

Quantumbased standards and trends in dissemination

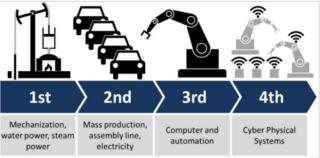
NMI Directors Meeting

October 2021

https://www.nist.gov/noac

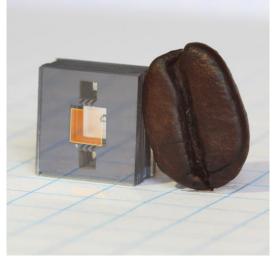
Barbara Goldstein Associate Director, PML Program Manager, NIST on a Chip bgoldstein@nist.gov 1

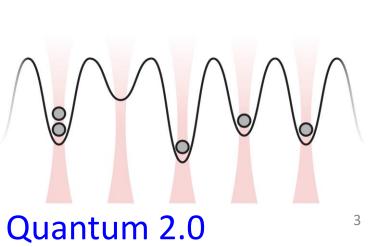
Global trends that are reshaping metrology


NIST on a Chip – a new vision for dissemination

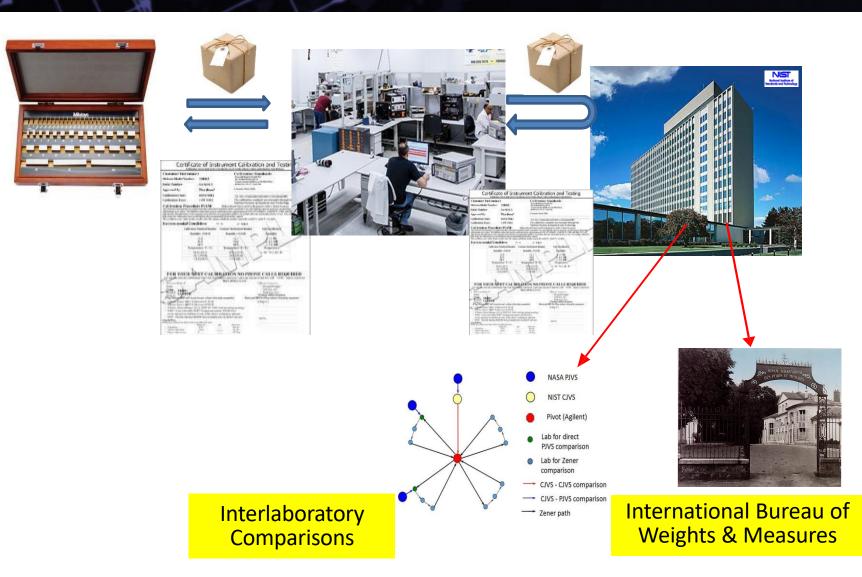
IMEKO TC25 – Quantum Measurement & Quantum Information

 Report out from Sept 1: "Growing the Quantum Economy through Metrology, Workforce, and Supply Chain Development"


Global trends are reshaping metrology

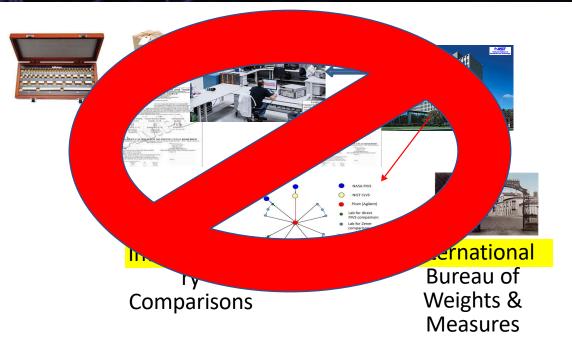

Industry 4.0 & Digitalization

Miniaturization & Integrated Photonics



The redefinition of the SI

Industry 4.0 & Digitalization


Industry 4.0 & Digitalization

Industry 4.0 & Digitalization

The traditional calibration chain doesn't meet Industry 4.0 needs!

- Machine-to-Machine decisions require reliable traceable sensors
- Users need in-situ, embedded measurements
- Remote operations need "zero chain" traceability for measurements
- Assurance will rely on automated digital handshakes

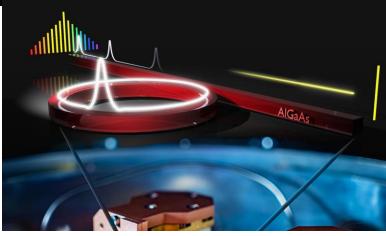
The SI redefinition untethers metrology

THE NEW SI IS BASED ON DEFINITIONS, NOT A PARTICULAR METHOD OR ARTIFACT

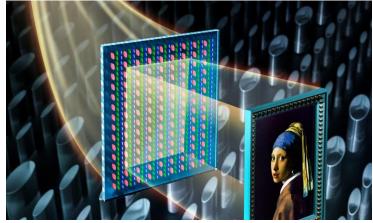
Base quantity	Base unit	Base quantity	Defining constan
Time	second	Frequency	$\Delta v (^{133}\text{Cs})_{h}$
Length	meter	Velocity	с
		Action	h
Mass	kilogram	Electric charge	е
		Heat capacity	k
Electric current	ampere	Amount of substance	N _A
Thermodynamic temperature	kelvin	Luminous intensity	$K_{\rm cd}$
Amount of substance	mole		
Luminous intensity	candela		

THE NEW SI PROVIDES FLEXIBILITY

A primary realization of mass can use:


- the electromagnet in the Kibble balance
- the capacitor in the Electrostatic Force Balance
- laser power reflecting from a mirror

As long as it shows a direct link to Planck's constant, it can be considered a primary realization.


Miniaturization and Integrated Photonics NIST

More tools in our toolbox :

- Wealth of knowledge and fabrication infrastructure from the semiconductor industry
- Integrated photonics
 - More capabilities on-chip More than Moore
 - Enabling for quantum devices
 - New materials systems a blessing & a curse
- Merging of materials & devices
 - Sometimes the material *is* the device

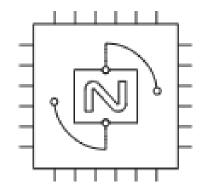
NIST Comb on a Chip / integrated nanooptics for optical clocks & quantum photonics

Meta-optics for arbitrary control of light

Quantum 1.0

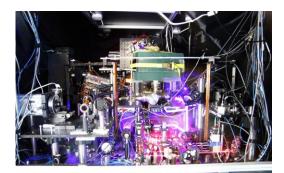
- Exploit the quantum mechanical properties of materials as found in nature
 - Eg: transistors exploit band structure properties of materials

Quantum 2.0


- Engineer new materials that exhibit the quantum properties we want
- Control nature at the single particle level
 - Eg: use entanglement to beat the noise limits of independent atoms, to create more accurate clocks

The quantum advantage:

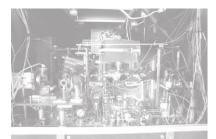
- Intrinsically accurate
- Lower noise limits for measurements and sensing


Introducing NIST on a Chip

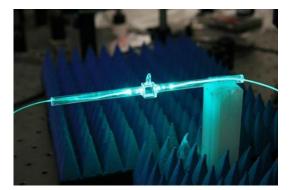
To shrink measurement equipment like this...

NIST Strontium atomic clock

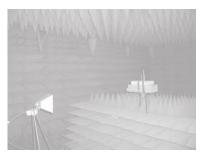
100 kW laser calorimeter (ca. 2012)


Horn antenna in an anechoic chamber

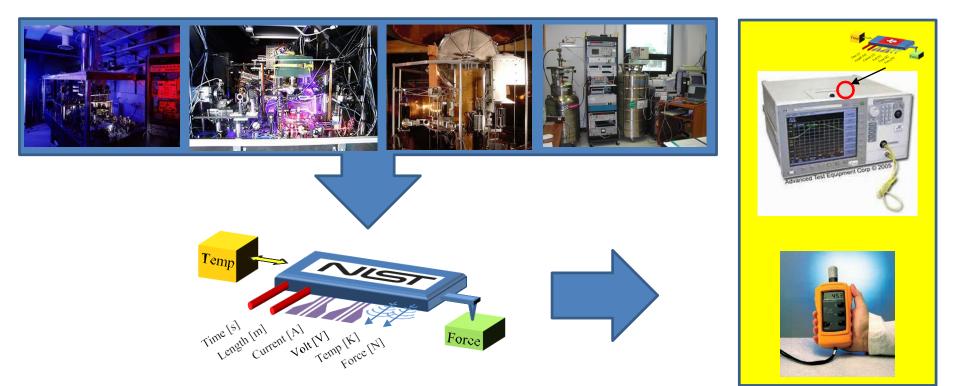
To devices like this...


Chip-scale atomic clock

NIST Strontium atomic clock

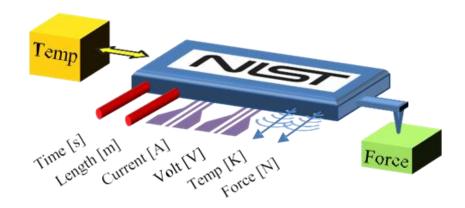

Optical power meter

Atoms as sensors



Horn antenna in an anechoic chamber

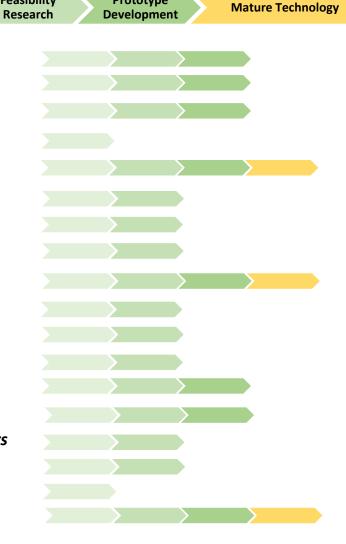
100 kW laser calorimeter (ca. 2012)



Measurement standards in chip-scale format

Measurement standards in chip-scale format

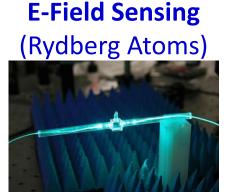
- **Embedded** directly in equipment, deploy where needed
- Flexible, useful, **manufacturable**, deployable
- Break the calibration chain
 - Never need to be returned to NIST for calibration
- Give the **right answer or no answer** at all
- Based on fundamental (quantum) properties of nature


Technology readiness

Magnetic & Electrical Fields Quantum Optics & Radiometry Thermodynamics Fluid Measurement & Control **Biochemical Sensing** Mass & Force **Dimensional Metrology** Time & Frequency Vacuum Current, Voltage & Resistance

Chip-scale Atomic Magnetometers SI-traceable E-field Metrology Photonic Power Metrology Microresonator Comb Technology **Electrical Substitution Bolometer Quantum Light Sources & Circuits** Switches for Waveform Metrology Photonic Thermometry **Microfluidics** Photonic Dosimetry Emergency Response Dosimetry **Optomechanical Sensors Cavity Optomechanics** Chip-scale Wavelength References Integrated Cold-Atom Clocks & Sensors **Cold-atom Vacuum Standard** Silicon Quantum Ampere Josephson Voltage Standard

Basic Research

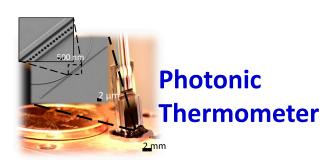


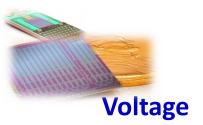
Prototype

Feasibility

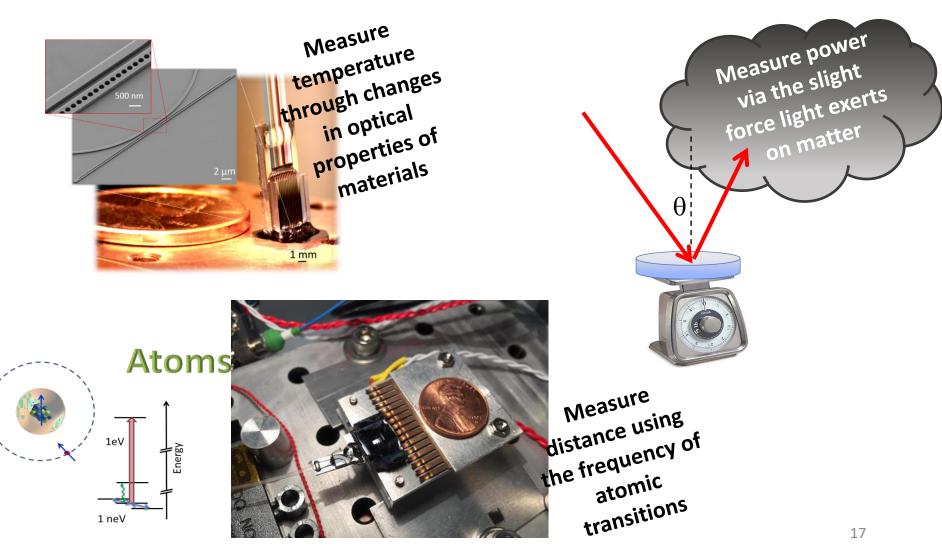
NIST on a Chip – example devices

Chip-scale Atomic Clock, Wavelength References

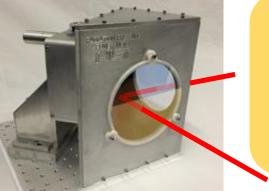



Laser Power

Resistance Graphene QHR

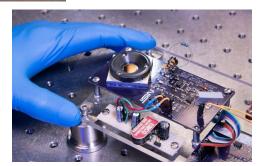


NIST


We don't just make things smaller...

...we measure things in completely new ways

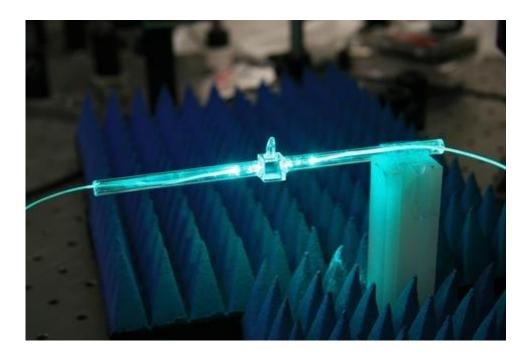
NOAC meets high energy laser metrology


Radiation pressure power meter "RPPM"

 Purpose: Free-space laser beams (up to 10 cm beam dia.)
Wavelength: 1070 nm – any wavelength with good mirrors
Power: 1 kW – above 100 kW 50 kW fully tested, 92 kW proof of principle, 200 kW planned
Uncertainty: 1.7 % (k=2)

"Beam Box"

Purpose: User-friendly operation (beams up to 7 cm dia.) Wavelength: 1070 nm – any wavelength with good mirrors Power: 1 kW – above 20 kW Uncertainty: ~ 2 % (k=2)

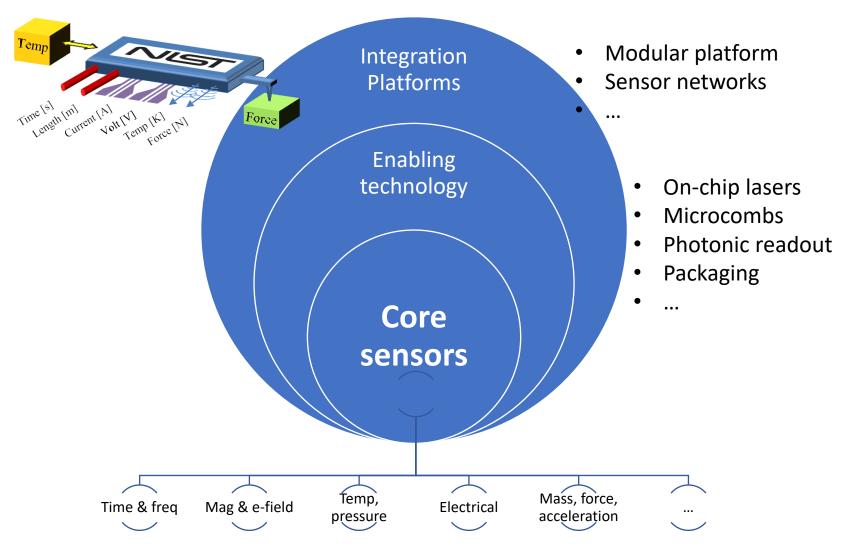


"Smart Mirror"

Purpose: Embeddable, in-situ power meter for applications in welding or additive manufacturing

Applications of Rydberg atom sensors

Fully characterize the RF electric field in one compact, room temperature vapor cell:


- Magnitude
- Phase
- Polarization

 High-power in-situ laser measurements

- Detecting the direction of incoming energy (angle of arrival)
- Atom-based receivers for phase-modulated signals
- RF imaging
- Voltage and current references

Power measurements and calibrations from 1 mW to 1MW, from UV to RF, with one traceability chain

NIST on a Chip – what it will take technically NIST

NIST on a Chip – what it will take culturally?

Success requires commercial partners

- Taking a measurement innovation to a commercial product is expensive!
- Commercial entities will be ambassadors for NMIs
- What continuing role will NMIs provide for traceability in the wild?

Adoption by the international metrology community

 How do we trust each other's measurements when they're embedded in products produced by commercial partners?

NIST on a Chip – what it will take culturally?

Success requires commercial partners

- Taking a measurement innovation to a commercial product is expensive!
- We'll have trust a commercial entity to carry our NIST brand. IMEKO TC25 Quantum
- How do we know it stays Measurement & Quantum Information

Adoption by the international metrology community

 How do we trust each other's measurements when they're embedded in products produced by commercial partners?

IMEKO TC25 – Quantum Measurement & Quantum Information

Why IMEKO TC25?

- The second quantum revolution is revolutionizing metrology
 - In our labs
 - Through widely-deployed chip-scale sensors
- There are many forums to discuss quantum *technology*, but not many that focus on quantum *metrology*
- And there's a lot to talk about!
 - What does traceability mean when its not *through* an NMI
 - How do we assure quality?
 - How do we provide mutual recognition?
 - The increasing of role of industry as a partner in dissemination

TC25: Growing the Quantum Economy through Metrology, Workforce, and Supply Chain Development

Panel: The changing role of the National Metrology Institute (NMI) - September 1, 2021

JT Janssen, Chief Scientist and Fellow, National Physical Laboratory (NPL), UK
Ivo Pietro Degiovanni, Chair, EURAMET European Metrology Networks –
Quantum Technologies (EMN-Q); INRIM (Italy)
James Olthoff, Associate Director of Laboratory Programs, NIST (US)
Jörn Stenger, Chair, EURAMET Board of Directors; Member of the Presidential
Board, MP, PTB (Germany)

Yuning Duan, Vice Director, NIM and member of CIPM (China)

KEY TAKE-AWAYS:

- NMI role hasn't ended with redefinition
- The role of the NMI hasn't changed but is *expanding*
 - to support the emerging tech
 - to cover measurement beyond traceability
 - more focus on education, less on services
 - To quantify and measure novel quantities like quantum light
- Even quantum standards can give wrong answers
- First to benefit from Quantum will be developing NMIs

Thank you for your attention!

A NIST Josephson voltage chip next to a penny.

https://www.nist.gov/noac

Barbara Goldstein, Program Manager bgoldstein@nist.gov cell: 240-994-0452

