

Adjustment of the Fundamental Constants by the CODATA TGFC

K. Pachucki, E. Tiesinga, and D. Newell 25th meeting of the CCU BIPM 21 – 23 September, 2021

Summary and Outline

- Memorandum of Understanding between CODATA/TGFC and the BIPM is in last stages of being approved.
- Impact of a redefinition of the second on the determination of the constants
- Highlights of the 2018 adjustments of fundamental constants.
- Some latest developments, since the previous deadline 31 Dec 2018.
- Deadline for data for the next adjustment is 31 December 2022.

Redefinition of the second

 D. Newell, member of our TGFC is the External Contributor to the CCTF Task Force group B for redefining the second.

 The TGFC is formulating a formal statement on the impact of redefining the second

In brief

- ✓ At this time, we do not anticipate any impact on the work of the task group.
- ✓ The relative uncertainties of the fundamental constants are significantly larger than that of the current time standard based on the atomic cesium clock.
- ✓ Caveat: This statement does not necessarily hold for the most accurate experimental data that enters the adjustment of the constants.

Highlights of the 2018 adjustment

• We are in the new regime where c, \hbar , e, and k are exact in SI.

 $_{\odot}$ Electro Magnetic constants μ_0 and ϵ_0 are no longer exact. In fact,

 $\mu_0 = 4\pi \ 10^{-7} \ x \ 1.000 \ 000 \ 000 \ 55(15)$

• The molar mass of 12-Carbon is no longer exact. In fact,

 $M(^{12}C) = 12 \times \left(1 - 3.5(3.0) \times 10^{-10}\right) \text{ g mol}^{-1}$

• We observe no ``problems'' after three years since their introduction.

Usage of the CODATA/TGFC fundamental constant website

Usage data of fundamental constants at http://physics.nist.gov/constants

✓ A larger symbol implies more requests

 $g_{\rm n}$ is earth's gravitational acceleration

Relevance for science

\odot The latest value of the fine- structure constant α [LKB, 2020] has a fractional unc. of 81 x 10^{-12}

- α reflects the strength of the Coulomb
 potential in natural units
- Value has improved exponentially over time.
- True for most constants. This
 indicates the liveliness of the field
 of fundamental constants and its
 relevance.

Persistent and marginal inconsistencies

• Newton's Gravitational constant

Uncontrolled systematic uncertainties among experiments

- Fine-structure constant determinations differ by more than 2 sigma
- \circ Data on mass of the proton is inconsistent by far more than 2 sigma
- The theoretical and experimental value for the g-factor of the muon are so inconsistent that we do not use the theory.

✓ In 2018 only one experiment was available.

Recent developments

• A new measurement of the *muon* magnetic moment became available

✓ It has similar uncertainty as the old experiment and is consistent with it.

Four values for the proton and deuteron mass have been reported

✓ Two are based on a novel method: spectroscopy of molecular HD⁺

- Two measurements of hydrogen and deuterium transition frequencies have been published.
- The theory for the hydrogen energy levels and that for the g-factor of the bound electron keep improving.
- The task group plans to add "new" constants to its purview in order to keep up with the newest research directions.

✓ That is, all electromagnetic moments of the lightest nuclei.

The deadline for data for the next adjustment is 31 December 2022.