

CCM.M-K8.2019 First CCM key comparison of kg realizations

METPA

M. Stock, BIPM CCM 20 May 2021

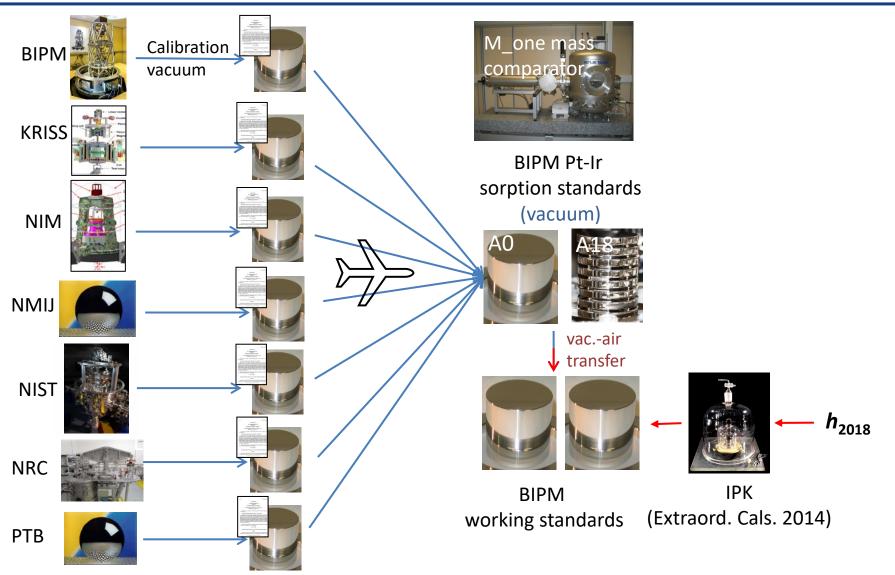
Key comparison of realizations of the kilogram

Mesures

Objectives	 test the consistency of realizations based on different realization experiments (Kibble balances, joule balance, XRCD method) contribute to the first consensus value for coordinated dissemination 			
Pilot laboratory	BIPM			
Conditions for participation	- <i>u(m</i>) < 200 μg at 1 kg (2 x 10 ⁻⁷) - peer reviewed publication incl. detailed uncertainty budget			
Participants	Kibble balances: Joule balance: XRCD method:	BIPM, KRISS, NIST, NRC NIM NMIJ, PTB		
Timeline Bureau International des	Technical protocol BIPM measurement last NMI results Draft A-1 Draft B Final Report	21 October 2019 s Nov 2019 – Feb 2020 29 May 2020 20 July 2020 12 October 2020 16 October 2020 (delay of 4 months due to covid-19)		

Each participants selected 1 or 2 travelling 1 kg standards:

- 1 Pt-Ir standard
- 1 optional standard (Pt-Ir, stainless steel, Si-sphere, none)

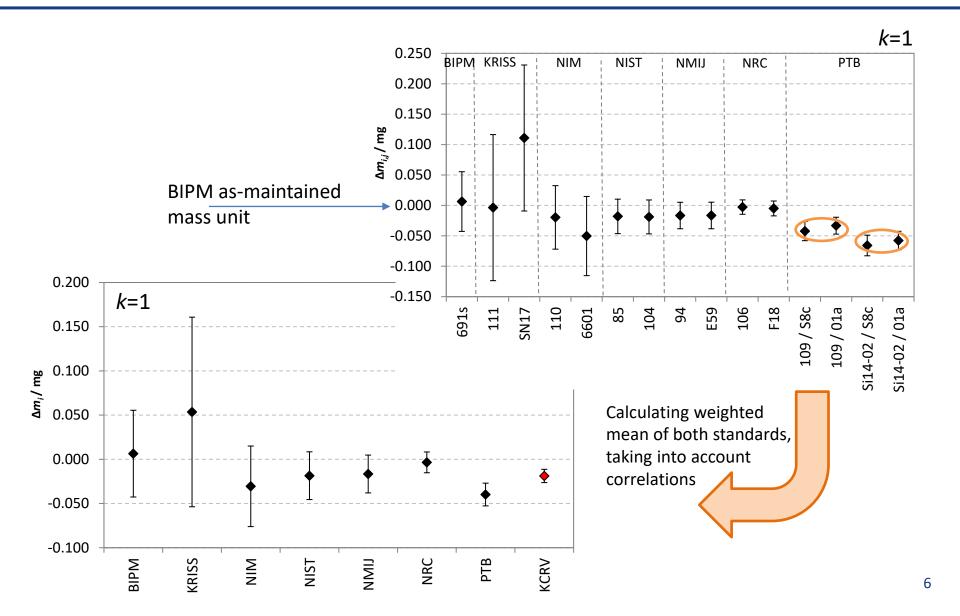

for calibration under vacuum using realization experiment (Kibble balance, joule balance, Avo sphere),

based on : $h = 6.626\ 070\ 15\ x\ 10^{-34}\ Js$ (revised SI)

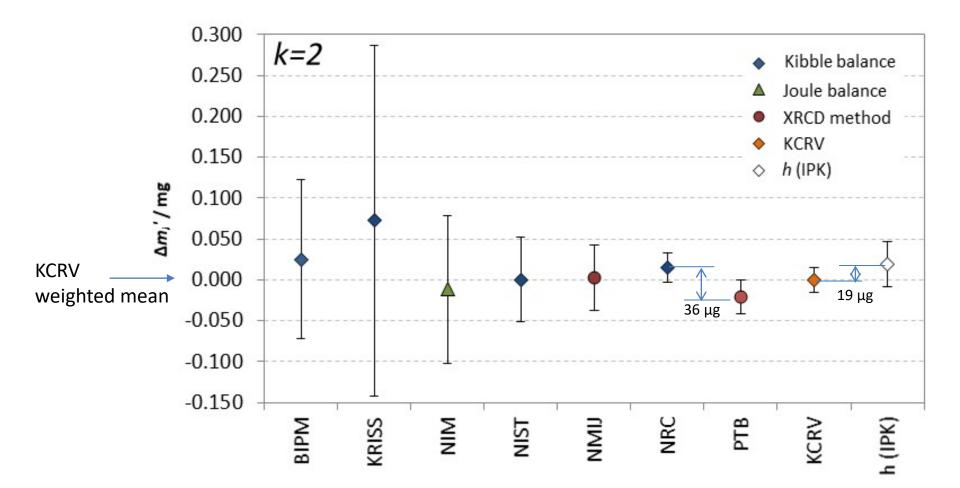
- NMIs sent travelling standards to BIPM
- At BIPM, all travelling standards were compared under vacuum with a BIPM reference standard
- The mass of the reference standard under vacuum is known in terms of BIPM asmaintained mass unit (traceable to h via the IPK)

Bureau
International des
Poids et
Mesures

CCM.M-K8.2019: principle of the comparison

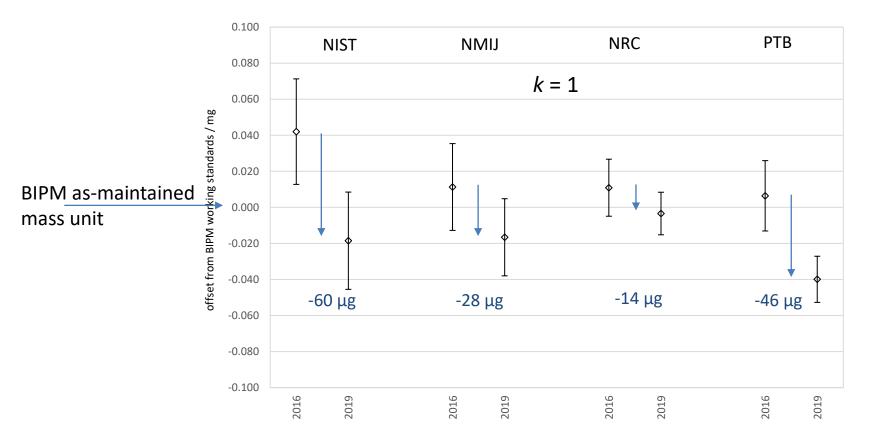


Institute	Identification of standard	Manufacturer	Туре	Estimated air- vacuum surface sorption / μg	Magnetic susceptibility	Magnetic polarization / μΤ
BIPM	691s	BIPM	Pt-Ir standard with small Pt wire	4	24 x 10 ⁻⁵	<0.02
KRISS	111	BIPM	Pt-Ir prototype		24 x 10 ⁻⁵	< 0.02
	SN17	Mettler Toledo	stainless steel cylinder	6.3	<0.002	<0.2
NIM	110	BIPM	Pt-Ir prototype		24 x 10 ⁻⁵	0
	6601	Changzhou Accurate Weight Co., China	stainless steel cylindrical	5.5	5.16 x 10 ⁻⁴	0.01
NIST	85	BIPM	Pt-Ir prototype	7.2	24 x 10 ⁻⁵	<0.02
	104	BIPM	Pt-Ir prototype	3.5	24 x 10 ⁻⁵	<0.02
NMIJ	94	BIPM	Pt-Ir prototype	5.7(3.3)	3 x 10 ⁻⁴	< 0.02
	E59	Stanton Instruments	Pt-Ir standard	11.6(3.3)	2 x 10 ⁻⁴	< 0.02
NRC	106	BIPM	Pt-Ir prototype	3.4	24 x 10 ⁻⁵	<0.02
	F18	BIPM	Stack of 8 Pt-Ir disks	12.2	24 x 10 ⁻⁵	<0.02
РТВ	109	BIPM	Pt-Ir prototype	2	< 0.001	< 0.1
	Si14-02	РТВ	Si sphere	20	-2.6 x 10 ⁻⁷	0


Bureau
International des
Poids et
Mesures

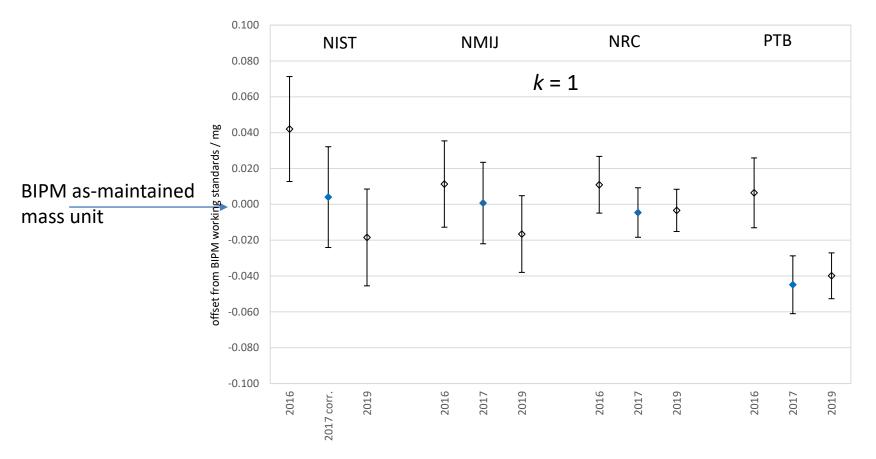
9 Pt-Ir prototypes1 Pt-Ir stack2 stainless steel standards1 Si sphere

CCM.M-K8.2019: Results


CCM.M-K8.2019: Results

standard uncertainty of weighted mean: 7.5 µg

Bureau
International des
Poids et
Mesures


CCM.R-kg-P1 (2016) compared to CCM.M-K.2019

kg realizations have changed with respect to BIPM mass unit from -14 μg to -60 μg.

Bureau
International des
Poids et
Mesures

Pilot Study CCM.R-kg-P1 (2016) compared to CCM.M-K.2019

Bureau
International des
Poids et
Mesures

blue points: recalculated from Pilot Study 2016 and change of NMI's value for h or N_A from 2016 (Pilot Study) to 2017 (CODATA fundamental constants adjustment

Summary and Conclusions

- All except two results agree within their standard uncertainties.
- The two results with the smallest uncertainties do not agree.
- The weighted mean of the seven results has an uncertainty of 7.5 μg.
- The weighted mean of the independent realizations agrees within the expanded uncertainty with the BIPM as-maintained mass unit, traceable to the IPK.
- Some of the independant kg realizations have changed significantly since 2016.
- Not all travelling standards could be returned due to the travel restrictions. Those who were returned showed mass changes between +2 μg and -8 μg (for a standard with bad surface): mass stability in general not an issue.

Recommendations for future key comparisons

- Follow same approach as for CCM.M-K8.2019
- Slightly less tight schedule
- Conditions for participation: $u < 200 \mu g$, peer-reviewed publication
- Travel restriction might make it difficult to use Pt-Ir prototypes, which are in general hand-carried. Use only stainless steel and Si-spheres?
- Keep the travelling standards at the BIPM until the NMI measurement report is available so that possible inconsistencies can be investigated
- The time for sending the NMI measurement report was in some cases very long (up to 6 months), it would be desirable that the reports are sent within 2 months.

June 2021	Call for participation		
June/July 2021	Agreement on technical protocol (similar to K8.2019)		
September – December 2021	Measurement of travelling standards at NMIs		
January – March 2022	Comparison measurements at BIPM		
April-May 2022	Stability checks at NMIs after return of standards		
June 2022	Draft A		
September 2022	Final report		

Thank you for your attention !

