Rockwell Hardness HR45N Scale Definition

Reference values for HR45N				
Symbol	Test parameter	Reference value	Start measurement	Stop measurement
F_{0}	Preliminary test force	29,419 95 N ${ }^{1}$		
F	Total test force	441,299 $25 \mathrm{~N}^{1}$		-
α	Included angle of the indenter cone (between surface axial-plane line segments)	120°	Line segment start: $\pm 30^{\circ}$ (from the axis) ${ }^{2}$	Line segment end: $400 \mu \mathrm{~m}$ on conical surface
r	Spherical tip radius of the indenter	$200 \mu \mathrm{~m}$	-30° (from the axis) ${ }^{2}$	$+30^{\circ}$ (from the axis) ${ }^{2}$
$t_{\text {pa }}$	Application time of preliminary test force	$0,2 \mathrm{~s} \leq t_{\mathrm{pa}} \leq 2 \mathrm{~s}$	$\sim 1 \%{ }_{0}$	$\sim 99 \% F_{0}$
$t_{\text {pd }}$	Duration time of constant preliminary test force before initial measurement	$\left(3-t_{\mathrm{pa}} / 2\right) \mathrm{s}$	$\sim 99 \% F_{0}$	Measurement
$t_{\text {aa }}$	Application time of additional test force	$\leq 4 \mathrm{~s}^{3}$	$\sim 101 \%{ }_{0}$	~99 \% F (loading)
$V_{\text {fa }}$	Mean indentation velocity of final additional test force application	$30 \mu \mathrm{~m} \cdot \mathrm{~s}^{-1}$	~ 80 \% F	~99 \% F
$t_{\text {td }}$	Duration time of total test force	5 s	~99 \% F (loading)	~99 \% F (unloading)
$t_{\text {ar }}$	Removal time of additional test force	≤ 2 s	~99 \% F (unloading)	~ 101 \% Fo
$t_{\text {rd }}$	Duration time of recovery force before final measurement	4 s	~ 101 \% Fo	Measurement
T	Temperature of test	$23^{\circ} \mathrm{C}$	Start of test	End of test
	${ }^{1}$ The defined values of preliminary test force and total test force are the SI equivalents of the original Rockwell hardness method-defined forces of 3 kgf and 45 kgf , respectively, converted to N by multiplying the kgf values by the conversion factor 9,80665 . ${ }^{2}$ These dimensions define the theoretical points of blend between the spherical tip and conical surface of the diamond indenter (see Figure 2). The actual points of blend are usually different; therefore, the blend areas should not be included in the measurement of the tip radius or cone angle. ${ }^{3}$ The value of $t_{a a}$ is dependent on the hardness of the material under test. The stated range of $\leq 4 s$ is to maintain compliance with consensus standards.			

Figure 1. Illustrations of the applied force and the resulting indentationdepth occurring during the HR45N test cycle.

Figure 2. Illustration of the axial cross-section of an ideally-shaped diamond indenter indicating the dimensions specified above and the theoretical points of blend between the spherical tip and conical surface.

