards
NMISA	Liquid mixture; syringe injection	$10000 \rightarrow 2000 \rightarrow 100 \rightarrow 5$	GC-FID with preconcentration	Gravimetric standards
NPL	Binary 3-way transfer vessels	$100000^{\circ} \rightarrow 10000 \rightarrow 200 \rightarrow 5$	GC-FID with preconcentration	Gravimetric standards
NIIM	Not reported	$20000 \rightarrow 300 \rightarrow 5$	GC-MS ^d	Gravimetric standards
NSL	Liquid mixture; transfer line	$25000 \rightarrow 2500 \rightarrow 500 \rightarrow 50 \rightarrow 5$	GC-FID with preconcentration	Gravimetric standards
^a Gas chroma	ttography-flame ionizatio	n detection.		

orticinante thod have Ę 540 : Tahla 4 Samula

 $^{\rm b}$ Dilution of a gravimetric standard at 2 μmol mol $^{-1}.$ $^{\rm c}$ Individual binary mixtures prepared at this level. $^{\rm d}$ Gas chromatography–mass spectrometry.

	у	$U_{95\%}(y)$	/ nmol mol ^{-1}
Benzene	5.101	0.204	
Toluene	4.907	0.196	
Ethylbenzene	4.656	0.186	
<i>p</i> -Xylene	4.892	0.196	
<i>m</i> -Xylene	4.840	0.194	
o-Xylene	4.840	0.194	

Table 5. Amount fractions, *y*, of BTEX in the control mixture (APE1228481), and associated uncertainties for 95% coverage, $U_{95\%}(y)$, which represent a blanket relative uncertainty of 4%.

Table 6. Gravimetric amount fractions, *y*, of BTEX in the parent mixture used to prepare the control (CC460929), and associated expanded uncertainties for 95 % confidence.

	у	$U_{95\%}(y)$	/ nmol mol ^{-1}
Benzene	282.99	0.39	
Toluene	272.27	0.37	
Ethylbenzene	258.31	0.32	
<i>p</i> -Xylene	271.41	0.34	
<i>m</i> -Xylene	268.52	0.35	
o-Xylene	268.51	0.34	

tracking the ratio of the response of each other component to the response of benzene. The first method allows for all components in the mixture to be measured, but the data can be subject to drift or variations in the instrumentation. With the second method, relative changes in the mixture can be monitored independent of instrument drift, but the accuracy of the data is contingent upon the long-term stability of benzene.

The stability data for the control mixture, as shown in Figures 2 and 3, indicate that some degradation of toluene, ethylbenzene, and p-/m-/o-xylene may have occurred, while the last curve in Figure 3 indicates that the measurement system and benzene remained stable. The reason for the instability is not fully understood, and the relative change is slightly greater than what has been observed in previous stability studies [4]. Therefore, in order to mitigate any potential impact

of instability on the results of this key comparison, the relative expanded uncertainties of the gravimetric amount fractions (including benzene) were increased, to a conservative estimate of 4 %, to account for any changes in the cylinder mixture over time.

3.3 Stability of participant samples

Over the course of the study, NIST monitored the stability of the mixtures prepared by the participants in the same manner as described in §3.2. The stability data were derived from the four measurements that were taken for the gravimetric comparison, between July and October 2018, and are plotted in Figures 4 and 5.

Due to a delay in returning the cylinders to VNIIM and NMISA, NIST reanalyzed their samples one more time before shipment, in February 2019. These measurements were taken to ascertain stability of the mixtures, and were not used to determine any results for the comparison. The data for these analyses are included in Figures 4 and 5 for informational purposes only. Also included are any additional measurements of NIST's sample, which were taken as part of the long-term stability check requested from each participant.

The stability data show that most of the participants' mixtures remained stable during the comparison measurements. The exception to this were the mixtures prepared by LNE and VNIIM, which showed significant drift in instrument response over the same period. The measurement sequences were designed such that the participants' samples were measured in pairs, as described in §3.4.2. Therefore, if the observed drift were related to any instability of the measurement system, it would have also been apparent in the concurrent measurements of the other participant samples. However, no such correlations were observed. Throughout the comparison measurements, LNE was paired in the same sequence(s) with NIST, VSL and NMISA; VNIIM was paired with KRISS and NMISA.

Interestingly, after sitting idle at NIST for several months, the last measured peak areas of VNIIM's mixture returned to what they were when the sample was first analyzed. One speculation is that this behavior may have been caused by a gradual accumulation of BTEX in the cylinder valve, resulting in a highly concentrated initial sample that decreased over time with repeated use. But because VNIIM's cylinder was returned shortly after the final stability measurements were taken, no further testing was performed.

As mentioned in §3.1, the participants also performed their own stability testing on their mixtures. Since none of the participants reported any observed instability, no corrections to their gravimetric values were made.

Figure 2. Stability of toluene, ethylbenzene, *p*-xylene, *m*-xylene and *o*-xylene in the control mixture, as measured by the ratio of their peak areas to the peak area of benzene over time. Error bars represent expanded (k = 2) uncertainties. The solid and dotted horizontal lines represent the initial response ratios and associated expanded uncertainties, respectively. The dashed vertical lines bracket the time during which the measurements for the gravimetric study took place.

Figure 3. Stability of the BTEX components in the control mixture, as indicated by their measured GC response over time. Each data point represents one peak area measurement taken from a single replicate chromatogram.

3.4 Comparison measurements

3.4.1 Instrumentation

All measurements were performed using a gas chromatograph with flame ionization detection (GC-FID) coupled to a cryogenic preconcentrator. The BTEX components were separated using a 60 m × 0.32 mm capillary column with 0.25 μ m of AT-WAX with the following temperature program: 35 °C (hold 5 min); increase 2 °C min⁻¹ to 60 °C (hold 3 min); increase 10 °C min⁻¹ to 115 °C. The FID was set to 250 °C, with a fuel flow rate of 30 mL min⁻¹ hydrogen and 400 mL min⁻¹ air. The preconcentrator was used to cryogenically trap 200 mL of sample at -100 °C, and then release the sample at 150 °C. A representative chromatogram using this method is shown for the control mixture in Figure 6.

Linearity of the measurement system was verified by cryogenically trapping one NIST standard (CC412027) at incremented sample volumes from 170 mL to 220 mL, simulating a nominal amount fraction range of 4.5 nmol mol⁻¹ to 5.5 nmol mol⁻¹. The 200 mL trapping volume served as the analytical control, and response ratios of each sample volume to the control were plotted along with their calculated amount fractions (Figure 7). The resulting regression equations were determined using a generalized least-squares regression compliant with ISO

□ Control ▲ KRISS ★ LNE ◆ NIST × NMISA ► NPL + VNIIM ■ VSL

Figure 4. Stability of the participant samples and control mixture, as measured by the peak area ratios of toluene, ethylbenzene, *p*-xylene, *m*-xylene, and *o*-xylene to benzene. Error bars represent expanded (k = 2) uncertainties.

Figure 5. Stability of BTEX in each participant sample and the control mixture, as indicated by their measured GC response over time. Each point represents one peak area measurement taken from a single replicate chromatogram.

Figure 6. Sample chromatogram of the control mixture, APE1228481, nominal 5 nmol mol⁻¹ BTEX in nitrogen.

6143 [5, 6]. The results of the linearity tests demonstrated that the instrumentation was linear for all BTEX components, over the entire range of measurements comprising this key comparison.

3.4.2 Measurement procedure

The measurements for this study were taken in July through October 2018, according to the following procedure:

- (a) All participant measurements were ratios of instrumental indications to the analytical control, corrected for instrument drift over time.
- (b) The participant samples were measured four separate times, producing a total of four independent ratio measurements per sample.
- (c) Each ratio itself consisted of no less than three replicate GC injections of the participant sample and the control (measured both before and after the sample measurements).
- (d) Nearly all measurements of the participant samples were taken in pairs, bracketed by the same control measurements (e.g., Control, Participant 1, Partici-

Figure 7. Linearity testing of the NIST measurement system, using one NIST standard, CC412027. The y-axis represents the simulated amount fractions, x, calculated using the gravimetric value of the standard adjusted for the trapping volume of the sample (relative to 200 mL). The x-axis represents the corresponding instrument response ratio to the control. Error bars represent expanded (k = 2) uncertainties.

pant 2, Control), to help identify or rule out measurement error as a cause for outlying observations.

(e) The majority of the measurements were taken within the short time span of a few days to satisfy repeatability conditions. The sole exception to this was the first analysis, which spanned several months owing to the delayed arrival of two participant cylinders. However, the ratios for those participants whose cylinders were analyzed early showed no significant deviation from their ratios measured months later, indicating minimal impact on the conditions of repeatability.

3.5 Results

3.5.1 Rationale

The approach originally conceived for this comparison was to build a set of analysis functions using the participants' mixtures as calibrants. The analysis functions were based on the measured ratios (as described above) and reported amount fractions of the participants' mixtures. The performance criteria was the set of differences between the participants' reported amount fractions, and the corresponding amount fractions predicted from the analysis function.

This approach was hampered principally by two facts: (i) the compositions of the mixtures prepared by the participants were much closer to one another than they should have been to support reliable analysis functions; and (ii) for each of all six measurands, there were groups of observations that deviated markedly from the trend defined by the other observations.

Therefore, due to the limitations of the original approach, the GAWG agreed to adopt an alternative approach for evaluating participant performance. This approach, which is described below, utilizes the ratios and reported values of each of the participants' mixtures to directly predict the amount fractions of BTEX in the control mixture. The corresponding KCRVs are the "true" amount fractions of BTEX in the control mixture, as determined gravimetrically by NIST (see Table 5).

3.5.2 Ratio-based predictions for control mixture

As explained above in §3.4.2, the results of the participant measurements comprise four ratios of instrumental indications: the numerator of each ratio is the instrumental indication observed for a participant's mixture, and the denominator is the instrumental indication for the control mixture, observed approximately contemporaneously with the indication in the numerator.

The average ratio for each component, and for each participant, summarizes the four replicated ratios, each with its own associated standard uncertainty. The DerSimonian-Laird procedure [7] was used to combine these four results, as implemented in R function rma of package metafor [8], and produce the average ratio and its associated uncertainty.

Consider the average ratio $r_P(C)$, pertaining to component *C* in the mixture prepared by participant *P*, and let $x_P(C)$ denote the corresponding amount fraction measured gravimetrically by this participant. In these circumstances,

$$\widehat{y}_P(C) = \frac{x_P(C)}{r_P(C)} \tag{1}$$

is an estimate of the amount fraction of component C in the control mixture, derived from the average ratio obtained for the participant's mixture and from the participant's reported composition of this mixture.

Each of these derived estimates can then be compared to the true amount fraction of component *C* in the control mixture y(C), as determined gravimetrically by NIST, to measure participant performance (see Table 7).

For example, one of the ratios for benzene, for the mixture prepared by KRISS, was 0.9854, and the amount fraction of benzene in that mixture, as reported by KRISS, was $5.031 \text{ nmol mol}^{-1}$. Therefore, the corresponding estimate of the amount fraction of benzene in the control mixture is

$$\hat{y}_{\text{KRISS}}(\text{benzene}) = \frac{5.031 \,\text{nmol}\,\text{mol}^{-1}}{0.9854} = 5.106 \,\text{nmol}\,\text{mol}^{-1}.$$
 (2)

KRISS's performance for benzene will be gauged based on the difference $(5.106 \text{ nmol mol}^{-1})$ — $(5.101 \text{ nmol mol}^{-1})$, where $5.101 \text{ nmol mol}^{-1}$ is the gravimetric amount fraction of benzene in the control mixture.

3.5.3 KCRVs and degrees of equivalence

The unilateral degree of equivalence for each participant P is determined as

$$D_p(C) = \hat{y}_p(C) - y(C) \tag{3}$$

where $\hat{y}_P(C)$ is the participants' predicted amount fraction of component *C* in the control mixture, and y(C) is the KCRV, represented by the true, gravimetric amount fraction of component *C* in the control mixture.

because $u(y)$ contains a large contribution to account for mixture stability.									
/ nmol m	ol^{-1}				/ nmol m	ol^{-1}			
	у	u(y)	ŷ	$u(\widehat{y})$		у	u(y)	\widehat{y}	$u(\widehat{y})$
BENZENE					TOLUENE				
KRISS	5.10	0.10	5.11	0.10	KRISS	4.91	0.10	4.86	0.10
LNE	5.10	0.10	5.60	0.11	LNE	4.91	0.10	5.41	0.10
NIST	5.10	0.10	5.24	0.04	NIST	4.91	0.10	5.03	0.04
NMISA	5.10	0.10	4.80	0.06	NMISA	4.91	0.10	5.21	0.06
NPL	5.10	0.10	5.12	0.05	NPL	4.91	0.10	4.95	0.05
VNIIM	5.10	0.10	5.63	0.08	VNIIM	4.91	0.10	5.41	0.08
VSL	5.10	0.10	5.14	0.05	VSL	4.91	0.10	4.96	0.05
ETHYLBEI	NZENE				<i>p</i> -XYLENE				
KRISS	4.66	0.09	4.52	0.08	KRISS	4.89	0.10	4.79	0.11
LNE	4.66	0.09	5.17	0.11	LNE	4.89	0.10	5.45	0.11
NIST	4.66	0.09	4.76	0.06	NIST	4.89	0.10	5.00	0.06
NMISA	4.66	0.09	5.02	0.05	NMISA	4.89	0.10	5.48	0.05
NPL	4.66	0.09	4.66	0.05	NPL	4.89	0.10	4.94	0.05
VNIIM	4.66	0.09	5.21	0.11	VNIIM	4.89	0.10	5.53	0.12
VSL	4.66	0.09	4.75	0.07	VSL	4.89	0.10	5.06	0.10
<i>m</i> -XYLEN	E				0-XYLENE				
KRISS	4.84	0.10	4.72	0.11	KRISS	4.84	0.10	4.59	0.11
LNE	4.84	0.10	5.43	0.12	LNE	4.84	0.10	5.31	0.08
NIST	4.84	0.10	4.95	0.08	NIST	4.84	0.10	4.95	0.08
NMISA	4.84	0.10	5.79	0.06	NMISA	4.84	0.10	5.53	0.05
NPL	4.84	0.10	4.90	0.05	NPL	4.84	0.10	4.78	0.05
VNIIM	4.84	0.10	5.54	0.12	VNIIM	4.84	0.10	5.40	0.11
VSL	4.84	0.10	5.02	0.10	VSL	4.84	0.10	4.88	0.10

Table 7. Amount fractions (y) and associated standard uncertainties (u(y)) in the control mixture, and corresponding predictions (\hat{y}) and associated standard uncertainties $(u(\hat{y}))$, based on the ratios and reported compositions of the participants' mixtures. The $u(\hat{y})$ are often smaller than the corresponding u(y), in part because u(y) contains a large contribution to account for mixture stability.

Considering that the uncertainty associated with each ratio $r_p(C)$ is based on a small number of degrees of freedom (the median number of degrees of freedom for the average ratios is around 6), the expanded uncertainty for 95% coverage associated with each difference $D_p(C)$ was computed by application of the Monte Carlo method of the GUM Supplement 1 [9], based on a sample of size 10⁶.

Figure 8 depicts the unilateral degrees of equivalence, $D_p(C) \pm U_{95\%}(D_p(C))$, and Table 8 lists their values. The final calculated uncertainties are largely dominated by u(y(C)), which is due in part to the observed instability of the control mixture.

As shown in Figure 8, the results for KRISS, NIST, NPL, and VSL are consistently in agreement with the KCRV, while the results for LNE, NMISA, and VNIIM are biased high, with the exception of NMISA's result for benzene. The observed pattern between the results for KRISS, LNE, NIST, NPL, VNIIM and VSL is the same for all components, indicating that these participants produced mixtures which were self-consistent.

Figure 8. Degrees of equivalence between the participants' predicted amount fractions in the control mixture, based on the ratios and reported compositions of their mixtures, and the corresponding KCRVs, based on the gravimetric amount fractions determined by NIST.

/ nmol m	ol^{-1}		/ nmol m	ol^{-1}		
	D	$U_{95\%}(D)$		D	$U_{95\%}(D)$	
BENZENE			TOLUENE			
KRISS	0.005	0.280	KRISS	-0.043	0.268	
LNE	0.500	0.295	LNE	0.508	0.281	
NIST	0.135	0.217	NIST	0.124	0.207	
NMISA	-0.297	0.233	NMISA	0.302	0.224	
NPL	0.020	0.226	NPL	0.042	0.218	
VNIIM	0.530	0.258	VNIIM	0.498	0.247	
VSL	0.041	0.225	VSL	0.050	0.217	
ETHYLBE	NZENE		<i>p</i> -XYLENE	2		
KRISS	-0.133	0.243	KRISS	-0.105	0.293	
LNE	0.515	0.277	LNE	0.560	0.292	
NIST	0.108	0.214	NIST	0.106	0.229	
NMISA	0.362	0.206	NMISA	0.584	0.219	
NPL	0.001	0.205	NPL	0.048	0.216	
VNIIM	0.555	0.284	VNIIM	0.641	0.300	
VSL	0.096	0.231	VSL	0.167	0.278	
<i>m</i> -XYLEN	E		O-XYLENE			
KRISS	-0.119	0.290	KRISS	-0.249	0.282	
LNE	0.595	0.302	LNE	0.472	0.251	
NIST	0.111	0.248	NIST	0.114	0.245	
NMISA	0.952	0.222	NMISA	0.690	0.217	
NPL	0.056	0.214	NPL	-0.056	0.211	
VNIIM	0.700	0.299	VNIIM	0.565	0.294	
VSL	0.177	0.276	VSL	0.043	0.272	

Table 8. Degrees of equivalence between predicted amount fractions in the control mixture, based on ratios and reported compositions of participants' mixtures, and amount fractions in the control mixture as determined gravimetrically by NIST.

4 Comparative study

4.1 Comparative mixture

For the comparative study, NIST prepared one mixture of BTEX in nitrogen at a nominal amount fraction of 5 nmol mol⁻¹. The mixture was prepared in a 20 L aluminum Experis[®] cylinder by gravimetric dilution of a parent mixture, CC460929 (Table 6), following the same procedure described in §3.2. Table 9 lists the amount fractions and associated uncertainties of the BTEX components in the comparative mixture.

_	у	$U_{95\%}(y)$	/ nmol mol ⁻¹
Benzene	5.275	0.160	
Toluene	5.101	0.110	
Ethylbenzene	4.833	0.140	
<i>p</i> -Xylene	5.076	0.148	
<i>m</i> -Xylene	5.029	0.150	
o-Xylene	5.020	0.176	

Table 9. Amount fractions, *y*, of BTEX in the comparative mixture (APE1228493), and associated expanded uncertainties for 95% coverage, $U_{95\%}(y)$.

Since the comparative mixture was prepared by dilution of an aliquot of the parent mixture, a "mother-daughter" test was performed to determine whether any loss of BTEX occurred during transfer of the cylinder mixture. Approximately 0.9 MPa of parent mixture CC460929 ("mother") was transferred into an evacuated Experis[®] cylinder ("daughter"), and instrument response ratios of the daughter to the mother were determined. The daughter cylinder was then re-evacuated, and the experiment was repeated a second time.

Figure 9 shows the results of the mother-daughter tests, with the first and second sets of ratios indicated by the red diamonds and blue squares, respectively. On average, the response of the daughter mixture was ~ 1 % higher than the response of the mother, as indicated by the dashed lines.

These results, although highly unexpected, were reproduced in a separate motherdaughter test using the same parent mixture and a different Experis cylinder. That test, which was conducted twice by two different analysts, showed an increase during mixture transfer of up to 3 % (not shown). The cause of this apparent increase is not yet understood, nor is it known whether its effects will persist or diminish over time; nonetheless, the gravimetric values of the comparative mixture were adjusted to account for the observed bias, and the corresponding uncertainties were increased accordingly.

Figure 9. Mother-daughter testing of cylinder APE1228493. Each data point represents a ratio of instrumental indications, of the daughter cylinder to the mother cylinder, with the error bars representing the associated expanded (k = 2) uncertainty. The experiment was repeated two separate times, as indicated by the red diamonds and blue squares. The horizontal dashed lines represent the mean response ratio for each component.

NIST monitored the stability of the comparative mixture before and after shipping the cylinder to the participants, in the same manner as described in §3.2. The stability data, as shown in Figures 10 and 11, were incorporated into the overall uncertainty of the NIST determined amount fractions.

4.2 Measurement protocol

The comparative cylinder was circulated to the participants along with a stainless steel, two-stage pressure regulator equipped with a DIN 477 No. 1 fitting. The participants were asked to provide their analyzed amount fractions and associated uncertainties for the BTEX components in the mixture. Each participant was responsible for calibrating their own instrumentation or equipment used for the analysis. A description of the analytical procedure, uncertainty budget and calibration method was also requested.

Figure 10. Stability of toluene, ethylbenzene, *p*-xylene, *m*-xylene and *o*-xylene in the comparative mixture, as measured by the ratio of their peak areas to the peak area of benzene over time. Error bars represent expanded (k = 2) uncertainties. The solid and dotted horizontal lines represent the initial response ratios and their associated expanded uncertainties, respectively. The dashed vertical lines bracket the time during which the comparative measurements took place.

Figure 11. Stability of BTEX in the comparative mixture, APE1228493, as indicated by the measured GC response over time. Each data point represents one peak area measurement taken from a single replicate chromatogram.

4.3 Participant measurements

The methods and procedures employed by the participants to analyze the comparative mixture are described in their respective reports (see Appendix C), and summarized in Table 10.

The participants' reported amount fractions for the comparative mixture are listed in Table 11. UBA and CHMI were unable to separate *p*-xylene and *m*-xylene, and therefore reported a combined value for both components, designated hereafter as (p+m)-xylene. METAS separated *p*-xylene and *m*-xylene, and reported individual values for each; however, these two values were subsequently combined into one result for (p+m)-xylene, to be commensurate with the results of the other participants.

Also included in Table 11 are the results of measurements performed by NIST using the control mixture from the gravimetric study, APE1228481. These measurements were taken to verify the amount fractions of the comparative mixture (Table 9), and to provide a link between the gravimetric and comparative studies.

There were no significant trends in the participants' measurements to indicate any consequential impact from instability of the comparative mixture over time. As a result, no corrections to the participants' reported amount fractions were applied.

Participant	Analytical method	Dates of analysis / (dd/mm/yy)	Pressure / MPa ^a
METAS	Dynamic dilution using a home-built permeation system. All components analyzed simultaneously. GC-FID with preconcentration.	27/08/18-04/09/18	12.7
UBA	Static dilution of pure materials in a mixing chamber (ISO 6144). Each component measured individually. GC-FID with preconcentration.	18/10/18-08/11/18	12.5
CHMI	Direct comparison against an NPL PRM at nominal 10 nmol mol^{-1} . GC-FID with preconcentration.	14/12/18-12/03/19	11.2

Table 10. Methods used by the participants to analyze the comparative mixture.

^a Cylinder pressure, measured upon arrival to participating laboratory.

4.4 Results

4.4.1 KCRVs

For each component in the comparative mixture, the KCRV was determined as a consensus value on the basis of the measurements provided by UBA, CHMI and NIST. NIST's measurements were included to provide a more reliable estimation of the KCRV, and to provide a link between the results of both the comparative and gravimetric studies. The measurements provided by METAS were excluded from the determination of the KCRV, after METAS discovered a possible error in the flow calibration of their reference gas mixture, which may have inadvertently led to a bias in their measurement results.

The consensus value was computed using the DerSimonian-Laird consensus building procedure as described by Koepke et al. [7], including the uncertainty evaluation both for the consensus value and for the degrees of equivalence. The resulting KCRVs for the comparative mixture are listed in Table 12, and plotted in Figure 12 along with the participants' measurement results.

NIST did not formally participate in the comparative study (as shown in Table 1); therefore, only the results for METAS, UBA and CHMI are presented. Even though NIST's measurements were included in the calculations of the KCRVs for the comparative study, NIST's performance in this key comparison is based solely upon the results of the gravimetric study, as described in §3.

Figure 12. Participants' reported amount fractions (red dots) and associated standard uncertainties (thick blue error bars) for each component in the comparative mixture. The thin blue error bars incorporate dark uncertainty, τ , relating to excess variance between the measurements from UBA, CHMI and NIST. The horizontal black lines with grey shading depict the corresponding KCRVs and associated standard uncertainties, which include the contribution from τ .

Table 11. Amount fractions, x, of BTEX in the comparative mixture (APE1228481), and associated uncertainties for 95 % confidence, U(x), as reported by the participants and measured by NIST.

$/ \text{ nmol mol}^{-1}$	METAS		UBA		CHMI		NIST	
	x	U(x)	x	U(x)	x	U(x)	x	U(x)
Benzene	6.21	0.72	5.09	0.04	5.15	0.31	5.09	0.22
Toluene	5.49	0.15	4.92	0.05	5.14	0.24	4.90	0.21
Ethylbenzene	5.15	0.14	4.48	0.04	4.85	0.25	4.64	0.20
(<i>p</i> + <i>m</i>)-Xylene	11.00	0.22	9.80	0.14	10.05	0.53	9.72	0.46
o-Xylene	5.38	0.19	4.60	0.06	4.95	0.29	4.83	0.21

Table 12. KCRVs, μ , with expanded uncertainties for 95 % confidence, $U(\mu)$, and associated estimates of excess variance, expressed as dark uncertainty, τ .

	μ	$U(\mu)$	τ	/ nmol mol ^{-1}
Benzene	5.091	0.084	0.000	
Toluene	4.951	0.131	0.066	
Ethylbenzene	4.628	0.230	0.166	
(<i>p</i> + <i>m</i>)-Xylene	9.808	0.207	0.000	
o-Xylene	4.763	0.242	0.172	

The KCRVs were validated by comparison to the gravimetric amount fractions determined by NIST, as described in §4.1. (These gravimetric values differ from the NIST measured values described in §4.3.) As shown in Figure 13, the gravimetric values assigned to the comparative mixture agree with the KCRV determinations within the expanded uncertainties.

Figure 13. Gravimetric amount fractions of BTEX in the comparative mixture as determined by NIST, and corresponding consensus value estimates for the KCRV, with expanded uncertainties for 95 % confidence.

4.4.2 Degrees of equivalence

For each component in the comparative mixture, the unilateral degree of equivalence for each participant i is expressed quantitatively by two terms: (i) the deviation of the participants' result from the KCRV, and (ii) the uncertainty of this deviation at 95 % confidence.

The degree of equivalence is defined as

$$D_i = x_i - \mu \tag{4}$$

where x_i is the amount fraction of the component as determined by each participant *i*, and μ is the KCRV. The associated expanded uncertainty, $U(D_i)$, was evaluated using a parametric statistical bootstrap estimation consistent with the GUM Supplement 1 [9], and as described by Koepke et al. [7] for the DerSimonian-Laird procedure.

The degrees of equivalence and expanded uncertainties associated with the results of this study are shown Table 13 and Figure 14. For all measurands in the comparison, UBA and CHMI agree with the KCRV within the expanded uncertainties. METAS, on the other hand, exhibits a large bias in their results. METAS speculates that this bias may be related to an error in the flow calibration during the generation of their reference gas mixture. Although the calibration was performed, the correction was apparently not taken into account and/or not saved by the software used in the generation system. This could also explain the difference of about 7 % for toluene, ethylbenzene, *p*-xylene, *m*-xylene and *o*-xylene, which is a well-known difference when the flow calibration is reported to 20 °C instead of 0 °C.

/ nmol mol $^{-1}$			/ nmol n	$/ \text{ nmol mol}^{-1}$			
	D	$U_{95\%}(D)$		D	$U_{95\%}(D)$		
BENZENE			TOLUENE				
METAS	1.119	0.710	METAS	0.539	0.240		
UBA	-0.001	0.095	UBA	-0.031	0.141		
CHMI	0.059	0.276	CHMI	0.189	0.254		
ETHYLBENZENE			(<i>p</i> + <i>m</i>)-x	(p+m)-XYLENE			
METAS	0.522	0.418	METAS	1.192	0.296		
UBA	-0.148	0.288	UBA	-0.008	0.218		
CHMI	0.222	0.380	CHMI	0.242	0.474		
0-XYLENE							
METAS	0.617	0.457					
UBA	-0.163	0.306					
CHMI	0.187	0.411					

Table 13. Values and expanded uncertainties for the degrees of equivalence, *D*, between the participants' measured amount fractions of BTEX in the comparative mixture and the corresponding KCRV.

Figure 14. Degrees of equivalence and corresponding 95 % uncertainties for each component in the comparative mixture.

5 Conclusions

The results for the gravimetric study, based on the response ratios and reported compositions of the participants' mixtures, identify four participants (KRISS, NIST, NPL, and VSL) that consistently agree with the KCRV, and three participants (LNE, NMISA, and VNIIM) that are consistently biased high, with the exception of NMISA's result for benzene.

For the comparative study, the results for UBA and CHMI agree with the KCRV for all components measured. The results for METAS are biased high, which they attribute to a possible calibration error in their measurement system.

6 Supported claims

This key comparison can be used to support CMC claims for mixtures of BTEX in nitrogen from 1 nmol mol^{-1} to 10 μ mol mol^{-1} .

Over the stated range of amount fractions, the relative expanded uncertainty as calculated in accordance with the GAWG strategy [10] can be applied. Beyond this range, NMIs should justify their CMCs.

References

- [1] F. R. Guenther, G. C. Rhoderick, W. R. Miller, A. Marschal, A. Medem, K. Kato, H. Y. So, E. W. B. de Leer, A. Baldan, T. L. Hafkenscheid, G. N. Nieuwenkamp., A. M. H. van der Veen, L. Konopelko, and M. J. T. Milton. Final report on key comparison CCQM-K7: benzene, toluene, m-xylene, oxylene and ethylbenzene in nitrogen. *Metrologia*, 39(1A):08006, 2002. doi: 10.1088/0026-1394/39/1a/24.
- [2] F. Guenther, G. Rhoderick, A. Marschal, A. Medem, K. Kato, G. S. Heo, E. de Leer, A. Baldan, T. L. Hafkenscheid, G. Nieuwenkamp, A. M. H. van der Veen, L. Konopelko, C. Brookes, H. d'Souza, and M. Milton. Final report on key comparison CCQM-K10: benzene, toluene, o-xylene in nitrogen. *Metrologia*, 39(1A):08007, 2002. doi: 10.1088/0026-1394/39/1A/25.
- [3] *Operating CCQM-GAWG Key Comparisons*, April 2020. CCQM Gas Analysis Working Group. Prepared by the task group on key comparison coordination.
- [4] G. C. Rhoderick, C. E. Cecelski, W. R. Miller, D. R. Worton, S. Moreno, P. J. Brewer, J. Viallon, F. Idrees, P. Moussay, Y. D. Kim, D. Kim, S. Lee, A. Baldan, and J. Li. Stability of gaseous volatile organic compounds contained in gas cylinders with different internal wall treatments. *Elementa: Science of the Anthropocene*, 7, 2019. doi: 10.1525/elementa.366. 28.
- [5] M. J. T. Milton, P. M. Harris, I. M. Smith, A. S. Brown, and B.A. Goody. Implementation of a generalized least-squares method for determining calibration curves from data with general uncertainty structures. *Metrologia*, 4(4): S291–S298, 2006. doi: 10.1088/0026-1394/43/4/S17.
- [6] ISO. Gas analysis Comparison methods for determining and checking the composition of calibration gas mixtures. International Organization for Standardization (ISO), Geneva, Switzerland, 2001. International Standard ISO 6143:2001(E).
- [7] A. Koepke, T. Lafarge, A. Possolo, and B. Toman. Consensus building for interlaboratory studies, key comparisons, and meta-analysis. *Metrologia*, 54 (3):S34–S62, 2017. doi: 10.1088/1681-7575/aa6c0e.
- [8] W. Viechtbauer. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3):1–48, 2010. doi: 10.18637/jss.v036. i03.

- [9] Joint Committee for Guides in Metrology (JCGM). Evaluation of measurement data — Supplement 1 to the 'Guide to the expression of uncertainty in measurement' — Propagation of distributions using a Monte Carlo method. International Bureau of Weights and Measures (BIPM), Sèvres, France, 2008. URL www.bipm.org/en/publications/guides/gum. html. JCGM 101:2008.
- [10] CCQM-GAWG strategy for comparisons and CMC claims, October 2019. CCQM Gas Analysis Working Group.
A Gravimetric study calculations

The results for the gravimetric study, as described in §3.5, were based upon the set of differences between the participants' predicted amount fractions of the control mixture, $\hat{y}_P(C)$, and the "true" amount fractions of the control mixture, y(C), as determined gravimetrically by NIST.

The $\hat{y}_p(C)$ were calculated based on the participants' reported amount fractions of their prepared mixtures, $x_p(C)$, and the ratios of instrumental indications to the control mixture, $r_p(C)$, using Equation 1.

The following tables list, for each BTEX component *C*, the reported amount fractions of the participants' mixtures (x_p) , their corresponding ratios of instrumental indications to the control mixture (r_p) , and the resulting calculations for \hat{y}_p , along with their associated standard uncertainties.

A direct comparison of the values for $\hat{y}_P(C)$ and y(C) are included in Table 7, and the corresponding degrees of equivalence are listed in Table 8.

Table Mi. Delizene								
	<i>x</i>	u(x)	r	u(r)	ŷ	$u(\hat{y})$		
	/ nmoi	moi -			/ nmoi	moi -		
KRISS	5.031	0.098	0.9854	0.0029	5.11	0.10		
LNE	5.09	0.050	0.9088	0.0154	5.60	0.11		
NIST	5.473	0.042	1.0454	0.0031	5.24	0.04		
NMISA	5.017	0.063	1.0443	0.0020	4.80	0.06		
NPL	5.00	0.05	0.9764	0.0030	5.12	0.05		
VNIIM	4.97	0.0556	0.8827	0.0084	5.63	0.08		
VSL	5.008	0.050	0.9741	0.0025	5.14	0.05		

Table A1. Benzene

	x	u(x)	r	<i>u</i> (<i>r</i>)	ŷ	$u(\hat{y})$		
$/ \text{ nmol mol}^{-1}$				/ nmol	mol ⁻¹			
KRISS	5.165	0.100	1.0619	0.0028	4.86	0.10		
LNE	4.93	0.050	0.9105	0.0149	5.41	0.10		
NIST	5.265	0.035	1.0464	0.0043	5.03	0.04		
NMISA	5.019	0.054	0.9634	0.0033	5.21	0.06		
NPL	5.02	0.05	1.0143	0.0031	4.95	0.05		
VNIIM	5.03	0.0595	0.9305	0.0079	5.41	0.08		
VSL	5.023	0.050	1.0132	0.0027	4.96	0.05		

Table A2. Toluene

ŷ $u(\widehat{y})$ u(x)u(r)x r $/ \text{ nmol mol}^{-1}$ / nmol mol^{-1} $\,$ KRISS 0.0026 4.52 0.08 5.1050.091 1.1288LNE 4.96 0.055 0.9592 0.0164 5.17 0.11 NIST 0.06 4.996 0.058 1.0487 0.0022 4.76 NMISA 5.021 0.046 1.0006 0.0029 5.02 0.05 NPL 5.02 0.05 1.07800.0017 4.66 0.05 VNIIM 5.10 0.0996 0.9787 0.0082 5.21 0.11 0.0031 4.75 VSL 5.100 0.076 1.0733 0.07

Table A3. Ethylbenzene

			1 5			
	x / nmola	$u(x)$ mol^{-1}	r	u(r)	ŷ / nmol	$u(\widehat{y})$ mol^{-1}
KRISS	5.038	0.118	1.0525	0.0028	4.79	0.11
LNE	5.04	0.050	0.9245	0.0167	5.45	0.11
NIST	5.249	0.066	1.0504	0.0026	5.00	0.06
NMISA	5.021	0.046	0.9170	0.0035	5.48	0.05
NPL	5.02	0.05	1.0163	0.0029	4.94	0.05
VNIIM	5.08	0.102	0.9182	0.0064	5.53	0.12
VSL	4.870	0.097	0.9626	0.0039	5.06	0.10

Table A4. *p*-Xylene

ŷ $u(\widehat{y})$ u(x)r u(r)x / nmol mol $^{-1}$ / nmol mol^{-1} $\,$ KRISS 0.0024 4.72 5.017 0.118 1.0627 0.11 LNE 5.00 0.050 0.9200 0.0181 5.43 0.12 NIST 0.08 5.193 0.084 1.0490 0.0028 4.95 NMISA 5.033 0.047 0.8690 0.0035 5.79 0.06 5.02 4.90 NPL 0.05 1.0254 0.0024 0.05 VNIIM 4.92 0.101 0.8882 0.0050 5.54 0.12 4.894 0.9755 5.02 VSL 0.098 0.0040 0.10

Table A5. *m*-Xylene

iubie no. o Ayrene									
	x	u(x)	r	u(r)	ŷ	$u(\widehat{y})$			
	/ nmol	mol^{-1}			/ nmol	mol^{-1}			
KRISS	5.105	0.118	1.1120	0.0030	4.59	0.11			
LNE	5.04	0.050	0.9489	0.0115	5.31	0.08			
NIST	5.192	0.082	1.0482	0.0030	4.95	0.08			
NMISA	5.023	0.047	0.9084	0.0026	5.53	0.05			
NPL	5.03	0.05	1.0516	0.0018	4.78	0.05			
VNIIM	4.96	0.101	0.9177	0.0056	5.40	0.11			
VSL	5.044	0.101	1.0330	0.0039	4.88	0.10			

Table A6. o-Xylene

B Gravimetric participant reports

B.1 KRISS

CCQM KEY COMPARISON-K10.2018: BTEX in Nitrogen

Comparability study of laboratories' preparation capabilities for BTEX in nitrogen

Laboratory : Korea Research Institute of Standards and Science Laboratory code : KRISS

Cylinder number : D517490

NOMINAL COMPOSITION: 5 x 10⁻⁹ (nmol/mol; ppb)

1. **Results**

BTEX Component	Date	Gravimetric amount-of- substance fraction (nmol/mol)	Standard uncertainty (k=1) (nmol/mol)	Expanded uncertainty (k=2) (nmol/mol)
Benzene		5.031	0.098	0.195
Toluene		5.165	0.100	0.201
Ethylbenzene	2019 5 24	5.105	0.091	0.182
meta-Xylene	2016-3-24	5.017	0.118	0.235
para-Xylene		5.038	0.118	0.237
ortho-Xylene		5.105	0.118	0.235

2. BRIEFLY DESCRIBE YOUR PREPARATION PROCEDURES.

A set of primary standard gas mixtures (PSMs) was gravimetrically prepared for the comparison. All source reagents were analyzed using GC-FID to determine their purities (based on peak areas). Micro-syringes were used to transfer the source reagents into cylinders for gravimetrically prepared PSMs at 10 μ mol/mol. The PSMs were further diluted with nitrogen to 100 nmol/mol and then 5 nmol/mol (Figure 1). The PSMs at each step were analyzed against each other for verification.

3. UNCERTAINTY BUDGET.

Please provide a complete uncertainty budget.

	Benzene	Toluene	Ethyl benzene	<i>m</i> -Xylene	<i>p</i> -Xylene	o-Xylene				
Uncertainty component		Relative standard uncertainty ($k = 1$), %								
Gravimetric preparation	1.14	1.22	1.12	1.47	1.48	1.42				
Verification	1.57	1.51	1.37	1.82	1.81	1.80				
Stability	0.14	0.12	0.16	0.16	0.17	0.22				
Combined uncertainty	1.94	1.94	1.78	2.34	2.35	2.30				

4. COMPLEMENTARY INFORMATION.

Please include information on:

1) a purity table with uncertainties for the benzene, toluene, ethylbenzene, meta-paraortho-xylenes, and balance nitrogen used to prepare your standard mixture

%	Benzene	Toluene	Ethyl benzene	<i>m</i> -Xylene	<i>p</i> -Xylene	o-Xylene
Benzene	99.967	0.002	0.108	-	-	0.004
Toluene	0.002	99.955	0.026	0.003	0.010	-
Ethyl benzene	-	0.007	99.815	0.028	0.040	0.002
<i>m</i> -Xylene	-	0.002	-	99.703	-	0.017
<i>p</i> -Xylene	-	0.004	-	-	99.813	0.247
o-Xylene	-	0.001	-	0.177	0.010	99.458
unknowns	0.014	0.020	0.047	0.083	0.122	0.253
H ₂ O	0.017	0.009	0.005	0.005	0.006	0.017

2) outline of dilution series to produce final standard mixture Please refer to Figure 1.

3) outline/discussion of the verification procedure applied to final mixture A set of PSMs were prepared at each step and then one of those was chosen as a working reference The prepared PSMs at each step were analyzed against each other for verification.

4) outline of any stability testing of mixture

Physical adsorption loss on internal cylinder surface at 5 nmol/mol were tested using cylinder-to-cylinder division. Results from the cylinder-to-cylinder division showed that both responses agreed with their analytical uncertainty. Two new PSMs at 5 nmol/mol were prepared again about 6 months after the preparation of the first set of PSMs and then compared. Results from the stability test showed that both old and new PSMs agreed within their analytical uncertainty. Although the results from the stability showed a good agreement, any difference was combined as additional uncertainties for estimating the final uncertainties.

5) cylinder pressure about 9.3 Mpa

5. STABILITY

Results from the stability evaluation of the KRISS sample gas mixture are shown in Figure 2. All sensitivities (i.e., peak area/amount-of-substance fraction) of the KRISS sample gas mixture, which are normalized to the sensitivity of the sample reference gas mixtures, agree with each other within their associated uncertainty before its ship-out and ship-back.

Figure 2. Results from stability evaluation

B.2 LNE

CCQM KEY COMPARISON-K10.2018: BTEX in Nitrogen

Comparability study of laboratories' preparation capabilities for BTEX in nitrogen

Laboratory : LNE Laboratory code :

Cylinder number : 1029123

NOMINAL COMPOSITION: 5 x 10⁻⁹ (nmol/mol; ppb)

1. **Results**

BTEX Component	Date	Gravimetric amount-of- substance fraction (nmol/mol)	Standard uncertainty (k=1) (nmol/mol)	Expanded uncertainty (95 %) (nmol/mol)
Benzene		5.09	0.050	0.10
Toluene		4.93	0.050	0.10
Ethylbenzene	20/01/2019	4.96	0.055	0.11
meta-Xylene	29/01/2018	5.00	0.050	0.10
para-Xylene		5.04	0.050	0.10
ortho-Xylene		5.04	0.050	0.10

2. BRIEFLY DESCRIBE YOUR PREPARATION PROCEDURES.

The gas mixture is prepared according to the ISO 6142 standard.

The cylinder is evacuated with a turbo vacuum pump and weighed using a Mettler AX32004 mass comparator with a 0.1 mg resolution.

Each pure compound is injected individually in the empty cylinder with a syringe containing each pure compound. The mass of the injected pure compound is determined by weighing the syringe before and after injection on a Mettler XP505 balance with a 0.00001 g resolution.

After the injection of the 6 pure hydrocarbon compounds, the injection system is flushed with pure nitrogen (N2 BIP).

The cylinder is filled with pure nitrogen to obtain the first premix gas mixture. After stabilization in temperature the cylinder is weighed on the mass comparator to calculate the amount fraction of the compounds in the cylinder.

Three successive gravimetric dilutions are performed to obtain the final gas mixture at 5 nmol/mol.

3. UNCERTAINTY BUDGET.

Please provide a complete uncertainty budget.

UNCERTAINTY BUDGET FOR BENZENE

Uncertainty source	Unit	Value Xi	u(Xi)	Contribution to the uncertainty %
Mass of BTEX/N2 premix	g	70.4812	1.4 10-2	0.04
Mass of N ₂	g	1461.854	1.7 10-2	0.00
Purity of N ₂	mol/mol	0.99999991	5.2 10-8	0.00
Molar mass of benzene	g/mol	78.11184	2.0 10-3	0.00
Molar mass of Toluene	g/mol	92.13842	2.2 10-3	0.00
Molar mass of Ethylbenzene	g/mol	106.165	2.3 10 ⁻³	0.00
Molar mass of O-xylene	g/mol	106.165	2.3 10-3	0.00
Molar mass of M-xylene	g/mol	106.165	2.3 10 ⁻³	0.00
Molar mass of P-xylene	g/mol	106.165	2.3 10-3	0.00
Molar mass of Nitrogen	g/mol	28.01348	9.9.10 ⁻⁵	0.00
Amount fraction of benzene in premix mixture	mol/mol	1.1071610 10-7	4.2 10-11	0.15
Amount fraction of toluene in premix mixture	mol/mol	1.0713283.10-7	3.9 10-11	0.00
Amount fraction of ethylbenzene in premix mixture	mol/mol	1.0792587.10-7	1.1 10 ⁻¹⁰	0.00
Amount fraction of o-xylene in premix mixture	mol/mol	1.0949965.10 ⁻⁷	3.8 10-11	0.00
Amount fraction of m-xylene in premix mixture	mol/mol	1.087438.10-7	3.8 10-11	0.00
Amount fraction of p-xylene in premix mixture	mol/mol	1.0960214.10-7	4.3 10-11	0.00
Stability	mol/mol	0	0.05.10-9	99.81

Amount fraction of benzene : 5.09 nmol/mol \pm 0.10 nmol/mol

UNCERTAINTY BUDGET FOR TOLUENE

Uncertainty source	Unit	Value Xi	u(Xi)	Contribution to the uncertainty %
Mass of BTEX/N2 premix	g	70.4812	1.4 10-2	0.03
Mass of N ₂	g	1461.854	1.7 10-2	0.00
Purity of N ₂	mol/mol	0.99999991	5.2 10-8	0.00
Molar mass of benzene	g/mol	78.11184	2.0 10-3	0.00
Molar mass of Toluene	g/mol	92.13842	2.2 10-3	0.00
Molar mass of Ethylbenzene	g/mol	106.165	2.3 10-3	0.00
Molar mass of O-xylene	g/mol	106.165	2.3 10-3	0.00
Molar mass of M-xylene	g/mol	106.165	2.3 10-3	0.00
Molar mass of P-xylene	g/mol	106.165	2.3 10 ⁻³	0.00
Molar mass of Nitrogen	g/mol	28.01348	9.9.10-5	0.00
Amount fraction of benzene in premix mixture	mol/mol	1.1071610 10-7	4.2 10-11	0.00
Amount fraction of toluene in premix mixture	mol/mol	1.0713283.10-7	3.9 10-11	0.12
Amount fraction of ethylbenzene in premix mixture	mol/mol	1.0792587.10-7	1.1 10-10	0.00
Amount fraction of o-xylene in premix mixture	mol/mol	1.0949965.10 ⁻⁷	3.8 10-11	0.00
Amount fraction of m-xylene in premix mixture	mol/mol	1.087438.10 ⁻⁷	3.8 10-11	0.00
Amount fraction of p-xylene in premix mixture	mol/mol	1.0960214.10-7	4.3 10-11	0.00
Stability	mol/mol	0	0.05.10-9	99.84

Amount fraction of toluene : 4.93 nmol/mol \pm 0.10 nmol/mol

UNCERTAINTY BUDGET FOR ETHYLBENZENE

Uncertainty source	Unit	Value Xi	u(Xi)	Contribution to the uncertainty %
Mass of BTEX/N2 premix	g	70.4812	1.4 10-2	0.04
Mass of N ₂	g	1461.854	1.7 10-2	0.00
Purity of N ₂	mol/mol	0.99999991	5.2 10-8	0.00
Molar mass of benzene	g/mol	78.11184	2.0 10-3	0.00
Molar mass of Toluene	g/mol	92.13842	2.2 10-3	0.00
Molar mass of Ethylbenzene	g/mol	106.165	2.3 10-3	0.00
Molar mass of O-xylene	g/mol	106.165	2.3 10-3	0.00
Molar mass of M-xylene	g/mol	106.165	2.3 10-3	0.00
Molar mass of P-xylene	g/mol	106.165	2.3 10 ⁻³	0.00
Molar mass of Nitrogen	g/mol	28.01348	9.9.10 ⁻⁵	0.00
Amount fraction of benzene in premix mixture	mol/mol	1.1071610 10 ⁻⁷	4.2 10-11	0.00
Amount fraction of toluene in premix mixture	mol/mol	1.0713283.10-7	3.9 10-11	0.00
Amount fraction of ethylbenzene in premix mixture	mol/mol	1.0792587.10-7	1.1 10 ⁻¹⁰	1.01
Amount fraction of o-xylene in premix mixture	mol/mol	1.0949965.10 ⁻⁷	3.8 10-11	0.00
Amount fraction of m-xylene in premix mixture	mol/mol	1.087438.10-7	3.8 10-11	0.00
Amount fraction of p-xylene in premix mixture	mol/mol	1.0960214.10-7	4.3 10-11	0.00
Stability	mol/mol	0	0.05.10-9	98.95

Amount fraction of ethylbenzene : 4.96 nmol/mol \pm 0.11 nmol/mol

UNCERTAINTY BUDGET FOR O-XYLENE

Uncertainty source	Unit	Value Xi	u(Xi)	Contribution to the uncertainty %
Mass of BTEX/N2 premix	g	70.4812	1.4 10-2	0.04
Mass of N ₂	g	1461.854	1.7 10-2	0.00
Purity of N ₂	mol/mol	0.99999991	5.2 10-8	0.00
Molar mass of benzene	g/mol	78.11184	2.0 10-3	0.00
Molar mass of Toluene	g/mol	92.13842	2.2 10-3	0.00
Molar mass of Ethylbenzene	g/mol	106.165	2.3 10-3	0.00
Molar mass of O-xylene	g/mol	106.165	2.3 10-3	0.00
Molar mass of M-xylene	g/mol	106.165	2.3 10-3	0.00
Molar mass of P-xylene	g/mol	106.165	2.3 10 ⁻³	0.00
Molar mass of Nitrogen	g/mol	28.01348	9.9.10 ⁻⁵	0.00
Amount fraction of benzene in premix mixture	mol/mol	1.1071610 10-7	4.2 10-11	0.00
Amount fraction of toluene in premix mixture	mol/mol	1.0713283.10-7	3.9 10-11	0.00
Amount fraction of ethylbenzene in premix mixture	mol/mol	1.0792587.10-7	1.1 10-10	0.00
Amount fraction of o-xylene in premix mixture	mol/mol	1.0949965.10 ⁻⁷	3.8 10-11	0.12
Amount fraction of m-xylene in premix mixture	mol/mol	1.087438.10 ⁻⁷	3.8 10-11	0.00
Amount fraction of p-xylene in premix mixture	mol/mol	1.0960214.10-7	4.3 10-11	0.00
Stability	mol/mol	0	0.05.10-9	99.84

Amount fraction of o-xylene : 5.04 nmol/mol \pm 0.10 nmol/mol

UNCERTAINTY BUDGET FOR M-XYLENE

Uncertainty source	Unit	Value Xi	u(Xi)	Contribution to the uncertainty %
Mass of BTEX/N2 premix	g	70.4812	1.4 10-2	0.04
Mass of N ₂	g	1461.854	1.7 10-2	0.00
Purity of N ₂	mol/mol	0.99999991	5.2 10-8	0.00
Molar mass of benzene	g/mol	78.11184	2.0 10-3	0.00
Molar mass of Toluene	g/mol	92.13842	2.2 10-3	0.00
Molar mass of Ethylbenzene	g/mol	106.165	2.3 10-3	0.00
Molar mass of O-xylene	g/mol	106.165	2.3 10-3	0.00
Molar mass of M-xylene	g/mol	106.165	2.3 10-3	0.00
Molar mass of P-xylene	g/mol	106.165	2.3 10 ⁻³	0.00
Molar mass of Nitrogen	g/mol	28.01348	9.9.10 ⁻⁵	0.00
Amount fraction of benzene in premix mixture	mol/mol	1.1071610 10-7	4.2 10-11	0.00
Amount fraction of toluene in premix mixture	mol/mol	1.0713283.10-7	3.9 10-11	0.00
Amount fraction of ethylbenzene in premix mixture	mol/mol	1.0792587.10-7	1.1 10 ⁻¹⁰	0.00
Amount fraction of o-xylene in premix mixture	mol/mol	1.0949965.10 ⁻⁷	3.8 10-11	0.00
Amount fraction of m-xylene in premix mixture	mol/mol	1.087438.10-7	3.8 10-11	0.18
Amount fraction of p-xylene in premix mixture	mol/mol	1.0960214.10 ⁻⁷	4.3 10-11	0.00
Stability	mol/mol	0	0.05.10-9	99.69

Amount fraction of m-xylene : 5.00 nmol/mol \pm 0.10 nmol/mol

UNCERTAINTY BUDGET FOR P-XYLENE

Uncertainty source	Unit	Value Xi	u(Xi)	Contribution to the uncertainty %
Mass of BTEX/N2 premix	g	70.4812	1.4 10-2	0.04
Mass of N ₂	g	1461.854	1.7 10-2	0.00
Purity of N ₂	mol/mol	0.99999991	5.2 10-8	0.00
Molar mass of benzene	g/mol	78.11184	2.0 10-3	0.00
Molar mass of Toluene	g/mol	92.13842	2.2 10-3	0.00
Molar mass of Ethylbenzene	g/mol	106.165	2.3 10-3	0.00
Molar mass of O-xylene	g/mol	106.165	2.3 10 ⁻³	0.00
Molar mass of M-xylene	g/mol	106.165	2.3 10-3	0.00
Molar mass of P-xylene	g/mol	106.165	2.3 10 ⁻³	0.00
Molar mass of Nitrogen	g/mol	28.01348	9.9.10 ⁻⁵	0.00
Amount fraction of benzene in premix mixture	mol/mol	1.1071610 10-7	4.2 10-11	0.00
Amount fraction of toluene in premix mixture	mol/mol	1.0713283.10-7	3.9 10-11	0.00
Amount fraction of ethylbenzene in premix mixture	mol/mol	1.0792587.10-7	1.1 10-10	0.00
Amount fraction of o-xylene in premix mixture	mol/mol	1.0949965.10 ⁻⁷	3.8 10-11	0.00
Amount fraction of m-xylene in premix mixture	mol/mol	1.087438.10 ⁻⁷	3.8 10-11	0.00
Amount fraction of p-xylene in premix mixture	mol/mol	1.0960214.10-7	4.3 10-11	0.15
Stability	mol/mol	0	0.05.10-9	99.81

Amount fraction of p-xylene : 5.04 nmol/mol \pm 0.10 nmol/mol

4. COMPLEMENTARY INFORMATION.

Please include information on:

1) a purity table with uncertainties for the benzene, toluene, ethylbenzene, meta-paraortho-xylenes, and balance nitrogen used to prepare your standard mixture

Compone	ent	mol/mol	uncertainty
H ₂ O	0.0	0002000000	0.0002000000
benzene	0.	9996300000	0.0002000000

Compon	ent	mol/mol	uncertainty
toluene	0.9	9986900000	0.0001100000
H ₂ O	0.0	0003000000	0.0001000000

Componen	t mol/mol	uncertainty
ethylbenzene	0.9839400000	0.0011000000
H ₂ O	0.0006000000	0.0001000000
benzene	0.0000087200	0.000009300
toluene	0.0003282400	0.0000055800
p-xylene	0.0007630100	0.0000148600
m-xylene	0.0000622400	0.0000069400
o-xylene	0.0000343800	0.0000009000
acetophenone	0.0067383100	0.0008446400

Componen	t mol/mol	uncertainty
 Н2О	0.0002000000	0.0001000000
benzene	0.0000250000	0.0000079000
toluene	0.0000070100	0.0000004500
ethylbenzene	0.0000024200	0.000002300
p-xylene	0.0000047300	0.0000003900
m-xylene	0.0000041200	0.0000004800
o-xylene	0.9986800000	0.0001000000

Componen	nt mol/mol	uncertainty
H ₂ O	0.0004000000	0.0002000000
benzene	0.0000135600	0.0000004700
toluene	0.0000291200	0.0000013000
p-xylene	0.0013596400	0.0000472400
m-xylene	0.9955400000	0.0002200000
o-xylene	0.0023804800	0.0000776700
ethylbenzene	0.0000152800	0.0000010200
m-tolualdehy	de 0.0000149600	0.0000010200

Componen	t mol/mol	uncertainty
 H ₂ O	0.0004000000	0.0002000000
toluene	0.0000294400	0.0000012500
p-xylene	0.9950100000	0.0002400000
m-xylene	0.0029806000	0.0001160000
o-xylene	0.0000032900	0.0000008500
ethylbenzene	0.0004357600	0.0000165500
m-tolualdehyd	e 0.0010933700	0.0000527200

Compon	lent	mol/mol	uncertainty
N2	0.9	9999999100	0.0000000520
O2	0.0	000000050	0.000000029
H2O	0.0	0000000100	0.000000578
methane	0.	.000000250	0.0000000144
CO2	0.0	0000000125	0.000000072
CO	0.0	000000125	0.000000072
H2	0.0	000000250	0.000000144
N2O	0.0	000000000	0.0000000000

3) outline/discussion of the verification procedure applied to final mixture

The gas mixture of 5 nmol/mol of BTEX was analyzed by GC-FID with a preconcentration module (-20°C). The GC is a Compact GC from Interscience equipped with a CP-xylene capillary column for the separation of the compounds.

The GC is calibrated at 5 nmol/mol with a reference gas mixture obtained by diluting dynamically a gravimetric gas standard at 2 μ mol/mol. The flowrates are measured with two accurate flowmeters (Molbloc). Five determinations of the chromatographic areas of BTEX peaks are performed for the two gas mixtures to determine the amount fraction of the gas mixture at 5 nmol/mol.

4) outline of any stability testing of mixture

The stability test was performed during a period of three months. The analytical results are sum up in the table below:

	15/02/2018		08/03/2018		24/04/2018	
	Amount	11(1/2-2)	Amount	11/4-2)	Amount	11(1/2-2)
	fraction	0(K-2)	fraction	0(K-2)	fraction	0(K-2)
	nmol/mol	nmol/mol	nmol/mol	nmol/mol	nmol/mol	nmol/mol
Benzene	5.150	0.064	5.157	0.064	5.181	0.064
Toluene	4.962	0.060	4.978	0.059	4.915	0.056
Ethylbenzene	5.038	0.064	5.106	0.061	5.036	0.059
P-Xylene	5.096	0.090	5.097	0.075	5.036	0.077
M-Xylene	5.054	0.080	5.049	0.072	5.002	0.074
O-Xylene	5.073	0.091	5.078	0.008	5.015	0.079

5) cylinder pressure

The pressure of the final gas mixture is equal to 125 bars.

B.3 NIST

CCQM KEY COMPARISON-K10.2018: BTEX in Nitrogen

Comparability study of laboratories' preparation capabilities for BTEX in nitrogen

Laboratory	: National Institute of Standards and Technology, USA
Laboratory code	: NIST

Cylinder number : CC412027

NOMINAL COMPOSITION: 5 x 10⁻⁹ (nmol/mol; ppb)

1.	RESULTS

		Gravimetric amount- of-substance fraction	Standard uncertainty (k=1)	Expanded uncertainty (95 %)
BTEX Component	Date	(nmol/mol)	(nmol/mol)	(nmol/mol)
Benzene	5/20/2018	5.473	0.042	0.084
Toluene	5/20/2018	5.265	0.035	0.070
Ethylbenzene	5/20/2018	4.996	0.058	0.115
meta-Xylene	5/20/2018	5.193	0.084	0.167
para-Xylene	5/20/2018	5.249	0.066	0.133
ortho-Xylene	5/20/2018	5.192	0.082	0.165

2. BRIEFLY DESCRIBE YOUR PREPARATION PROCEDURES.

A 6-component BTEX-in-nitrogen primary standard mixture (PSM) was prepared in a 30-L aluminum gas cylinder (CC460929) equipped with CGA-590 stainless steel valve and pretreated with the proprietary process Megalife by Airgas, Pennsylvania. Pure benzene, toluene, ethylbenzene, para-xylene, meta-xylene and ortho-xylene were weighed into pre-weighed glass capillary tubes which were then weighed three time. The BTEX components were then transferred into cylinder CC460929. Airgas built in purifier (BIP) N₂ was then added to the cylinder to approximately 1850 psi to achieve an amount-of-substance fraction of approximately 250 nmol/mol. The completed cylinder was weighed three times and then rolled for two hours. BTEX mixture CC460929 was then verified against previous PSMs.

The 6-component BTEX-in-nitrogen primary standard mixture (PSM) at 5 nmol/mol for this comparison was prepared in a 30-L aluminum gas cylinder (CC412027) equipped with a CGA-590 stainless steel valve and pretreated with Megalife. The cylinder was connected to a fill manifold (Manifold # 2), along with Airgas BIP N₂. The cylinder was vented and evacuated to a pressure of approximately 3μ mHg. The evacuated cylinder was weighed three times. It was then filled with 73.9 g of the parent BTEX mix at nominal 250 nmol/mol and weighed three times. Airgas BIP N₂ was then added to approximately 1840 psi. The cylinder was then weighed three times completed. The cylinder was then rolled for 2 hours. Mass measurements were determined using a Mettler SR64001 single-pan balance (NIST # 619572), with a capacity of 64 kg and a sensitivity of 0.1 g.

3. UNCERTAINTY BUDGET.

Please provide a complete uncertainty budget.

	Equation: $M_{org} = N$	1 _{diff} + S + D,	org + D _{vapor}														
	Gas Constant	0.08205	i (I-atm)/(g-K)	Uncert		ę	% Equilibrium	50%								
	Temperature	294.8600) K	2.0000	1.1547	21.7000	с	K Factor	2								
	Air Density	1.2006	i g/l		0.0024		Tube	Weight Loss	0.0008	0.0005							
	MW of Air	28.9631			0.0014												
	Transfer Efficiency	1.00	1		0.0000							_					
	VOC Purity	Benzene	00 007%	0.003%	ethylbenzene	00 007%	0.003%	1									
	voo r unty	Toluene	100.000%	0.003%	nara-vulene	100.000%	0.003%										
	-	o-Xylene	99.940%	0.000%	meta-xylene	99 940%	0.000%										
		o Agiono	00.01070	0.00070	moto Agiono	00.01070	0.00070										
CC460929	Mass Calculations					Mass Organic				mg air displaced		mg air diplaced					
		Tube	Tube	Rough wt.	Tube Mass Loss	Uncorrected for	Vol of tube	Organic	Vol of liq	by org liquid	Vapor Press	by org vapor	Total mg air	Mass	Purity	Transfer	Final Mass
Tube #	Compound	Full, mg	Empty, mg	mg	Sealing, mg	Bouancy, mg	ul	Density	ul	1.2 x mg liq	mmHg	PV=nrt	displaced	Organic		Efficiency	Organic, mg
13	Benzene	37.6695	34.0582	3.6113	0.0008	3.6121	19.45	0.8788	4.107	0.004930	40.7	0.00098	0.00591	3.61798	99.997%	1.00	3.6179
3	Toluene	38.0489	33.9499	4.0990	0.0008	4.0998	19.38	0.8668	4.729	0.005677	12.0	0.00028	0.00595	4.10578	100.000%	1.00	4.1058
4	Ethylbenzene	33.3128	28.8316	4.4813	0.0008	4.4821	19.02	0.8668	5.171	0.006208	3.9	0.00009	0.00629	4.48834	99.997%	1.00	4.4882
12	para-Xylene	42.3086	37.6002	4.7084	0.0008	4.7092	24.21	0.8610	5.469	0.006567	3.6	0.00011	0.00667	4.71588	100.000%	1.00	4.7159
10	meta-Xylene	41.9260	37.2648	4.6612	0.0008	4.6620	23.99	0.8641	5.395	0.006477	3.4	0.00010	0.00658	4.66858	99.940%	1.00	4.6658
8	ortho-Xylene	31.4845	26.8234	4.6611	0.0008	4.6619	15.27	0.8802	5.296	0.006359	2.7	0.00004	0.00640	4.66832	99.940%	1.00	4.6655
CC460000	Lissen and the Colored					Marco Oracala				and the discrete sect		an a standard a stad					
CC400929	Uncertainty Calcula	Tube	Tube	Daugh ut	Tube Mess Less	Mass Organic	Val of tubo	Ormania	Val of lig	mg air displaced		mg air diplaced	Total ma air	Maga	Duritur	Transfer	Lincost Mass
Tubo #	Compound	Full ma	Frank ma	Rough wi.	Sooling mg	Bouppov mg	voi oi tube	Dopsity		1.2 x mg lig	vapor Press	Dy org vapor	displaced	Organia	Lincort	Uncortainty	Orcent wass
TUDE #	Compound	Full, Hig	Empty, mg	nig	Sealing, mg	Bouaricy, mg	u	Density	u	1.2 X III y IIY	mining	F V=IIIt	uispiaceu	Organic	Uncert	Uncertainty	Organic, mg
13	Benzene	0.0017	0.0013	0.0022	0.0005	0.0022	0.12	0.0051	0.024	0.000030	23.5	0.00057	0.00057	0.0023	0.003%	0.00%	0.0023
3	Toluene	0.0008	0.0023	0.0024	0.0005	0.0025	0.12	0.0050	0.027	0.000035	6.9	0.00016	0.00016	0.0025	0.003%	0.00%	0.0025
4	Ethylbenzene	0.0020	0.0013	0.0024	0.0005	0.0025	0.12	0.0050	0.030	0.000038	2.3	0.00005	0.00006	0.0025	0.003%	0.00%	0.0025
12	para-Xylene	0.0017	0.0019	0.0026	0.0005	0.0027	0.26	0.0050	0.032	0.000040	2.1	0.00006	0.00007	0.0027	0.003%	0.00%	0.0027
10	meta-Xylene	0.0008	0.0022	0.0023	0.0005	0.0024	0.25	0.0050	0.031	0.000040	2.0	0.00006	0.00007	0.0024	0.030%	0.00%	0.0028
8	ortho-Xylene	0.0007	0.0021	0.0022	0.0005	0.0022	0.21	0.0051	0.031	0.000039	1.6	0.00002	0.00005	0.0022	0.030%	0.00%	0.0026
	Compound	mgrams			MW	moles	Concentration	Intermediate	N2 Purity	Conc, ppb	95% CI		Summary of	Uncertaint	es	_	
	Davida	0.0170	0.0000		70.4440	1.005.05	0.0000000000	Uncert	Uncert	000.00	0.00	0	Mass Diff	S	Dorg	Dvapor	Mass Factor
	Benzene	3.6179	0.0023		/8.1118	4.03E-05	0.00000283	0.19	0.05	282.99	0.39	Benzene	0.0022	0.0005	0.0000	0.0006	7.0909E-07
	Tuluene	4.1058	0.0025		92.1384	4.40E-05	0.000000272	0.18	0.05	212.21	0.37	Ethulhonzono	0.0024	0.0005	0.0000	0.0002	0.900 IE-07
	EuryiDerizerie	4.4002	0.0025		106.1650	4.23E-05	0.000000258	0.15	0.05	200.01	0.32	para-Xulona	0.0024	0.0005	0.0000	0.0000	1.0286E-06
	meta-Xylene	4.7159	0.0027		106.1650	4.44E-05	0.000000271	0.16	0.05	268.52	0.34	meta-Xylene	0.0020	0.0005	0.0000	0.0001	1.0176E-06
	o-Xvlene	4 6655	0.0026		106 1650	4.39E-05	0.000000209	0.16	0.05	268.51	0.34	ortho-Xvlene	0.0023	0.0005	0.0000	0.0000	1.0176E-06
	0-Xyleric	4.0000	0.0020		100.1000	4.002-00	0.00000203	0.10	0.00	200.01	0.01	ortho Atylorio	0.0022	0.0000	0.0000	0.0000	
		grame	uncertainty	MW N2	moles	uncertainty											
	Nitrogen	4584.83	1	28.0134	163 66574	0.0357											
	Total moles =	+004.00	-	20.0134	163,66600	0.0357											
	10101110105 =				103.00000	0.0307						1					

Table on organic mass measurements, corrections to mass, and uncertainties in parent PSM CC460929.

Table on organic mass measurements and uncertainties in NIST CCQM-K10.2018 sample PSM CC412027.

CC412027	gms from	parent					Intermediate	Nitrogen			
Compound	parent CC460929	wt factor	grams	MW	moles	Concentration	Uncert	Purity	Conc, ppb	95% Cl	
								Uncert			
Benzene	73.9000	7.892E-07	5.8322E-05	78.12	7.46569E-07	0.00000005473	0.015	0.01	5.473	0.037	Benzene
Toluene	73.9000	8.956E-07	6.6184E-05	92.15	7.18215E-07	0.00000005265	0.014	0.01	5.265	0.035	Toluene
Ethylbenzene	73.9000	9.789E-07	7.2343E-05	106.16	6.81451E-07	0.00000004996	0.014	0.01	4.996	0.034	Ethylbenzene
para-Xylene	73.9000	1.029E-06	7.6012E-05	106.17	7.15947E-07	0.00000005249	0.014	0.01	5.249	0.034	para-Xylene
meta-Xylene	73.9000	1.018E-06	7.5205E-05	106.17	7.08346E-07	0.00000005193	0.013	0.01	5.193	0.033	meta-Xylene
o-Xylene	73.9000	1.018E-06	7.5196E-05	106.17	7.08257E-07	0.00000005192	0.014	0.01	5.192	0.034	ortho-Xylene
	73.90	0.10									
	grams		MW	moles	uncertainty						
Nitrogen	3821.25	1	28.0134	136.4079333	0.0357						
Total moles =	136.4079376			136.4079376	0.0357						

The following table shows the uncertainties considered in the calculations for the total standard uncertainty (k = 1) and the expanded uncertainty at the approximate 95 % confidence interval. They include the uncertainties in the gravimetric preparation of the mixture, the stability and the verification. The total standard uncertainty (u) is calculated by taking the square root of the sum of the squares for those three uncertainty components.

		k = 1					
BTEX	Gravimetric	Stability	Verification	Total Standard	Total Std uncert	Expanded	U (95 %) Cl
Component	Uncertainty	Uncertainty ^a	Uncertainty	Uncertainty ($k=1$)	nmol/mol ($k = 1$)	Uncertainty (95 %)	nmol/mol
Benzene	0.34%	0.55%	0.42%	0.77%	0.042	1.54%	0.084
Toluene	0.33%	0.54%	0.21%	0.67%	0.035	1.34%	0.070
Ethylbenzene	0.34%	0.58%	0.94%	1.16%	0.058	2.31%	0.115
para-Xylene	0.33%	0.59%	1.07%	1.26%	0.066	2.53%	0.133
meta-Xylene	0.32%	0.52%	1.49%	1.61%	0.084	3.22%	0.167
ortho-Xylene	0.33%	0.56%	1.45%	1.59%	0.082	3.18%	0.165

4. COMPLEMENTARY INFORMATION.

Please include information on:

1) a purity table with uncertainties for the benzene, toluene, ethylbenzene, meta-paraortho-xylenes, and balance nitrogen used to prepare your standard mixture

VOC Purity	Benzene	99.997%	0.003%	ethylbenzene	99.997%	0.003%
	Toluene	100.000%	0.003%	para-xylene	100.000%	0.003%
	O-Xylene	99.940%	0.030%	meta-xylene	99.940%	0.030%

Balance nitrogen had less than (0.001 ± 0.001) nmol/mol present for each of the BTEX compounds.

2) outline of dilution series to produce final standard mixture

A parent mixture, CC460929, was prepared at nominal 250 nmol/mol in nitrogen and verified. An aliquot of this mixture was then transferred to a new cylinder, CC412027, and diluted with nitrogen to reach nominal 5 nmol/mol.

3) outline/discussion of the verification procedure applied to final mixture

Verification was performed by comparing the NIST BTEX sample CC412027 to three existing primary standards (PSMs). The concentration of each compound was determined by direct calculation to each PSM using the peak area responses. The average concentration was calculated, the difference between the gravimetric value of the BTEX sample and the analytical average value was determined. The difference was used as the verification uncertainty.

4) outline of any stability testing of mixture

Daughter/Mother testing was done on the cylinder used to prepare the NIST sample, cylinder # CC412027, for this comparison. Two hundred psi from BTEX PSM, cylinder # CC460929 (mother), at nominal 250 nmol/mol was transferred to the evacuated cylinder CC412027 (daughter). The daughter was compared to the mother by GC/FID/preconcentration. The peak area response for the daughter was divided by

that of the mother to determine a ratio. Three ratios were collected for each BTEX component in CC412027 with each ratio being an average of three replicate injects. The figure below shows those ratios plotted.

The following table gives the three ratios, the average ratio, standard deviation, and the uncertainty in %, which is the standard deviation/average ratio, for each BTEX component.

	Benzene	Toluene	hylbenzer	<i>p</i> -Xylene	<i>m</i> -Xylene	o-Xylene
	ratio	ratio	ratio	ratio	ratio	ratio
Ratio 1	1.0000	1.0002	0.9976	0.9967	0.9991	0.9968
Ratio 2	1.0094	1.0068	1.0058	1.0047	1.0072	1.0045
Ratio 3	1.0098	1.0110	1.0089	1.0084	1.0090	1.0076
Average	1.0064	1.0060	1.0041	1.0033	1.0051	1.0030
Stdev	0.0055	0.0055	0.0058	0.0059	0.0053	0.0056
u %	0.55%	0.54%	0.58%	0.59%	0.52%	0.56%

The u % of the ratio was added to the gravimetric uncertainty as described in section 3 on uncertainty budget.

5) cylinder pressure

The pressure in the cylinder 1500 psi at submission for the comparison.

Optional

You may provide additional data, such as raw measurement data, information on your measurement procedure, etc.

Authors: George C. Rhoderick, Cassie A. Goodman, Christina E. Cecelski, Joseph T. Hodges

B.4 NMISA

CCQM KEY COMPARISON-K10.2018: BTEX in Nitrogen

Comparability study of laboratories' preparation capabilities for BTEX in nitrogen

Laboratory : NMISA Laboratory code :

Cylinder number : D62 6613

NOMINAL COMPOSITION: 5 nmol/mol

1. **RESULTS**

BTEX Component	Date	Gravimetric amount- of-substance fraction (nmol/mol)	Standard uncertainty gravimetric (k=1) (nmol/mol)	Expanded uncertainty (95 %) (nmol/mol)
Benzene		5,017	0,063	0,23
Toluene		5,019	0,054	0,22
Ethylbenzene	15 April	5,021	0,046	0,21
meta-Xylene	2018	5,033	0,047	0,25
para-Xylene		5,021	0,046	0,31
ortho-Xylene		5,023	0,047	0,23

2. BRIEFLY DESCRIBE YOUR PREPARATION PROCEDURES.

High pure liquids of at least 99.95% of benzene, ethylbenzene, p, o, m-xylene and toluene were added sequentially in one vial. The mass of each component was weighed in a syringe before addition to the vial. The total mass of all the components was calculated. The required mass of a solution containing all the components was then transferred into a pre-evacuated cylinder using the syringe. High pure nitrogen of 99.99% was used as a diluent gas. The gas mixtures of 10 μ mol/mol mole fractions were prepared. This was followed by a four-step dilution to prepare a mixture of 5 nmol/mol mole fraction.

3. UNCERTAINTY BUDGET.

Please provide a complete uncertainty budget.

Considered uncertainty budget for the comparison sample is as follows;

$$u(combined) = \sqrt{u_{(gravimetric)}^2 + u_{(verification)}^2 + u_{(stability)}^2}$$

Table 1: Uncertainty budget associated with BTEX mole fraction

	Uncertainty Budget					
Uncertainty contribution	Benzene	Toluene	Ethylbenzene	m-xylene	p-xylene	o-xylene
			All values in rela	ative (%)		
Gravimetric (u)	1.3	1.1	0.93	0.93	0.94	0.94
Verification (u)	1.6	1.5	1.5	2.8	2.0	1.7
Stability (u)	1.2	1.1	1.1	0.94	1.1	1.1
Combined Standard Uncertainty	2.4	2.2	2.1	3.1	2.5	2.3
Expanded Uncertainty	4.8	4.4	4.2	6.2	5.0	4.6

4. COMPLEMENTARY INFORMATION.

Please include information on:

1) a purity table with uncertainties for the benzene, toluene, ethylbenzene, meta-paraortho-xylenes, and balance nitrogen used to prepare your standard mixture

The final 5 nmol/mol comparison cylinder was prepared from 100 nmol/mol gas mixture (cylinder (D62 6623). The purity table for the pre-mixture and the balance nitrogen will be shown below

D62 6623						
	D02 0025					
Component	m	ol/mol				
N ₂	9.99E-01	2.57E-06				
Ar	5.39E-05	2.57E-06				
m-xylene	1.00E-07	9.44E-10				
o-xylene	1.00E-07	9.42E-10				
p-xylene	1.00E-07	9.28E-10				
Ethylbenzene	1.00E-07	9.28E-10				
Toluene	1.00E-07	1.07E-09				
Benzene	9.99E-08	1.26E-09				
H ₂ O	1.00E-08	5.46E-09				
CO_2	9.75E-09	1.07E-09				
H ₂	9.00E-09	4.94E-09				
СО	6.85E-09	3.76E-09				
C ₂ H ₆	6.30E-09	3.46E-09				
O ₂	5.00E-09	2.75E-09				
CH ₄	4.29E-09	2.36E-09				

Table 2: Purity table for D62 6623 (Pre-mixture for final comparison cylinder)

Table 3: Purity table for balance nitrogen

Balance nitrogen						
Component	mol/mol					
Ar	5.39E-05	2.7E-06				
C_2H_6	6.3E-09	3.6E-09				
CH ₄	4.3E-09	2.5E-09				
CO	6.9E-09	4E-09				
CO_2	9.8E-09	1.1E-09				
H_2	9.00E-09	5.2E-09				
H ₂ O	1.00E-08	5.8E-09				
O ₂	5.00E-09	2.9E-09				
N_2	9.999E-01	2.7E-06				

2) outline of dilution series to produce final standard mixture

Figure 1: Production diagram of 5 nmol/mol of BTEX

3) outline/discussion of the verification procedure applied to final mixture

The analysis of the mixture was performed using the Entech 7200 cryogenic preconcentrator coupled on the Agilent 7890B gas chromatograph. The Entech cryogenic pre-concentrator is configured with three modules, module one is for the removal of water and carbon dioxide, module two is the trapping of the btex and module three is the cryo-focuser prior to injection into the gas chromatography.

The Entech pre-concentrator conditions were as follows;

Table 4: Cryogenic pre-concentration steps

Module 1	Empty trap operated at -40°C
Module 2	Tenax trap operated at -40°C
Module 3	Cryo focuser operated at -150°C
Volume pre-concentrated	200ml

The gas chromatograph conditions were as follows;

Table 5: GC conditions

Carrier gas	Nitrogen
Column type	60 m x 0.32 mm x 0.5 mm AT_WAX
	(heliflex)
Column flow	1,2 ml/min
Oven programming	Initial at 40 °C hold for 3min, ramp to
	60 °C at 4 °C/min, hold for 5 min and
	120 °C at 10 °C/min, hold for 3min
FID conditions	275°C
Total run time	21,5 min

4) outline of any stability testing of mixture

The mixture was prepared and verified after preparation, short-term stability of the comparison mixture was done. No long -term stability was performed for the comparison mixture prior to shipping

5) cylinder pressure

The cylinder left the laboratory at 132 bar.

Optional

You may provide additional data, such as raw measurement data, information on your measurement procedure, etc.

B.5 NPL

CCQM KEY COMPARISON-K10.2018: BTEX in Nitrogen

Comparability study of laboratories' preparation capabilities for BTEX in nitrogen

Laboratory : National Physical Laboratory Laboratory code :

Cylinder number : D618315

NOMINAL COMPOSITION: 5 X 10-9 nmol/mol

1. **RESULTS**

BTEX Component	Date	Gravimetric amount- of-substance fraction (nmol/mol)	Standard uncertainty (k=1) (nmol/mol)	Expanded uncertainty (k=2) (nmol/mol)
Benzene		5.00	0.05	0.10
Toluene		5.02	0.05	0.10
Ethylbenzene	00/04/2019	5.02	0.05	0.10
meta-Xylene	09/04/2018	5.02	0.05	0.10
para-Xylene		5.02	0.05	0.10
ortho-Xylene		5.03	0.05	0.10

2. BRIEFLY DESCRIBE YOUR PREPARATION PROCEDURES

Six binary mixtures were gravimetrically prepared for each component from pure liquids (Sigma Aldrich and Acros Organics, see table below for suppliers and purity information obtained from the Certificate of Analysis) following ISO 6142. Each binary mixture was prepared at a nominal amount fraction of 100 µmol/mol in a balance of nitrogen (BIP+, Air Products). An aliquot from each of the six mixtures was added into a single cylinder to make a multicomponent BTEX mixture in a balance of nitrogen (BIP+, Air Products). This multicomponent mixture was diluted further using nitrogen (BIP+, Air Products) to achieve the nominal composition of 5 nmol/mol. For the comparison mixture the nitrogen was flowed through an additional BIP purifier in order to remove hydrocarbons and other impurities. All mixtures were prepared in Quantum/Experis treated 10 L aluminium cylinder (Air Products). The transfer method for the binary mixtures used a vessel fitted with a three way tap to transfer the liquid into the cylinder. The vessel is evacuated and filled with the target mass of liquid. The vessel is weighed before and after the addition to the cylinder against an empty tare vessel of similar dimensions. All subsequent dilutions were performed using a short transfer line made from Sulfinert treated 1/16" tubing fitted with NPL designed minimum dead volume connections. These connections fit directly into a specially machined cylinder valve eliminating the need for regulators or cylinder stems thereby minimizing adsorption effects.

Component	Supplier	Product Code	Lot Number	Purity of Component (%)
Benzene	Sigma Aldrich	401765	SHBH7208	99.99
Toluene	Sigma Aldrich	244511	STBG7960	99.96
Ethylbenzene	Sigma Aldrich	296848	SHBH3700V	99.82

meta-Xylene	Sigma Aldrich	296325	STBG9458	99.80
para-Xylene	Sigma Aldrich	296333	SHBH7708	99.60
ortho-Xylene	Acros Organics	443021000	1707384	99.25
a 11 1 1 1 a				

Supplier and purity information

3. UNCERTAINTY BUDGET

The estimated uncertainty for the measurement contains the following components:

- Purity analysis of the BTEX components
- Gravimetric preparation (weighing and automatic weight uncertainties)
- Analytical validation

Component	Relative Uncertainty (%)			
Component	Preparation (k=1)	Validation (k=1)	Total (k=2)	
Benzene	0.07	0.99	1.98	
Toluene	0.06	0.99	1.98	
Ethylbenzene	0.06	0.99	1.98	
meta-Xylene	0.07	0.98	1.96	
para-Xylene	0.06	0.99	1.98	
ortho-Xylene	0.07	0.98	1.96	

Uncertainty contributors. To calculate the combined uncertainty, the uncertainties were combined as the square root of the sum of squares. The reported uncertainty of the result is based on standard uncertainties multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

4. COMPLEMENTARY INFORMATION

Please include information on:

1) A purity table with uncertainties for the benzene, toluene, ethylbenzene, metapara-ortho-xylenes, and balance nitrogen used to prepare your standard mixture

Purity analysis was conducted on the binary mixtures using a Varian CP-3800 Gas Chromatograph fitted with a 250 μ L injection loop. Column: 60 m x 0.32 um, df = 1 um RTX-Wax (Restek Corporation). No contamination peaks were observed for benzene so the purity from the Certificate of Analysis (Sigma-Aldrich, product code 401765, lot number SHBH7208) was used, see supplier and purity information table in section 2. Purity analysis of the nitrogen was conducted via a gas chromatograph fitted with a pulsed discharge helium ionisation detector (PDHID) and a cavity ring down spectrometer.

Component	Purity of Component (µmol/mol)	Standard uncertainty (k=1) (µmol/mol)
Toluene	999425.78	78.20
C _x H _y	502.39	76.08
Ethylbenzene	71.83	18.10

Toluene purity table

Ethylbenzene	998583.25	137.44
Benzene	1219.81	126.86
Toluene	116.61	40.17
C _x H _y	80.32	34.37

Ethylbenzene purity table

Component	Purity of Component (µmol/mol)	Standard uncertainty (k=1) (µmol/mol)
meta-Xylene	997007.93	204.50
ortho-Xylene	1563.55	156.35
para-Xylene	1234.90	123.49
C _x H _y	132.56	42.56
Toluene	61.06	17.67

meta-Xylene purity table

Component	Purity of Component (µmol/mol)	Standard uncertainty (k=1) (µmol/mol)
para-Xylene	996313.53	268.05
Ethylbenzene	1166.28	116.63
meta-Xylene	1122.24	179.88
C _x H _y	703.66	168.67
Toluene	435.87	123.33
ortho-Xylene	258.42	25.84

para-Xylene purity table

Component	Purity of Component (µmol/mol)	Standard uncertainty (k=1) (µmol/mol)
ortho-Xylene	989208.07	573.56
para-Xylene	4462.48	446.25
C _x H _y	3607.49	640.43
meta-Xylene	2721.96	272.20

ortho-Xylene purity table

Component	Purity of Component (µmol/mol)	Standard uncertainty (k=1) (µmol/mol)
Nitrogen	999996.55	0.66
Argon	3.31	0.66
Carbon Dioxide	0.06	0.02
Oxygen	0.05	0.01
Water	0.01	0.01
Carbon Monoxide	< 0.01	0.01
Methane	< 0.01	0.01

Nitrogen purity table

2) Dilution Series

100 μ mol/mol binaries of each component

3) Discussion of the verification procedure applied to final mixture

Analysed using gas chromatography against a newly prepared 5 nmol/mol BTEX reference standard (cylinder D618321). Four individual measurements were taken under repeatable conditions. An average of the calculated amount fraction has been reported and the calculated uncertainties from the four measurements were combined to give the final result. The reference standard was validated through comparison against 5 additional 'in-house' BTEX mixtures with similar amount fractions (4 – 10 nmol/mol) and two 30 component ozone precursor mixtures at nominally 4 nmol/mol from the Euramet 886 comparison.

4) Outline of any stability testing of mixture

No stability testing was carried out on this mixture

5) Cylinder pressure 100 bar (10 MPa)

Optional

You may provide additional data, such as raw measurement data and/or information on your measurement procedure.

Measurement Procedure

Analysis was conducted using a Varian CP-3800 gas chromatograph with a flame ionisation detector. Sample pre concentration of the 5 nmol/mol mixtures was conducted by flowing the sample through a pre concentration trap for a period of two minutes at a flow rate of 35 ml/min. The trap contains glass beads which are cooled to -100° C during sampling then heated in two steps, initially to 150° C and held for 35 seconds then to 190° C and held for 5 mins. The column used was a 60 m x 0.32 um, df = 1 um RTX-Wax (Restek corporation). The oven had an initial temperature of 30° C and was held at this temperature for six minutes. It was then heated at a rate of 5° C per minute to 130° C giving a total run time of 26 minutes. Helium was used as the carrier gas with a pressure of 17.8 psi and a flow of 2 ml/min. The FID was kept at a constant temperature of 280° C throughout using nitrogen as the makeup gas at a flow of 30 ml/min.

Sample Handling

The sample line from cylinder to GC was set up using connectors and flow controllers designed at NPL to minimise dead volume. The tubing used was 1/16" and all tubing, connectors, flow controllers and unions were SilcoNert treated to minimise adsorption affects.

Elution order

Elution orders were established by measuring each of the six 100 μ mol/mol binaries using the same oven and carrier gas flow conditions as above but injecting via a 250 μ L sample loop rather than a sample pre concentration trap.

Reference Standard

The reference standard (cylinder D618321) used for analysing the comparison mixture was prepared using the same pure chemicals and nitrogen as the comparison mixture. The mixture was prepared by a different operator on a different day to the comparison mixture. The dilution series was as follows;

PLEASE RETURN REPORT TO NIST AS SOON AS POSSIBLE via email to: Christina (Liaskos) Cecelski: <u>christina.liaskos@nist.gov</u> Lyn Gameson: <u>lyn.gameson@nist.gov</u>

B.6 VNIIM

CCQM KEY COMPARISON-K10.2018: BTEX in Nitrogen

Comparability study of laboratories' preparation capabilities for BTEX in nitrogen

Laboratory : D.I. Mendeleyev Institute for Metrology Laboratory code : VNIIM

Cylinder number : № 5603810

NOMINAL COMPOSITION: 5 x 10⁻⁹ (nmol/mol)

Authors: L.A. Konopelko, Y.A. Kustikov, A.V. Kolobova, A.Y. Klimov, O.V. Efremova

1. **RESULTS**

BTEX Component	Date	Gravimetric amount- of-substance fraction (nmol/mol)	Standard uncertainty (k=1) (nmol/mol)	Expanded uncertainty (95 %) (nmol/mol)
Benzene		4.97	0.0556	0.11
Toluene		5.03	0.0595	0.12
Ethylbenzene		5.10	0.0996	0.20
meta-Xylene		4.92	0.101	0.20
para-Xylene		5.08	0.102	0.20
ortho-Xylene		4.96	0.101	0.20

2. BRIEF DESCRIPTION YOUR PREPARATION PROCEDURES

Preparation of final mixtures was carried out from pure substances by gravimetric method in accordance with ISO 6142 from pure substances in 3 stages.

3. UNCERTAINTY BUDGET.

3.1 Benzene

Uncertainty source Xi		Estimate _{Xi}	Evaluation type (A or B)	Distribution	Contribution ui(y) nmol/mol
Purity of Nitrogen		999998.67 µmol/mol	В	Normal	3.6*10 ⁻⁷
Purity of Benzene		99.99 %	В	Normal	6.1*10 ⁻⁶
Impurity of benzene in the other BTEX components		-	В	Normal	1.3*10 ⁻⁴
*Weighing 1 stage premixture (≈20 ppm)	benzene	0.03199700 g	A,B	Normal	4.6 *10 ⁻³
	Other BTEX components summary	-	A,B	Normal	
	N ₂	573.34546102 g	A,B	Normal	
*Weighing	1 pre-mixture	8.65898284 g	A,B	Normal	4 4 4 4 9 2
--	----------------	----------------	-----	--------	-----------------------
2 stage premixture (300 nmol/mol ⁻¹)	N2	565.28819039 g	A,B	Normal	1.4 *10 ⁻³
*Weighing final mixture	2 pre-mixture	11.12334016 g	A,B	Normal	9.5 *10 ⁻⁴
	N ₂	666.09328308 g	A,B	Normal	
Verification		4.965 nmol/mol	А	Normal	0.0554
Combined standard uncertainty					0.556
Expanded uncertainty k=2					0.11

3.2 Toluene

Uncer	rtainty source X _i	Estimate _{Xi}	Evaluation type (A or B)	Distribution	Contribution u _i (y) nmol/mol
Purity of Nitrogen		999998.67 µmol/mol	В	Normal	3.6*10 ⁻⁷
Purity of Toluene		99.79 %	В	Normal	1.3*10-4
Impurity of toluene in t	the other BTEX components	-	В	Normal	2.5*10 ⁻⁵
	Toluene	0.03837400 g	A,B	Normal	
*Weighing 1 stage premixture (≈20 ppm)	Other BTEX components summary	-	A,B	Normal	3.9 *10 ⁻³
	N2	573.34546102 g	A,B	Normal	
*Weighing	1 pre-mixture	8.65898284 g	A,B	Normal	4 4 4 4 9 3
2 stage premixture (300 nmol/mol ⁻¹)	N2	565.28819039 g	A,B	Normal	1.4 *10 ⁻³
*Weighing	2 pre-mixture	11.12334016 g	A,B	Normal	0 7 *10-4
final mixture	N ₂	666.09328308 g	A,B	Normal	9.7 10
Verification		5.034 nmol/mol	А	Normal	0.0593
Combined standard uncertainty					0.0595
Expanded uncertainty k=2				0.12	

3.3 Ethylbenzene

Uncer	rtainty source X _i	Estimate _{Xi}	Evaluation type (A or B)	Distribution	Contribution ui(y) nmol/mol
Purity of Nitrogen		999998.67 µmol/mol	В	Normal	3.6*10 ⁻⁷
Purity of Ethylbenzene)	99.73 %	В	Normal	1.1*10 ⁻⁴
Impurity of Ethylbenzer components	ne in the other BTEX	-	В	Normal	1.5*10 ⁻³
*Weighing 1 stage premixture (≈20 ppm)	Ethylbenzene	0.04469000 g	A,B	Normal	3.4*10 ⁻³
	Other BTEX components summary	-	A,B	Normal	
	N ₂	573.34546102 g	A,B	Normal	
*Weighing	1 pre-mixture	8.65898284 g	A,B	Normal	1.4 *10 ⁻³
2 stage premixture (300 nmol/mol ⁻¹)	N2	565.28819039 g	A,B	Normal	
*Weighing	2 pre-mixture	11.12334016 g	A,B	Normal	0 9 *10-4
final mixture	N ₂	666.09328308 g	A,B	Normal	9.0 10

Verification	5.095 nmol/mol	А	Normal	0.0995
Combined standard uncertainty				
Expanded uncertainty k=2				0.20

3.4 meta-Xylene

Uncer	tainty source X _i	Estimate _{Xi}	Evaluation type (A or B)	Distribution	Contribution u _i (y) nmol/mol
Purity of Nitrogen		999998.67 µmol/mol	В	Normal	3.5*10 ⁻⁷
Purity of meta-Xylene		99.66 %	В	Normal	1.7*10 ⁻⁴
Impurity of meta-Xylen components	e in the other BTEX	-	В	Normal	5.3*10 ⁻⁵
	meta-Xylene	0.04322000 g	A,B	Normal	
*Weighing 1 stage premixture (≈20 ppm)	Other BTEX components summary	-	A,B	Normal	3.4*10 ⁻³
	N ₂	573.34546102 g	A,B	Normal	
*Weighing	1 pre-mixture	8.65898284 g	A,B	Normal	
2 stage premixture (300 nmol/mol ⁻¹)	N ₂	565.28819039 g	A,B	Normal	1.4 *10-3
*Weighing	2 pre-mixture	11.12334016 g	A,B	Normal	9.4 *10 ⁻⁴
final mixture	N ₂	666.09328308 g	A,B	Normal	
Verification		4.915 nmol/mol	А	Normal	0.101
Combined standard uncertainty					0.101
Expanded uncertainty k=2				0.20	

3.5 para-Xylene

Uncer	tainty source X _i	Estimate _{Xi}	Evaluation type (A or B)	Distribution	Contribution u _i (y) nmol/mol
Purity of Nitrogen		999998.67 µmol/mol	В	Normal	3.6*10 ⁻⁷
Purity of para-Xylene		99.73 %	В	Normal	1.5*10 ⁻³
Impurity of para-Xylene components	e in the other BTEX	-	В	Normal	9.9*10 ⁻⁵
	para-Xylene	0.04443000 g	A,B	Normal	
*Weighing 1 stage premixture (≈20 ppm)	Other BTEX components summary	-	A,B	Normal	3.4*10 ⁻³
	N ₂	573.34546102 g	A,B	Normal	
*Weighing	1 pre-mixture	8.65898284 g	A,B	Normal	
2 stage premixture (300 nmol/mol ⁻¹)	N2	565.28819039 g	A,B	Normal	1.4 *10 ⁻³
*Weighing	2 pre-mixture	11.12334016 g	A,B	Normal	9.7 *10 ⁻⁴
final mixture	N ₂	666.09328308 g	A,B	Normal	
Verification		5.080 nmol/mol	А	Normal	0.102
Combined standard uncertainty					0.102
Expanded uncertainty k=2				0.20	

3.6 ortho -Xylene					
Uncertainty source X _i		Estimate _{Xi}	Evaluation type (A or B)	Distribution	Contribution u _i (y) nmol/mol
Purity of Nitrogen		999998.67 µmol/mol	В	Normal	3.6*10 ⁻⁷
Purity of ortho-Xylene	e	99.24 %	В	Normal	4.1*10 ⁻⁴
Impurity of ortho-Xyle components	ne in the other BTEX	-	В	Normal	1.4*10 ⁻⁴
	ortho -Xylene	0.04373000 g	A,B	Normal	3.4*10 ⁻³
*Weighing 1 stage premixture (≈20 ppm)	Other BTEX components summary	-	A,B	Normal	
	N ₂	573.34546102 g	A,B	Normal	
*Weighing	1 pre-mixture	8.65898284 g	A,B	Normal	_
2 stage premixture (300 nmol/mol ⁻¹)	N2	565.28819039 g	A,B	Normal	1.4 *10 ⁻³
*Weighing	2 pre-mixture	11.12334016 g	A,B	Normal	9.5 *10 ⁻⁴
final mixture	N ₂	666.09328308 g	A,B	Normal	
Verification		4.961 nmol/mol	А	Normal	0.101
Combined standard uncertainty			0.101		
Expanded uncertainty k=2			0.20		

*Uncertainty due to weighing includes constituents related to accuracy of balance, buoyancy effect resulting from change of cylinder volume during filling, mass pierces used, drift of balance, residual gas in cylinder.

4. COMPLEMENTARY INFORMATION

4.1 Purity tables

Benzene		
Component	Mole fraction, %	Expanded uncertainty (k=2),% mol
Benzene	99.99	—
Toluene	0.00070	0.00004
non BTEX hydrocarbons (as pentane)	0.0080	0.0004

Toluene		
Component	Mole fraction, %	Expanded uncertainty (k=2), % mol
Toluene	99.79	-
Benzene	0.00300	0.00015
Ethylbenzene	0.00300	0.00015
para-Xylene	0.00060	0.00003
meta-Xylene	0.00200	0.00010
ortho -Xylene	0.00090	0.00005
non BTEX hydrocarbons (as pentane)	0.20	0.010

Ethylbenzene		
Component	Mole fraction, %	Expanded uncertainty (k=2), % mol
Ethylbenzene	99.73	—

Component	Mole fraction, %	Expanded uncertainty (k=2), % mol
Benzene	0.150	0.008
Toluene	0.0300	0.0015
meta-Xylene	0.0120	0.0006
ortho -Xylene	0.00090	0.00005
non BTEX hydrocarbons (as pentane)	0.075	0.004

para-Xylene

Component	Mole fraction, %	Expanded uncertainty (k=2), % mol
para-Xylene	99.72	—
Toluene	0.0090	0.0005
Ethylbenzene	0.180	0.009
meta-Xylene	0.06	0.003
ortho -Xylene	0.024	0.0013
non BTEX hydrocarbons (as pentane)	0.00500	0.00025

meta -Xylene

Component	Mole fraction, %	Expanded uncertainty (k=2), % mol
meta-Xylene	99.66	—
Benzene	0.0009	0.00005
Toluene	0.008	0.0005
Ethylbenzene	0.0210	0.0010
para-Xylene	0.120	0.006
ortho -Xylene	0.170	0.009
non BTEX hydrocarbons (as pentane)	0.0220	0.0011

ortho -Xylene

Component	Mole fraction, %	Expanded uncertainty (k=2), % mol
ortho -Xylene	99.24	—
Ethylbenzene	0.0090	0.0005
meta -Xylene	0.0160	0.0008
para -Xylene	0.470	0.023
non BTEX hydrocarbons (as pentane)	0.27	0.014

Nitrogen

Component	Mole fraction, %	Expanded uncertainty (k=2), % mol
Nitrogen	999998.672	0.200
Ar	0.916	0.011
CH ₄	0.0025	0.0014
СО	0.0025	0.0014
CO ₂	0.0025	0.0014
H ₂	0.0025	0.0014
H ₂ O	0.40	0.20
O ₂	0.0015	0.0009

4.2 Dilution series to produce final standard mixture

Preparation of final mixtures was carried out from pure substances in accordance with ISO 6142 in 3 stages:

1-st stage - 3 mixtures BTEX/N2 -level 20 µmol/mol;

2-nd stage -3 mixtures BTEX/N₂- level 300 nmol/mol;

3-nd stage -5 target mixtures BTEX/N₂ - 5 nmol/mol.

All the mixtures were prepared in Luxfer cylinders with Aculife III + IV coating (V= 5 L)

4.3 Verification procedure applied to final mixture

Verification for the final mixtures was carried out on Chromato-mass-spectrometer «Chromatec- crystal 5000» (Russia) by checking consistency between 3 similar prepared target mixtures. 2 verifications were performed (with 1 week interval), each including 10 measurements in repeatability conditions.

uver was within (1-2) % for different BTEX components.

Operating mode

Chromatographic column	Restek Stabilwax Cat.№ 10623 (30m x 0,25mmID x 0,25µm)
Carrier gas	High purity Helium 99,9999%
Carrier gas flow rate	2,5 ml/min
Split	1:2
Column oven temperature	80°C
SIM	m/z=78 + 91
Ionization energy	70 eV
Sample volume	0,1 ml
Analysis time	2,7 min

4.4 Stability testing of mixture

Short-term stability testing (within 1 week interval) did not show instability within the accuracy of the measurement method.

4.5 Cylinder (№ 5603810) pressure - 10.5 MPa.

Date: 24/07/2018

B.7 VSL

CCQM KEY COMPARISON-K10.2018: BTEX in Nitrogen

Comparability study of laboratories' preparation capabilities for BTEX in nitrogen

Laboratory : VSL Laboratory code :

Cylinder number : VSL136606

NOMINAL COMPOSITION: 5 × 10⁻⁹ (nmol/mol; ppb)

1. **RESULTS**

BTEX Component	Date	Gravimetric amount-of-substance fraction (nmol/mol)	Standard uncertainty (k=1) (nmol/mol)	Expanded uncertainty (95 %) (nmol/mol)
Benzene	2018-04-03	5.008	0.050	0.100
Toluene	2018-04-03	5.023	0.050	0.100
Ethylbenzene	2018-04-03	5.100	0.076	0.153
meta-Xylene	2018-04-03	4.894	0.098	0.196
para-Xylene	2018-04-03	4.870	0.097	0.195
ortho-Xylene	2018-04-03	5.044	0.101	0.202

2. BRIEFLY DESCRIBE YOUR PREPARATION PROCEDURES.

Gravimetric method, according to ISO 6142-1:2015.

The mixtures were obtained by serial dilution independently prepared parent mixtures, prepared by injection of a weighed liquid BTEX mixture into a stainless-steel transfer line heated and brought in the evacuated cylinder by means of a BIP nitrogen stream.

3. UNCERTAINTY BUDGET. Please provide a complete uncertainty budget.

The uncertainty associated with the amount-of-substance fractions is determined in accordance with ISO 6142-1:2015 and ISO 19229:2015. The measurement model of ISO 6142-1 is used for this purpose. Uncertainties from weighing, molar masses and the purity of the materials used is propagated using the law of propagation of uncertainty of the Guide to the expression of Uncertainty in Measurement (GUM). An extra allowance is made for the consistency of the Primary Standard gas Mixtures used in the verification measurement (see below).

Complementary information.

Please include information on:

- 1) a purity table with uncertainties for the benzene, toluene, ethylbenzene, meta-paraortho-xylenes, and balance nitrogen used to prepare your standard mixture
- a purity table with uncertainties for the benzene, toluene, ethylbenzene, meta-para-ortho-xylenes.

Table 1-- Purity table o-xylene

Component	o-xylene	
	х	u(x)
o-xylene	0.990798	0.016909
m-xylene	0.000236	0.000133
p-xylene	0.002640	0.001893
Ethylbenzene	0.000166	0.000125
Toluene	0.000046	0.000003
Benzene		
Water	0.000156	0.000000
Hydrocarbons nos	0.005959	0.016802
1,3,5-Trimethylbenzene		

Table 2	Purity	table	m-x	ylene
---------	--------	-------	-----	-------

Component	m-xylene	
	х	u(x)
o-xylene	0.001416	0.000271
m-xylene	0.997163	0.000321
p-xylene	0.000729	0.000067
Ethylbenzene	0.000126	0.000026
Toluene	0.000118	0.000026
Benzene		
Water	0.000065	0.000001
Hydrocarbons nos	0.000381	0.000153
1,3,5-Trimethylbenzene		

Table 3 – Purity table p-xylene

Component	p-xylene	
	х	u(x)
o-xylene	0.000198	0.000013
m-xylene		
p-xylene	0.998012	0.000390
ethylbenzene	0.001171	0.000128
toluene	0.000200	0.000013
benzene		
Water	0.000063	0.000000
Hydrocarbons nos	0.000356	0.000368
1,3,5-Trimethylbenzene		

Table 4 – Purity table of ethylbenzene

Component	ethylbenzene	
	Х	u(x)
o-xylene		
m-xylene		
p-xylene		
ethylbenzene	0.997132	0.001376
toluene	0.000311	0.000014
benzene	0.002239	0.001376
water	0.000095	0.000001
Hydrocarbons nos	0.000172	0.000019
1,3,5-Trimethylbenzene	0.000051	0.000018

Table 5 -- Purity table of toluene

Component	toluene	
	х	u(x)
o-xylene		
m-xylene	0.000032	0.000013
p-xylene		
ethylbenzene	0.000069	0.000031
toluene	0.999741	0.000034
benzene		
water	0.000128	0.000000
Hydrocarbons nos	0.000030	0.000001
1,3,5-Trimethylbenzene		

Table 6 – Purity table of benzene

Component	benzene	
	х	u(x)
o-xylene		
m-xylene		
p-xylene		
ethylbenzene		
toluene		
benzene	0.999889	0.000033
water	0.000043	0.000000
Hydrocarbons nos	0.000067	0.000033
1,3,5-Trimethylbenzene		

 Table 7 Purity table of liquid mixture (LM0062) for preparation of BTEX

Component	Amount fraction (mol/mol)	standard uncertainty (mo	l/mol)
Hydrocarbons	0.0011763	0.00	28423
Water	0.0000923	0.00	00003
Benzene	0.1670434	0.00	06106
Toluene	0.1675711	0.00	05535
ortho-Xylene	0.1682679	0.00	14084
Ethylbenzene	0.1701164	0.00	05797
meta-Xylene	0.1632663	0.00	05407
Para-Xylene	0.1624576	0.00	06451
1,3,5 Trimethylbenzene	0.0000086	0.00	00031

• a purity table with uncertainties for Nitrogen gas.

Table 8 – Purity table of nitrogen (APN26B)

Component	Amount fraction (mol/mol)	standard uncertainty (mol/mol)
Argon	0.000005000	0.000003000
Methane	0.00000008	0.000000005
Carbon monoxide	0.000000015	0.000000009
Carbon dioxide	0.000000010	0.000000006
Hydrogen	0.00000025	0.000000015
Water	0.000000010	0.000000006
Nitrogen	0.999994832	0.000006000
Oxygen	0.000000100	0.00000030

Table 9 – Purity table of the final mixture, including gravimetric uncertainties.

Component	Amount fraction (mol/mol)	standard uncertainty
		(mol/mol)
Argon	0.0000050000409	0.0000027133437

Component	Amount fraction (mol/mol)	standard uncertainty
		(mol/mol)
Methane	0.000000080000	0.000000045222
Carbon monoxide	0.0000000150002	0.000000081400
Carbon dioxide	0.000000100001	0.000000054267
Hydrocarbons	0.000000000353	0.000000000852
Hydrogen	0.000000249993	0.000000135667
Water	0.000000100028	0.000000054267
Nitrogen	0.9999948019814	0.0000054266872
Oxygen	0.0000001000008	0.000000271334
Benzene	0.000000050075	0.000000000197
Toluene	0.000000050233	0.000000000182
ortho-Xylene	0.000000050442	0.000000000358
Ethylbenzene	0.0000000050996	0.000000000184
meta-Xylene	0.000000048943	0.000000000175
para-Xylene	0.000000048700	0.000000000194
1,3,5-Trimethylbenzene	0.000000000003	0.000000000001

2) outline of dilution series to produce final standard mixture.

Figure 1 – Schematic overview of the dilution series

3) outline/discussion of the verification procedure applied to final mixture

Verification procedure applied to final mixture

The measurement cylinder was newly prepared from a newly mother mixture and analysed two times on different days in two different sets with 5 VSL calibration standards from 2 ppb - 10 ppb. In addition, also extra mixtures were measured for the verification of the calibration of the GC/FID. All mixtures were injected 7 times, of which the first 2 were discarded. The mean and standard deviation of the 5 remaining injections was then used for the calculations.

The data treatment was done in accordance with ISO 6143 [1]. The PSMs used are prepared and validated in accordance with ISO 6142-1 [2]. The data treatment is done with in-house developed software [3]. Based on an analysis of the response factors of the PSMs, an uncertainty contribution was developed to account for, e.g., adsorption effects in cylinders as well as in the transfer lines during preparation. These uncertainty contributions are given in table ...

The calibration curve obtained for each series of measurements was a weighted linear regression of y in x, where y is the mean response (peak area) of the five sub-measurements of the calibration standard and the x its concentration expressed in ppb (μ mol/mol). The value for amount of fraction was obtained by reverse use of the calibration curve The associated uncertainty was obtained using the law of propagation of uncertainty. All curves have been calculated using linear regression of first order.

Measurement procedure

The regulators used for connecting the gas mixtures are flushed several times the day before the measurements are taken. The cylinders are connected to the GC equipment with 1/16 inch silconert coated sampling lines and set to 1 bar(g) for analysis.

The equipment used was a Trace GC with a FID, equipped with a Series 2 UNITY-Air Server systems and CIA 8. The sample gas passes through the cold trap (Ozone Precursors/Freon), kept at -15 °C, and it is trapped. The gas flow is controlled by a mass flow controller located in the CIA8. By fast heating of the trap, the concentrated sample is desorbed and injected on a capillary column in the GC.

The Unity software controls the sampling, focussing and injection in the GC part, while the Trace workstation (EZChrom software) is used for the GC data acquisition. After the measurement the data can be re-integrated.

	UNITY	Trace –GC		
Instrument	Thermal desorber (from Markes) Series 2 UNITY-Air Server systems and CIA 8	Instrument	GC with FID	
Cold trap	Ozone Precursors/Freon	Column	Left detector: CPWAX 52CB, part no. CP8853, (60m* 0.32mm*0.25µm).	
UNITY 2 Method for	Method : VOC.mtd	Method	Deans1_v2.met	
VOC (2-50ppb)	Flow Path Temp: 140 Minimum Carrier Pressure 5.0 GC Cycle Time : 40.5 min.		Initial 40°C, Hold 2 minutes. Ramp with 7°C/min to 200°C and hold 11 minutes.	
	Pre-Sampling Prepurge Time 1.0 min Cmb Flow: 20 ml/min			
	Sampling Sample Time 15 minutes Post sampling Line Purge 1 minute Post Sampling Trap Purge 1 minute			

Table 10 – Sampling and analytical conditions

UNITY	Trace –GC
Trap Flow,Split Flow: 20 ml/min	
Trap Settings	
Pre-Trap Fire Purge : 1 min.	
Trap Low -15 °C	
Trap High 300 °C	
Trap Hold 5.0 min.	

The Verification of the results are discussed below.

Verification results

An initial evaluation of the verification results demonstrated that the uncertainty assigned to the PSMs was too small to account for, e.g., adsorption effects during preparation and sampling. An analysis was conducted of measurements performed in the past two years using the response factors. Based on this statistical analysis, the extra dispersion in the PSMs was identified. Table

Table 11: Excess relative standard deviation for the amount-of-substance fractions of the components in the PSMs

	Benzene	Toluene	Ethylbenzene	p-Xylene	m-Xylene	o-Xylene
pooled	1.02%	1.09%	1.57%	1.65%	2.37%	1.98%
pooled	0.90%	0.94%	1.48%	1.48%	2.69%	2.15%
assigned	1.0%	1.0%	1.5%	2.0%	2.0%	2.0%

With the assigned uncertainties, the verification results were reprocessed. Now the residuals met the requirements of ISO 6143. The results for benzene, p-xylene, m-xylene and o-xylene are shown in figures 2-5. These assigned uncertainties have also been assigned to the amount-of-substance fractions of the components in the transfer standard for this key comparison.

Figure 2 -- Calibration function and residuals for benzene

Figure 3 -- Calibration function and residuals for p-xylene

Figure 4 -- Calibration function and residuals for m-xylene

The results of one of the verification measurements are summarised in table 12.

Mixture	у	u(y)	x(n)	Х	u(x)	u(x)/x	Δx	Δx/u(x)	Δx/x
VSL136647	5.5707	0.0053	5.0031	4.9857	0.0259	0.52%	-0.0173	-0.67	-0.35%
VSL136606	5.5582	0.0127	5.0075	4.9746	0.0278	0.56%	-0.0329	-1.19	-0.66%
PRM267456	5.5210	0.0053	5.0037	4.9415	0.0256	0.52%	-0.0621	-2.43	-1.24%
VSL136615	5.5562	0.0042	5.0047	4.9728	0.0256	0.52%	-0.0319	-1.24	-0.64%
VSL230725	11.0306	0.0066	10.0144	9.8422	0.0636	0.65%	-0.1722	-2.71	-1.72%

Table 12 – Results first verification measurement; y denotes response and x amount-of-substance fraction (nmol mol⁻¹)

4) Outline of any stability testing of mixture

Stability testing of these type of mixtures in similar cylinders has been performed. Evidence is found that

no significant instability can be expected within the time frame of this key comparison. This experience is evidenced by the results of the second verification, which are concordant with those obtained in the first verification.

5) Cylinder pressure

The cylinder pressure in the cylinder before shipment to was 125 bar.

References

[1]	International Organization for Standardization, "ISO 6143 - Gas analysis Comparison methods for
	determining and checking the composition of calibration gas mixtures", ISO Geneva, 2001
[2]	International Organization for Standardization, "ISO 6142-1 – Gas analysis Preparation of calibration gas mixtures Part 1: Gravimetric method for Class I mixtures", ISO Geneva, 2015
[3]	Van der Veen A.M.H., "CurveFit 2.14 – User's guide", VSL, Delft, the Netherlands, S-CH.14.02

You may provide additional data, such as raw measurement data, information on your measurement procedure, etc.

C Comparative participant reports

C.1 METAS

CCQM KEY COMPARISON-K10.2018: BTEX in Nitrogen

Comparability study of laboratories' preparation capabilities for BTEX in nitrogen

Laboratory : METAS Laboratory code :

Cylinder number : APE1228493

NOMINAL COMPOSITION: 5 x 10⁻⁹ (nmol/mol; ppb)

1. RESULTS

BTEX Component	Date	Gravimetric amount-of-	Standard uncertainty (k=1)	Expanded uncertainty (95 %)
-		substance fraction (nmol/mol)	(nmol/mol)	(nmol/mol)
Benzene	27.08.18-04.09.18	6.21	0.36	0.72
Toluene	31.08.18-04.09.18	5.49	0.08	0.15
Ethylbenzene	27-28.08.18	5.15	0.07	0.14
meta-Xylene	27.08.18-04.09.18	5.38	0.07	0.14
para-Xylene	27.08.18-04.09.18	5.62	0.04	0.08
ortho-Xylene	27.08.18-04.09.18	5.38	0.10	0.19

2. BRIEFLY DESCRIBE YOUR PREPARATION PROCEDURES.

The reference gas mixtures were prepared by permeation and dynamic dilution at nmol/mol level in nitrogen. Six permeation units (one per compounds, from Fine Metrology or VICI) were used in a mobile in-house constructed generator "ReGaS2" at defined pressure and temperature conditions. The permeation units were calibrated in a magnetic suspension balance (Rubotherm) before and after the preparation to obtain a calibration curve in function of the temperature.

Figure 1: Scheme of ReGaS2 ("Reactive Gas Standard2") to produce reference gas mixture of up to 5 compounds at the same time

The generated amount fractions were sampled for 4 different loading times on adsorption tubes (Tenax) with a controlled flow of 50 ml/min per tubes (Thermal Mass Flow Controller, Vögtlin). It resulted in a 4-points calibration curve for the measuring instrument.

The measurement of BTEX was done with ATD-GC-FID (Clarus 500, Perkin-Elmer and column Stabilwax, Restek).

The cylinder was measured in the same way, with the same sampling equipment and the same measurement method.

3. UNCERTAINTY BUDGET.

The software GUM Workbench V2.4 was used for the uncertainty estimation. Here below an example for the ethylbenzene concentration in the gas cylinder.

```
Equation:

E1 = T_{X_E} * P_E * t1 * v/V - E_N;

E2 = T_{X_E} * P_E * t2 * v/V - E_N;

E3 = T_{X_E} * P_E * t3 * v/V - E_N;

E4 = T_{X_E} * P_E * t4 * v/V - E_N;

EA = (E1 + E2 + E3 + E4)/4;

EAnz_{mean} = (EAnz_1 + EAnz_2 + EAnz_3 + EAnz_4)/4;

b_E = p_E/q_E;

p_E = (E1 - EA) * (EAnz_1 - EAnz_{mean}) + (E2 - EA) * (EAnz_2 - EAnz_{mean}) + (E3 - EA) * (EAnz_3 - EAnz_{mean}) + (E4 - EA) * (EAnz_4 - EAnz_{mean});

q_E = (E1 - EA)^2 + (E2 - EA)^2 + (E3 - EA)^2 + (E4 - EA)^2;
```

 $a_E = EAnz_{mean} \cdot b_E * EA;$ $ERes2 = (EAnzRes2 - a_E)/b_E;$ $Ebout2 = (ERes2 * F_E)/(t_{asp2} * v);$

List of quantities:

t1	min	Loading time 1
v	ml/min	Aspiration flow
V	ml/min	Total flow ReGaS2
t2	min	Loading time 2
t3	min	Loading time 3
t4	min	Loading time 4
t _{asp2}	min	Loading time2 for cylinder
E1	ng	Ethylbenzene mass into tube after t1
Tx _E	ng/min	Ethylbenzene permeation rate
P _E	mol/mol	Purity Ethylbenzene in permeator
E _N	ng	Rest Ethylbenzene in carrier gas
E2	ng	Ethylbenzene mass into tube after t2
E3	ng	Ethylbenzene mass into tube after t3
E4	ng	Ethylbenzene mass into tube after t4
EA	ng	Ethylbenzene mass average
EAnz _{mean}	arb. units	Ethylbenzene area average
EAnz ₁	arb units	Ethylbenzene area after t1
EAnz ₂	arb units	Ethylbenzene area after t2
EAnz ₃	arb units	Ethylbenzene area after t3
EAnz ₄	arb units	Ethylbenzene area after t4
b _E	arb units/ng	Slope of Ethylbenzene calibration
$p_{\rm E}$	ng*arb. unit	Numerator slope of Ethylbenzene calibration
$q_{\rm E}$	ng ²	Denominator slope of Ethylbenzene calibration
$a_{\rm E}$	arb. unit	y-intercept of Ethylbenzene calibration
ERes2	ng	Ethylbenzene mass for tasp2 from cylinder
EAnzRes2	arb. unit	Ethylbenzene area for tasp2 from cylinder
F _E	m3/L	conversion factor Ethylbenzene
Ebout2	ppb	Cylinder concentration for tasp2

Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index
t1	5.000 min	0.150 min	normal	0.061	9.1·10 ⁻³ ppb	1.7 %
v	50.400 ml/min	0.750 ml/min	normal	not valid!	0.0 ppb	0.0 %
V	5044.00 ml/min	5.04 ml/min	normal	-1.0·10 ⁻³	-5.2·10 ⁻³ ppb	0.5 %
t2	15.000 min	0.150 min	normal	0.059	8.9·10 ⁻³ ppb	1.6 %
t3	30.000 min	0.150 min	normal	0.057	8.6·10 ⁻³ ppb	1.5 %
t4	40.000 min	0.150 min	normal	0.056	8.4·10 ⁻³ ppb	1.4 %
t _{asp2}	30.000 min	0.150 min	normal	-0.17	-0.026 ppb	13.7 %
Tx_E	172.49 ng/min	1.81 ng/min	normal	0.030	0.054 ppb	60.2 %
P _E	0.97 mol/mol					

Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index
E _N	0.0 ng	0.0 ng	triangular	0.0	0.0 ppb	0.0 %
EA	37.615 ng	0.697 ng				
EAnz _{mean}	17732 arb. units	103 arb. units				
EAnz ₁	3958.7 arb units	21.1 arb units	normal	-77·10 ⁻⁶	-1.6·10 ⁻³ ppb	0.0 %
EAnz ₂	11778.3 arb units	96.9 arb units	normal	-75·10 ⁻⁶	-7.3·10 ⁻³ ppb	1.1 %
EAnz ₃	23742 arb units	152 arb units	normal	-73·10 ⁻⁶	-0.011 ppb	2.5 %
EAnz ₄	31447 arb units	369 arb units	normal	-71·10 ⁻⁶	-0.026 ppb	14.2 %
$b_{\rm E}$	470.9 arb units/ng	10.5 arb units/ng				
ре	954.2·10 ³ ng*arb. unit	21300 ng*arb. unit				
$q_{\rm E}$	2026.3 ng ²	77.3 ng ²				
a _E	18 arb. unit	166 arb. unit				
ERes2	36.910 ng	0.719 ng				
EAnzRes2	17399.3 arb. unit	28.3 arb. unit	normal	300.10-6	8.4·10 ⁻³ ppb	1.4 %
F _E	211.0 m3/L					
Ebout2	5.1507 ppb	0.0697 ppb				

Note: in the uncertainty of the permetaion rate (T_{xE}) contributions from weighing process with magnetic suspension balance, long-term stability of permeation rate, purity of substance as well as influence of temperature variability are included.

4. COMPLEMENTARY INFORMATION.

1) The purities of the pure permeation units are listed here below as well as the purity of the matrix gas, nitrogen. These values are given by the manufacturer.

	Producer	Purity declared
Benzene	VICI	99.5%
Ethylbenzene	Fine Metrology	99.5%
Toluene	VICI	99.9%
M_Xylene	VICI	99%
O-Xylene	VICI	99.5%
p-Xylene	VICI	99.5%
N2	Carbagas	99.9999%

Prior to the comparison, each gas compound was generated alone (in nitrogen) as well as nitrogen only and measured with the same setup (sampling/analysis) to check for impurities. For Ethylbenzene and o-Xylene, a purity of 97% was observed and taken into account.

	Purity after analysis	Standard uncertainty
Benzene	0.995	0.0021
Ethylbenzene	0.97	0.009
Toluene	0.999	0.00041
M_Xylene	0.99	0.0041
O-Xylene	0.97	0.009
p-Xylene	0.995	0.0021

- 2) The dilution flow in the mobile generator was constant. The total flow (carrier and dilution flows) used for the generation of the reference gas mixture was ~5045 ml/min. The time of absorption in the tubes was changed in order to make a calibration curve for the GC-FID (5 to 40 minutes = quantities from 7 to 630 ng).
- 3) Several series of samples on adsorption tubes were measured with 5 different compounds (Benzene, Ethylbenzene, m/p/o-Xylene or Benzene, Toluene, m/p/o-Xylene produced at the same time) with 3 replicates for each sampling.
- 4) There is no stability check of reference gas cylinder. This point is not applicable for dynamic mixtures. Stability check for the transfer standard is done by the coordinator.
- 5) The cylinder pressure was 90 bars after use

C.2 UBA

CCQM KEY COMPARISON-K10.2018: BTEX in Nitrogen

Comparability study of laboratories' preparation capabilities for BTEX in nitrogen

Laboratory : German Environment Agency (D) Laboratory code : UBA (D)

Cylinder number : APE 1228493

Nominal Composition: 5 x 10-9 (nmol/mol; ppb) within ± 0.2 nmol/mol

1. **RESULTS**

BTEX Component	Date	Gravimetric amount- of-substance fraction (nmol/mol)	Standard uncertainty (k=1) (nmol/mol)	Expanded uncertainty (95 %) (nmol/mol)
Benzene	18.10.2018	5.09	0.02	0.04
Toluene	25.10.2018	4.92	0.02	0.05
Ethylbenzene	31.10.2018	4.48	0.02	0.04
meta- + para-Xylene	08.11.2018	9.80	0.07	0.14
ortho-Xylene	31.10.2018	4.60	0.03	0.06

Briefly describe your preparation procedures

The calibration gas is prepared by static dilution method ISO 6144 and used the bracketing procedure by preparing two concentrations in an interval of ca. \pm 5% of a test measurement. The testgas was measured by GC Clarus 680 GL and Turbomatrix 300 apply DIN EN 14662 (2005).

The ISO 6144 was modified by the injection method. The syringes was substituted by capillary tubes and the pure liquid substance was sucked in by a gas flow induced by low pressure and fill up air simultaneously. The capillary was weighed before and after filling up with pure substance. The filled up capillary was weighed 5 times. This mixture was diluted 3-times by pressurize and relax the mixture. See GUM Workbench Budget. Pressure and temperature was measured exactly. We could not separate meta- und para-xylene from each other. Only the sum of both is reported here.

Uncertainty budget.

Example for Benzene

 $uc^2 = u_l^2 + u_R^2 + u_M \tag{1}$

uc = Combined uncertainty

u₁ = Combined uncertainty given by static dilution method valid for both bracketing points

 u_R = Reproducibility of the static dilution method in UBA laboratory

u_M = standard uncertainty of measurements:.

Calculation of u1 according to ISO Guide GUM supported by GUM Workbench software. In this calculation is shown the route of traceability to SI. Standard deviation of the 3 calibrations is included in the reproducibility of the static dilution method.

u1 = 0.19 % rel.

uR = 0.23 % rel.

 $u_M = 0.13$ % rel.

 $u_c = 0.33 \% rel$ (1)

Coverage factor: 2

U = 0.66 %

UNCERTAINTY BUDGET FOR CALIBRATION GAS BENZENE AS EXAMPLE

THE BUDGETS FOR THE OTHER COMPONENTS ARE SIMILAR.

Model Equation:

 $\beta_k = (W1 - W2) * 1000 * F_i * T_K * p_R / V_K / T_R / p_K * p_{11} * T_{12} / p_{12} / T_{11} * p_{21} * T_{22} / p_{22} / T_{21}$

List of Quant	nics.	
Quantity	Unit	Definition
β_k	$\mu g/m^3$	Concentration at reference conditions
W1	mg	Weight of filled capillary
W2	mg	Weight of empty capillary
$\mathbf{F}_{\mathbf{i}}$	mol/mol	Amount of substance fraction (mol/mol)
T_{K}	K	Vessel temperature
p _R	kPa	Reference pressure
Vĸ	m ³	Volume of the Vessel
T _R	K	Reference Pressure
рк	kPa	Vessel pressure high
p11	kPa	1. Pressure
T ₁₂	K	Temperature 1. filling
p ₁₂	kPa	Pressure 1. filling
T ₁₁	K	Temperature after 1. pump down
p ₂₁	kPa	Pressure after 2. pump down
T ₂₂	K	Temperature after 2. filling up
p ₂₂	kPa	Pressure after 2. filling up
T ₂₁	K	Temperature after 2. pump down

List of Quantities:

W1:

Type A summarized Mean: 13869.744 mg Experimental standard deviation: 0.005 mg Number of observations: 5 accurate scales MSE 225P-100-DA

W2:

Type A summarized Mean: 13867.156 mg Experimental standard deviation: 0.009 mg Number of observations: 5

Fi:

Type B rectangular distribution Value: 0.99992 mol/mol Halfwidth of limits: 0.000017 mol/mol **Tκ:** Type B rectangular distribution Value: 298.75 K Halfwidth of limits: 0.003 K

pr:

Constant Value: 101.325 kPa

Vκ: Type B rectangular distribution Value: 0.11244 m³ Halfwidth of limits: 0.0001 m³

Estimation of Volume by filling the Vessel with graduated cylinders

T_R: Constant Value: 293.15 K

pκ: Type B rectangular distribution Value: 159.731 kPa Halfwidth of limits: 0.004 kPa

Mensor Calibration Line

p11: Type B rectangular distribution Value: 5.0837 kPa Halfwidth of limits: 0.003 kPa

MKS Instruments

T12: Type B rectangular distribution Value: 298.87 K Halfwidth of limits: 0.003 K

Fluke Model 1529-R

p12: Type B rectangular distribution Value: 160.768 kPa Halfwidth of limits: 0.004 kPa

T11: Type B rectangular distribution Value: 297.98 K Halfwidth of limits: 0.003 K **p21:** Type B rectangular distribution Value: 5.75 kPa Halfwidth of Limits: 0.003 kPa

T22: Type B rectangular distribution Value: 298.71 K Halfwidth of limits: 0.003 K

p22: Type B rectangular distribution Value: 159.8 kPa Halfwidth of limits: 0.004 kPa

T₂₁: Type B rectangular distribution Value: 297.61 K Halfwidth of limits: 0.003 K

Uncertainty Budgets:

Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index
W1	13869.74400 mg	2.24·10 ⁻³ mg	normal	6.6	$0.015\ \mu g/m^3$	20.5 %
W2	13867.15600 mg	4.02·10 ⁻³ mg	normal	-6.6	$-0.027 \ \mu g/m^3$	66.5 %
F_i	0.99992000 mol/mol	9.81·10 ⁻⁶ mol/mol	rectangular	17	$170 \cdot 10^{-6} \mu g/m^3$	0.0 %
T _K	298.75000 K	1.73·10⁻³ K	rectangular	0.057	$99 \cdot 10^{-6} \mu g/m^3$	0.0 %
p _R	101.325 kPa					
V _K	0.1124400 m ³	57.7·10 ⁻⁶ m ³	rectangular	-150	$-8.8{\cdot}10^{3}\mu g/m^{\textbf{3}}$	7.2 %
T _R	293.15 K					
рк	159.73100 kPa	2.31·10 ⁻³ kPa	rectangular	-0.11	$-250{\cdot}10^{\text{-6}}\mu g/m^{3}$	0.0 %
p 11	5.08370 kPa	1.73·10 ⁻³ kPa	rectangular	3.4	$5.8\!\cdot\!10^{3}\mu g/m^{\text{-}3}$	3.2 %
T ₁₂	298.87000 K	1.73·10⁻³ K	rectangular	0.057	$99 \cdot 10^{-6} \mu g/m^3$	0.0 %
p ₁₂	160.76800 kPa	2.31·10 ⁻³ kPa	rectangular	-0.11	$-240{\cdot}10^{\text{-6}}\mu g/m^{3}$	0.0 %
T ₁₁	297.98000 K	1.73·10 ⁻³ K	rectangular	-0.057	$-99 \cdot 10^{-6} \mu g/m^3$	0.0 %
p ₂₁	5.75000 kPa	1.73·10 ⁻³ kPa	rectangular	3.0	$5.1 \cdot 10^{-3} \mu g/m^3$	2.5 %
T ₂₂	298.71000 K	1.73·10 ⁻³ K	rectangular	0.057	$99 \cdot 10^{-6} \ \mu g/m^3$	0.0 %
p ₂₂	159.80000 kPa	2.31·10 ⁻³ kPa	rectangular	-0.11	$-250 \cdot 10^{-6} \mu g/m^3$	0.0 %

β_k: Concentration at reference conditions

Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index
T ₂₁	297.61000 K	1.73·10 ⁻³ K	rectangular	-0.057	-99 $\cdot 10^{-6} \mu g/m^3$	0.0 %
β _k	17.0421 µg/m³	0.0325 µg/m³				

Results:

Quantity	Value	Expanded Uncertainty	Coverage factor	Coverage
β_k	$17.042 \ \mu g/m^3$	0.19 % (relative)	1.00	manual

2. COMPLEMENTARY INFORMATION.

Please include information on:

1) A purity table with uncertainties for benzene, toluene, ethylbenzene, meta-, para-, ortho-xylenes, and balance nitrogen used to prepare your standard mixture.

CRM was certified by National Metrology Institute of Japan

	Purity	Expanded
	mol/mol	uncertainty
Benzene	0.99992	0.00003
Toluene	0.9997	0.0003
Ethyhlbenzene	0.9988	0.0003
meta-Xylene	0.9980	0.0002
ortho-Xylene	0.9993	0.0001

- 2) Outline of dilution series to produce final standard mixture see GUM Budget
- 3) Outline/discussion of the verification procedure applied to final mixture
- 4) Outline of any stability testing of mixture
- 5) Cylinder pressure

Optional

You may provide additional data, such as raw measurement data, information on your measurement procedure, etc.

C.3 CHMI

CCQM KEY COMPARISON-K10.2018: BTEX in Nitrogen

Comparability study of laboratories' preparation capabilities for BTEX in nitrogen

Laboratory	: Czech Hydrometeorological Institute Ambient Air Quality Calibration Laboratory Na Šabatce 2050/17 143 06 Prague 4 Czech Republic					
Laboratory code	: 2284					
Cylinder number	: APE1228493 (D569767), pressure 11,0-10,4 MPa					
NOMINAL COMPOSITION: 5×10^{-9} (nmol/mol; ppb)						

1. **RESULTS**

BTEX Component	Date	Gravimetric amount- of-substance fraction (nmol/mol)	Standard uncertainty (k=1) (nmol/mol)	Expanded uncertainty (95 %) (nmol/mol)
Benzene		5,15	0,157	0,31
Toluene	14.12.2018	5,14	0,120	0,24
Ethylbenzene	10.1.2019	4,85	0,126	0,25
meta+para-Xylene *)	12.3.2019	10,05	0,267	0,53
ortho-Xylene		4,95	0,145	0,29

2. BRIEFLY DESCRIBE YOUR PREPARATION PROCEDURES.

- a) A cylinder is connected to an analytical system.
- b) The first step is an inject helium (volume 200 ml) for controlling clean of the analytical system.
- c) The second step is twice inject of primary reference material (cylinder number D860586R), volume 100 ml.
- d) The third step is three times inject of sample APE1228493 (D569767), volume 100 ml.
- e) Last step is inject of primary reference material (cylinder number D860586R), volume 100 ml.
- f) The PRM which was measured three times we used for created a calibration curve. The PRM is used for direct comparison.

Calibration standard: NPL Primary reference material, cylinder number D860586R Certificate D860586R, date of issue 20 December 2017 calibration date 13 December 2017 pressure regulator: CONCOA silcosteel 4222301-01-000R, s/n 06C06AF4

Amount fraction	
Component	Amount fraction
-	/ (nmol/mol)
Benzene	$10{,}07\pm0{,}21$
Toluene	$9{,}79\pm0{,}25$
Ethylbenzene	$10{,}59\pm0{,}27$
meta+para-Xylene	$20,60 \pm 0,52$
ortho-Xylene	$10,13 \pm 0,26$

Chromatogram of PRM:

	Zones	Trap	M1	M1>M2	M3	M2	M1>M2	Inject	Bakeout
Temperatures		temp	preheat		precool	preheat			
	Mod 1	- 40 °C	10 °C	10 °C					150 °C
	Mod 1	40 °C		60 °C					150 °C
	Bulkhead								
	Mod 2	- 50 °C		- 50 °C		- 50 °C	220 °C		220 °C
	Mod 2	40 °C				40 °C			150 °C
	Bulkhead								
	Mod 3				- 175 °C		- 150 °C	80 °C	
	Rotary	80 °C							80 °C
	valve plate								

Preconcetration: preconcentrator 7200 Entech Instruments

Sample transfer line: 80 °C GC transfer line: 100 °C Volume of sample: 100 ml

Analytical system: Agilent technologies 7890B GC system

	AGILENT 123-1063; DB-1 (60m × 320µm × 1 µm); flow 4 mL/min						
COLUMIN	AGILENT 19091P-315; HP-Plot Al2O3S (50m × 320µm × 8µm); flow 3 mL/min						
OVEN temperature on 50 °C, maximum oven temperature 200 °C							
DETECTOR	FID FRONT: heater 200 °C; air flow 400 mL/min; He fuel flow 30 mL/min;						
	makeup flow 25 ml/min						
	FID BACK: heater 200 °C; air flow 400 mL/min; He fuel flow 30 mL/min; makeup						
	flow 25 ml/min						

3. UNCERTAINTY BUDGET.

BENZENE

Parameter	Unit	Value	Exp.unc.	Std.unc.	Δ rel.unc.		Δ rel.exp.un
PE-A (WE-A) work etalon - analyzer (GC) HP7890B				abs.term x		rel.term y	
PRM certificate D86 0586R							
Benzene	nmol/mol	10,07	0,21	0,105	0,010427		2,09
Calibration PE-A traceability to PRM							
different of input pressure	%	2	0,02	0,01	0,01		2,00
PE-A abs. and rel. term x, y (reproducibility)	nmol/mol, 1	DPE-A(PRM)	0,04	0,02		0,016	3,20
number of PRM analysis, std.unc.of D PEA(PRM)		3		0,09515	0,009449		1,89
Value of PE-A for PRM	nmol/mol	10,07	0,35	0,17384			3,45
calibration coef. fkal, PE-A(PRM) (~1)	1	1	0,03453	0,01726			3,45
Calibration of calibration gas source							
standard deviation of individual measurements	1	4	0,046	0,023	0,023		4,60
source - abs. and rel. term x, y (reproducibility)	nmol/mol, 1	DPEA(source)	0,04	0,02		0,016	3,20
number of source analysis, std.unc.of DPEA(source)		3		0,05161	0,010021		2,00
Concentration of calibration gas source	nmol/mol	5,150	0,31	0,15684	0,030453		6,02

TOLUENE

Parameter	Unit	Value	Exp.unc.	Std.unc.	Δ rel.unc.		∆ rel.exp.un
PE-A (WE-A) work etalon - analyzer (GC) HP7890B				abs.term x		rel.term y	
PRM certificate D86 0586R							
Toluene	nmol/mol	9,79	0,25	0,125	0,012768		2,55
Calibration PE-A traceability to PRM							
different of input pressure	%	2	0,02	0,01	0,01		2,00
PE-A abs. and rel. term x, y (reproducibility)	nmol/mol, 1	DPE-A(PRM)	0,04	0,02		0,019	3,80
number of PRM analysis, std.unc.of D PEA(PRM)		3		0,10924	0,011158		2,23
Value of PE-A for PRM	nmol/mol	9,79	0,39	0,19272			3,94
calibration coef. fkal, PE-A(PRM) (~1)	1	1	0,03937	0,01969			3,94
Calibration of calibration gas source							
standard deviation of individual measurements	1	4	0,0098	0,0049	0,0049		0,98
source - abs. and rel. term x, y (reproducibility)	nmol/mol, 1	DPEA(source)	0,04	0,02		0,019	3,80
number of source analysis, std.unc.of DPEA(source)		3		0,05983	0,011639		2,33
Concentration of calibration gas source	nmol/mol	5,140	0,24	0,12022	0,023388		4,67

ETHYLBENZENE

Parameter	Unit	Value	Exp.unc.	Std.unc.	Δ rel.unc.		∆ rel.exp.un
PE-A (WE-A) work etalon - analyzer (GC) HP7890B				abs.term x		rel.term y	
PRM certificate D86 0586R							
Etylbenzene	nmol/mol	10,59	0,27	0,135	0,012748		2,55
Calibration PE-A traceability to PRM							
different of input pressure	%	2	0,02	0,01	0,01		2,00
PE-A abs. and rel. term x, y (reproducibility)	nmol/mol, 1	DPE-A(PRM)	0,04	0,02		0,022	4,40
number of PRM analysis, std.unc.of <i>D PEA(PRM</i>)		3		0,13599	0,012841		2,57
Value of PE-A for PRM	nmol/mol	10,59	0,44	0,21894			4,13
calibration coef. f kal, PE-A(PRM) (~1)	1	1	0,04135	0,02067			4,13
Calibration of calibration gas source							
standard deviation of individual measurements	1	4	0,0164	0,0082	0,0082		1,64
source - abs. and rel. term x, y (reproducibility)	nmol/mol, 1	DPEA(source)	0,04	0,02		0,022	4,40
number of source analysis, std.unc.of <i>DPEA(source)</i>		3		0,06477	0,013354		2,67
Concentration of calibration gas source	nmol/mol	4,850	0,25	0,12582	0,025942		5,15

META+PARA-XYLENE

Parameter	Unit	Value	Exp.unc.	Std.unc.	Δ rel.unc.		∆ rel.exp.un
PE-A (WE-A) work etalon - analyzer (GC) HP7890B				abs.term x		rel.term y	
PRM certificate D86 0586R							
m+p-Xylene	nmol/mol	20,60	0,52	0,26	0,012621		2,52
Calibration PE-A traceability to PRM							
different of input pressure	%	2	0,02	0,01	0,01		2,00
PE-A abs. and rel. term x, y (reproducibility)	nmol/mol, 1	DPE-A(PRM)	0,04	0,02		0,018	3,60
number of PRM analysis, std.unc.of D PEA(PRM)		3		0,21501	0,010438		2,09
Value of PE-A for PRM	nmol/mol	20,6	0,79	0,39531			3,84
calibration coef. fkal, PE-A(PRM) (~1)	1	1	0,03838	0,01919			3,84
Calibration of calibration gas source							
standard deviation of individual measurements	1	4	0,03	0,015	0,015		3,00
source - abs. and rel. term x, y (reproducibility)	nmol/mol, 1	DPEA(source)	0,04	0,02		0,018	3,60
number of source analysis, std.unc.of DPEA(sou	3		0,10634	0,010581		2,12	
Concentration of calibration gas source	nmol/mol	10,050	0,53	0,26688	0,026556		5,27

ORTHO-XYLENE

Parameter	Unit	Value	Exp.unc.	Std.unc.	Δ rel.unc.		∆ rel.exp.un
PE-A (WE-A) work etalon - analyzer (GC) HP7890B				abs.term x		rel.term y	
PRM certificate D86 0586R							
o-Xylene	nmol/mol	10,13	0,26	0,13	0,012833		2,57
Calibration PE-A traceability to PRM							
different of input pressure	%	2	0,02	0,01	0,01		2,00
PE-A abs. and rel. term x, y (reproducibility)	nmol/mol, 1	DPE-A(PRM)	0,04	0,02		0,018	3,60
number of PRM analysis, std.unc.of D PEA(PRM)		3		0,10716	0,010578		2,12
Value of PE-A for PRM	nmol/mol	10,13	0,39	0,19658			3,88
calibration coef. fkal, PE-A(PRM) (~1)	1	1	0,03881	0,01941			3,88
Calibration of calibration gas source							
standard deviation of individual measurements	1	4	0,038	0,019	0,019		3,80
source - abs. and rel. term x, y (reproducibility)	nmol/mol, 1	DPEA(source)	0,04	0,02		0,018	3,60
number of source analysis, std.unc.of DPEA(source)		3		0,05514	0,011152		2,23
Concentration of calibration gas source	nmol/mol	4,945	0,29	0,14518	0,029359		5,86