
About

National Scientific Centre "Institute of Metrology", Kharkiv, Ukraine, Mass and related quantities for 18th meeting of CCM

Senior Researcher Irena Kolozinska

The history of National Scientific Centre "Institute of Metrology" began on 8 October 1901, when at the initiative of an outstanding scientist Dmitry Ivanovich Mendeleyev the first Ukrainian verification chamber was established in Kharkiv with the functions of verification and stamping the trade weights and measures.

National Scientific Centre "Institute of Metrology" 42 Myronosytska str., Kharkiv, 61002, Ukraine

The 1973 Least-Squares Adjustment of the Fundamental Constants*

E. Richard Cohen

Science Center, Rockwell International, Thousand Oaks, California 91360

and B. N. Taylo

Institute for Basic Standards, National Burraw of Standards, Washington, D.C. 20234

This paper is a summary of the 1973 least-squares adjustment of the fundamental physical constants carried out by the authors under the auspices of the CODATA Task Group on Fundamental Constants. The salient features of both the input data used and its detailed analysis by least-squares are given. Also included is the resulting set of best values of the constants which is to he recommended for international adoption by CODATA, a comparison of several of these values with those resulting from recent past adjustments, and a discussion of current problem areas in the fundamental constants field requiring additional research.

Key words: Data analysis: fundamental constants; least-squares adjustments; quantum electrodynamics.

> Page 684

1941, INFL Kibble and Hunt[#]

Contents

lossary of Symbols and Units 1. Introduction	664 665		 Ratio, kxu to angstrom, Λ Avogadro Constant From X-Rays, 	684
II. Review of Data	665		NAA ³	687
A. The More Precise Data	665		18. Electron Compton Wavelength,	001
 2e/h From the ac Josephson Effect. 	666		$\lambda_c = h/m_e c$	688
2. Differences in As-Maintained		C	The Less Precise OED Data	
Units of Voltage and a Value of		С.	19. Anomalous Magnetic Moment of	688
2e/h in BIPM Units	667		the Electron and Muon, a _e and a _µ .	600
Speed of Light in Vacuum, c	669		20. Ground State Hyperfine Splitting	688
4. Ratio of BIPM As-Maintained			in Hydrogen, Muonium, and Posi-	
Ohm to Absolute Ohm	671		tronium: Theory	
 Acceleration Due to Gravity, g 	673		21. Ratio of the Magnetic Moment and	689
g-Factors of the Free Electron and			Mass of the Muon to that of the	
Muon, g_{μ} and g_{μ}	673		Proton and Electron, μ_{μ}/μ_{μ} and	
7. Magnetic Moment of the Proton			m_{μ}/m_{e}	691
in Units of the Bohr Magneton,				0.41
μ_p/μ_B	673		22. Ground State Hyperfine Splitting	
8. Magnetic Moment of the Proton			in Muonium, Hydrogen, and Posi-	692
in H ₂ O in Units of the Bohr Mag-			tronium: Experiment	692
neton, μ'_{ν}/μ_{B}	674	n		698
9. Atomic Masses and Mass Ratios .	674	D.	Other Less Precise Quantities 24. Newtonian Gravitational Con-	090
10. Rydberg Constant for Infinite			 Newtonian Gravitational Con- stant, C 	698
Mass, R	676		25. Molar Volume of an Ideal Gas,	090
11. Summary of The More Precise			V _{av} , and the Molar Gas Constant,	
Data	677		R	700
B. The Less Precise WQED Data	677		26. Stefan-Boltzmann Constant, σ	701
12. Ratio of BIPM As-Maintained Am-			27. Summary of The Less Precise	101
pere to Absolute Ampere 13. Faraday Constant, F	677		Data	701
	679	III An	alysis of Stochastic Input Data	703
14. Proton Gyromagnetic Ratio, v.	080		The WOED Data	703
15. Magnetic Moment of the Proton in			28. Inconsistencies Among Data of the	100
Units of the Nuclear Magneton,			Same Kind	703
$\mu_{\nu}^{\prime}/\mu_{N}$	684		29. Inconsistencies Among Data of	100
Work partially supported by the U.S. National Bureau of Standards Office of S	tandard		Different Kinds	704
ference Data.		в	The OED Data	708
spright © 1973 by the U.S. Secretary of Commerce on behalf of the United Stat		<i>b</i> .	30. Inconsistencies Among the OED	
yright will be assigned to the American Institute of Physics and the American G Society, to whom all requests regarding reproduction should be addressed.	hemical		Data	708
	66	3	J. Phys. Chem. Ref. Data, Vol. 2, No.	4 1973

		TABLE 1	4.1. Summary of γ'_{ρ} de	terminations			
Publicati labora and a	tory ^a .	Ϋ́ν	7.	γ'_{ν}	Uncer- tainty (ppm)	Eq. N	iv.
			Low Field			· .	
		$10^8 {\rm s}^{-1} \cdot {\rm T}^{-1}_{\rm LAB}$	$10^8 s^{-1} \cdot T^{-1}_{BIPM}$	$10^8 \text{ s}^{-1} \cdot \text{T}^{-1}$	Bing		
1968. ET Hara et a	L d. ^b	2.6751384(107)	2.6751449(107)	2.6751156(1	07) 4.0	(14.)	n
1972, NE Olsen an	iS d Driscoll'	2.6751344(54)		2.6751370(5	4) 2.0	(14.5	2)
1965, NF Vigoureu		2.6751707(107)	2.651480(107)	2.6751187(1	07) 4.0	04.8	81 -
1971, VN Malyarev Students Shifrin [*]	skaya,	See text.		2.6751100(1	61) 6.0	(14.4	9
			High Field				_
		10" A1AB's kg-1	10" A	10 ⁴ A _{pass} · s ·)	(g ⁻¹		_
1966, Kh Yagola, 2 and Sepe	Zingerman,	2.675079(20) ^h	2.675101(20)	2.675130(20	0 7.4	(14.5	i)
1971, NF Kibble a	PL nd Hunt [#]	2.675075(43)		2.675075(43	6) 16	(14.6	D
Metrology ^D Refs.	, U.S.S.R. [0.1, 14.2].	Ref. [14.3]. 4 Refs.	apan; KhGNIIM = Kh [0.1, 14.4]. [*] Refs. [1 rms of A _{DIN} , the amper	4.5, 14.6]. ⁽ R	efs. [0.1, 14.7, 14.		e of
			High Fie	d			
	10° A	LAB'S'kg-1	10 ^e A _{name} ·s·k	r' 10	P'A _{BKs} ∙s∘kg	r'	
hGNHM Zingerman, petyi ¹	2.67	5079(20) ^h	2.675101(20)		2.675130(20)		7.4

* ETL = Electrotechnical Laboratory, Japan; KhGNIIM = Kharkov State Scientific Research Institute of Metrology, U.S.S.R.

2.675075(43)

18th meeting of CCM

May, 2021

16

(14.6)

2.675075(43)

REVIEWS OF MODERN PHYSICS

VOLUME 41. NUMBER 3

JULY 1969

381 382

385

392

393

396 396 399

400 401

Determination of e/h, Using Macroscopic Quantum Phase Coherence in Superconductors: Implications for Quantum Electrodynamics and the Fundamental Physical Constants

B. N. TAYLOR RCA Laboratories, Princeton, New Jersey 08540 W. H. PARKER* Department of Physics, University of California, Irvine, California 92650 D. N. LANGENBERG

Department of Physics and Laboratory for Research on the Structure of Matter,

University of Pennsylvania, Philadelphia, Pennsylvania 19104

The implications of the new determination of e/k using the ac Josephson effect in superconductors for both quantum electrodynamics (QED) and our knowledge of the fundamental physical constants are analyzed in detail. The implica-tions for QED are investigated by first deriving a value of the fine structure constant a from experimental input data which do not require the use of QED theory for their analysis. These include the Josephson-effect value of e/h, the Faraday constant, the gyromagnetic ratio of the proton, the magnetic moment of the proton in units of the nuclear magneton, the ratio of the ampere as maintained by the United States National Bureau of Standards to the absolute ampere, and certain accurately known auxiliary constants. This is done by critically reevaluating all of the experimental data presently available on these quantities and applying the standard techniques of a least squares adjustment, including tests for incompatibility. The value of a so obtained is then used to evaluate the theoretical expressions for the Lamb shift and fine structure splitting in hydrogen, deuterium, and ionized helium, the hyperfine splitting in hydrogen, muonium, and positronium, and the anomalous magnetic moment of the electron and muon. These theoretical values are compared positronium, and the anomalous magnetic moment of the electron and muon. Loss incorrectal values are compared with critically recumined experimental values, thus providing at est of QED in which a prior information from QED itself is not essential. The consequences of the new measurement of e/h for our present knowledge of the fundamental physical constants are demonstrated by deriving new "best" values for the fundamental constants from a critically selected subset of all the available data. In addition to providing a consistent set of constants, this analysis focuses attention on areas in which there remain important questions which require clarification. The experimental and theoretical work necessary for the resolution of these questions is discussed, with emphasis on way in which the study of quantum phase oherence effects in low temperature superfluid systems can make significant contributions.

CONTENTS



TABLE IV. Summary of some velocity-of-light measurements made since 1948 (MWI, microwave interferometer; IRRS, infrared rotational spectrum; FLRC, fixed-length resonant cavity; VLRC, variable-length resonant cavity). (Probable errors have been converted to standard deviations by multiplying by 1.48.) The errors quoted for the Kolibayev and Grosse geodimeter measurements are statistical only.

Year of publication	Author	Method		c (km/sec)
1967	Simkin, Lukin, Sikora, and Strelenskii	MWI	299	792.56±0.11
1967	Grosse	Geodimeter	299	792.5±0.05
1965	Kolibayev	Geodimeter	299	792.6±0.06
1950–1962	McNish (1962) summary of data of Bergstrand, USCGS, and others	Geodimeter	299	792.6±0.25
1958	Froome	MWI	299	792,50±0.10
1955	Florman ^a	RWI	299	795.1±1.5
1955	Plyler, Blaine, and Connor ^b	IRRS	299	792±6
1954	Froome [revised, Froome (1958)]	MWI	299	792.75±0.30
1952	Froome	MWI (first instrument)	299	792.6±0.7
1951	Aslakson ^a	Shoran	299	794.2±2.8
1950	Bold	FLRC	299	789.3±1.0
1950	Essen*	VLRC	299	792.5±1.5
1949	Aslakson	Shoran	299	792.4±3.6
1948	Essen and Gordon-Smitht	FLRC	299	792±4.5

⁶ E. F. Florman, J. Res. Natl. Bur. Std. 54, 335 (1955).
^b E. K. Piyer, L. R. Blaine, and W. S. Connor, J. Opt. Soc. Am. 45, 102

Strelenskii

(1955), ⁶C. I. Aslakson, Trans. Am. Geophys. Union 32, 813 (1951); 30, 475 ⁶C. I. Aslakson, Trans. 144, 711 (1949).

Author

Simkin, Lukin, Sikora, and

Method

MWI

⁴ K. Bol, Phys. Rev. 80, 298 (1950).
 ^e L. Essen, Proc. Roy. Soc. (London) A204, 260 (1950).
 ⁴ L. Essen and A. C. Gordon-Smith, Proc. Roy. Soc. (London) A194,

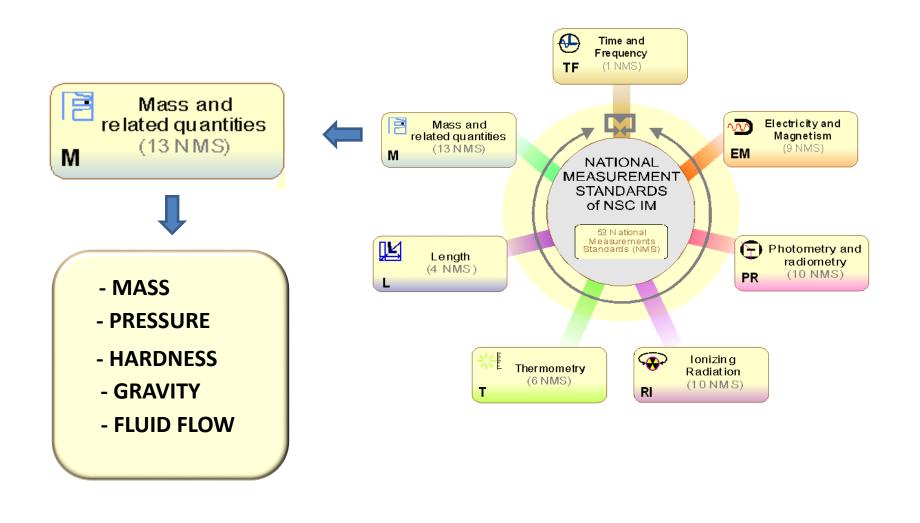
(1949); Nature 168, 505 (1951); 164, 711 (1949).

Year of publication

1967

348 (1948).

May, 2021


(km/sec)

299 792.56 \pm 0.11

National Scientific Centre "Institute of Metrology"

53 National Measurement Standards in NSC "IM"

NETU M-07-2020 (created in 1997)

Range: from 1 mg to 50 kg

BURE	AU INTERNATIONAL DES PO Pavillon de Breteuil, F - 92312 Sè	DIDS ET MESURES
No. 48		23 July 2019
	CERTIFICATE	
	for a 1 kg mass standard, des	ignated
	"DSTU 02-01-09/1kg"	
	belonging to the National Scientific Centre "Institute (NSC) Kharkiv, Ukraine	of Metrology"
	(First BIPM calibration)

Mass comparators from 1 mg to 50 kg

Mass comparator for mg range

Installation of hydrostatic weighing for determining the volume of weights

PRESSURE

DETU 04-03-01 (established in 2001) Gauge pressure: 50 kPa – 10 MPa Uncertainty: 10 ppm Pressure transmitting medium: aviation kerosene Principle: Pressure balance

> **NETU M-01-2018** (created in 2017) Gauge pressure: 10 MPa – 400 MPa Uncertainty: (22 – 72) ppm Pressure transmitting medium: oil Principle: Pressure balance

NETU M-03-2019 (created in 1997, improved in 2018) Gauge pressure: minus 0,1 MPa – 7 MPa Absolute pressure: 270 Pa – 7 MPa Uncertainty: (14 – 26) ppm Pressure transmitting medium: gas Principle: Pressure balance

HARDNESS

NETU M-10-2021 Rockwell, Super Rockwell

Metrological characteristics

		(70-94) HR15N,
	(70-93) HRA,	(40-86) HR30N,
Danga	(25-100) HRBW,	(20-78) HR45N,
Range		(62-93) HR15TW
	(20-67) HRC	(15-82) HR30TW,
		(10-72) HR45TW
u _A	0,08 HR	0,16 HR
u _B	0,11 HR	0,21 HR

U 0,26 HR 0,52 HR

DETU 02-03-99 Brinell, Vickers

Metrological characteristics

	from 8 HB to 450 HB	from 8 HV to 2000 HV		
Range	from 95 HBW to 650 HBW	from 9,8 H to 19,6 H	from 49,0 H to 980,7 H	
u _A	1·10 ⁻³	2·10 ⁻³	1·10 ⁻³	
u _B	1,25·10 ⁻³	2,5·10 ⁻³	1,25·10 ⁻³	
U	3,2·10 ⁻³	6,4·10 ⁻³	3,2·10 ⁻³	

18th meeting of CCM

May, 2021

Since 2012, research has been carried out: "Development and research of a ballistic laser gravimeter based on precision mobile devices using linear pulse electromechanical transducers to measure the absolute value of free fall acceleration", (Patent № 96904, Ukraine; Patent № 111307, Ukraine; № 2011128560, Russia).

In 2018, a new research work was started: "Development and research of absolute gravimeter based on precision atomic interferometry of ultracold atoms with laser cooling of atoms and their spatial localization."

National Scientific Centre "Institute of Metrology"

DETU 03-04-04

State primary standard unit of volume flow rate in the range from $2.8 \cdot 10^{-4}$ to $2.8 \cdot 10^{-2}$ m³/s, mass flow rate in the range from $2.8 \cdot 10^{-1}$ to 28 kg/s, the volume of liquid in the range from 0.1 to 3.0 m³ and the mass of liquid in the range from 100.0 to 3000 kg.

Metrological characteristics

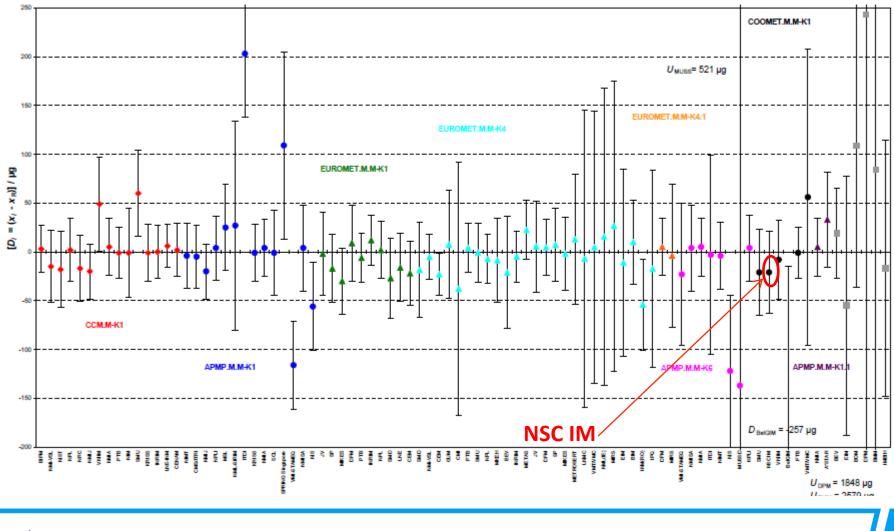
C	from 2,8·10 ⁻⁴ m ³ /s	from 0,1 m ³
Dango	to 2,8·10 ⁻² m³/s	to 3,0 m ³
Range	from 2,8-10 ⁻¹ kg/s	from 100,0 kg
	to 28 kg/s	to 3000 kg
u _A	2·10 ⁻⁵	2 •10 ⁻⁵
u _B	3,7·10 ⁻⁵	1,2·10 ⁻⁴
U	8,4·10 ⁻⁵	24,2·10 ⁻⁵

DETU 03-03-13

State primary standard of unit volume of liquid

Metrological characteristics

Range	from 1·10 ⁻³ m ³ to 1·10 ⁻¹ m ³ from 5·10 ⁻¹ m ³ to 1 m ³	from 1·10 ⁻¹ m ³ (including) to 5·10 ⁻¹ m ³ (including)
u _A	3·10 ⁻⁵	1,5·10 ⁻⁵
u _B	2,5·10 ⁻⁵	1,9·10 ⁻⁵
U	8·10 ⁻⁵	5·10 ⁻⁵

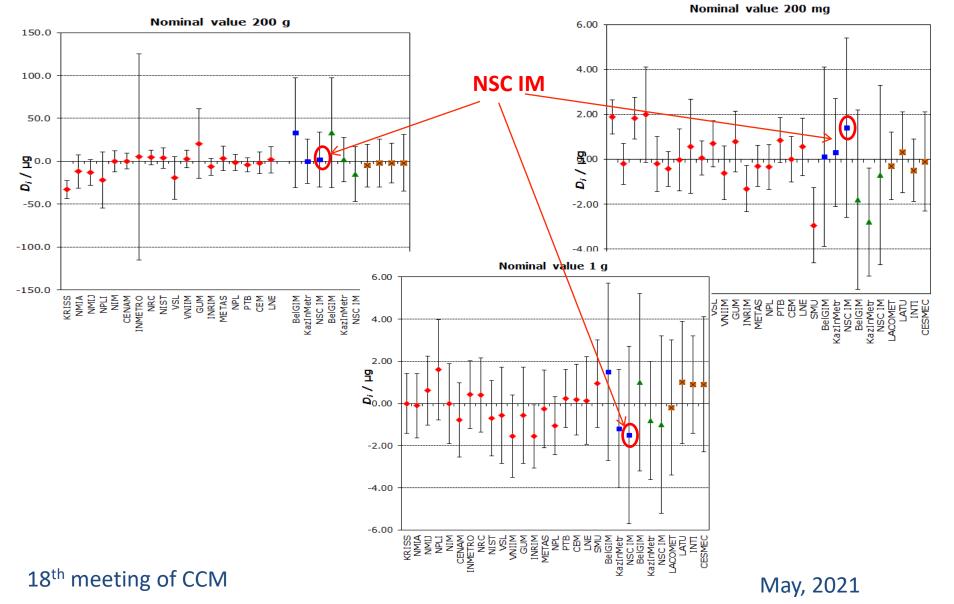

Degrees of equivalence

CCM.M-K1, APMP.M.M-K1, K1.1, EUROMET.M.M-K1, -K4, -K4.1, K4.2, APMP.M.M-K6 and COOMET.M.M-K1: 1 kg

Degrees of equivalence: D_i and expanded uncertainty U_i

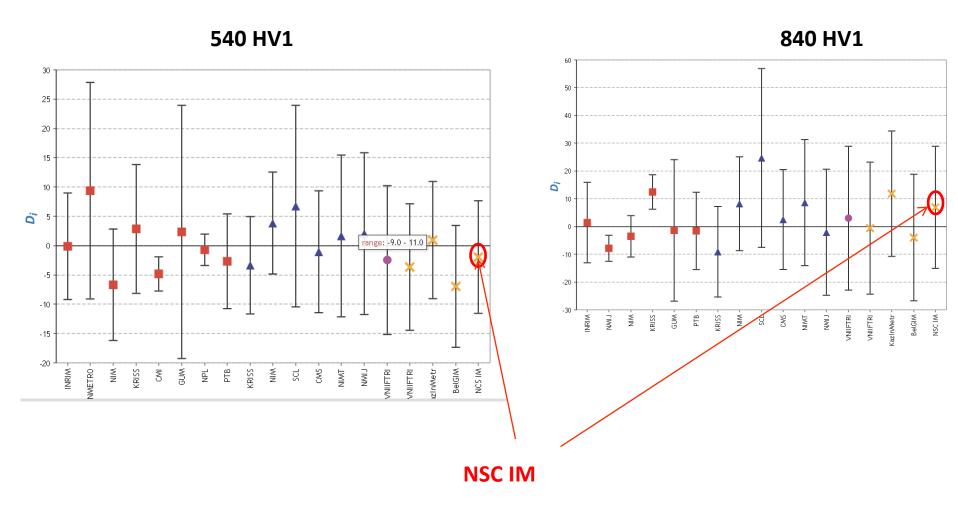
EURAMET.M.M-K4.2

National Scientific Centre "Institute of Metrology"



18th meeting of CCM

May, 2021


Degrees of equivalence COOMET.M.M-K5

Degrees of equivalence

COOMET.M.H-K1

18th meeting of CCM

May, 2021

Number	Description	Status	Role
COOMET.M.M-K1	Comparison of mass standards Stainless steel kilogram standards	Approved for equivalence	Participant
COOMET.M.M-K5	Comparison of mass standards Mass: 200 mg, 1 g, 50 g, 200 g and 2 kg	Approved for equivalence	Participant
COOMET.M.M-S2	Supplementary bilateral comparison in the field of mass measurements Mass of 200 mg, 1g, 50 g, 200 g and 1 kg	Report in progress, draft A	Pilot
COOMET.M.M-S5	Comparison of mass standards Mass: 50 mg, 50 g, 1 kg and 2 kg	Measurements completed	Pilot
EURAMET.M.M-S9	Sub-milligram mass comparison Mass: 0.5 mg, 0.2 mg, 0.2D mg, 0.1 mg and 0.05 mg	Approved	Participant

Number	Description	Status	Role
	Comparison of standards of gauge	Report in	
COOMET.M.P-S1	pressure	progress,	Pilot
	Gauge pressure: 1 MPa to 10 MPa	draft A	
	Hardness (Vickers HV1, HV5, HV30)	Approved for	Participant
COOMET.M.H-K1	Hardness levels: 450 HV, 750 HV	equivalence	Farticipant
	Comparison of national hardness		
	standards of Superficial-Rockwell scales		
	Hardness: Superficial-Rockwell 90-94	Measurements	Dilat
COOMET.M.H-S3	HR15N, 40-50 HR30N, 76-84 HR30N,	completed	Pilot
	43-54 HR45N, 45-55 HR30TW, 70-82		
	HR30TW		
	Brinell Hardness		
COOMET.M.H-S4	Hardness levels: 100 HBW, 200 HBW, 400	Approved	Participant
	HBW		
	Key comparison of national hardness		
	standards of Rockwell scales		
	Hardness: Rockwell A: 80 - 86 HRA;	Approved	Douticipont
COOMET.M.H-S5	Rockwell B: 80 - 100HRBW; Rockwell C: 20	Approved	Participant
	- 30 HRC, 40 - 50 HRC, 60 - 70 HRC. 25		
	HRC, 45 HRC, 65 HRC		

Number	Description	Status	Role
COOMET.M.G-S1	Gravitational acceleration Free-fall acceleration at a nominal value of 9.81 m/s ²	ation at a nominal Approved	
COOMET.M.FF-S6	Comparison of the determination of static volume of reference metallic tanks Volume of liquid: 5 L, 10 L and 20 L	Measurements in progress	Pilot
COOMET.M.FF-S7	Liquid volume Volume at 10 μL and 1000 μL	Measurements in progress	Participant
COOMET.M.FF-S10	Water flow and mass rate Flow rate From 0.1 t/h to 45 t/h	Measurements in progress	Participant

Number	Description	Status	Role
COOMET.M.P-S1	Comparison of standards of gauge	Report in	Pilot
	pressure	progress, draft	
	Gauge pressure: 1 MPa to 10 MPa	А	
COOMET.M.H-K1	Hardness (Vickers HV1, HV5, HV30)	Approved for	Participant
	Hardness levels: 450 HV, 750 HV	equivalence	
COOMET.M.H-S3	Comparison of national hardness	Measurements	Pilot
	standards of Superficial-Rockwell scales	completed	
	Hardness: Superficial-Rockwell 90-94		
	HR15N, 40-50 HR30N, 76-84 HR30N,		
	43-54 HR45N, 45-55 HR30TW, 70-82		
	HR30TW		
	Brinell Hardness	Approved	Participant
COOMET.M.H-S4	Hardness levels: 100 HBW, 200 HBW, 400		
	HBW		
	Key comparison of national hardness	Approved	Participant
COOMET.M.H-S5	standards of Rockwell scales		
	Hardness: Rockwell A: 80 - 86 HRA;		
	Rockwell B: 80 - 100HRBW; Rockwell C: 20		
	- 30 HRC, 40 - 50 HRC, 60 - 70 HRC. 25		
	HRC, 45 HRC, 65 HRC		

CMCs in KCDB

MASS

Quantity	Instrument or Artifact	Measurement method	Measurand Minimum value	Measurand Maximum value	Unit	Expanded uncertainty Minimum value	Expanded uncertainty Maximum value	Unit
Mass	Mass standard	Subdivision method	1.0	100.0	mg	2.0	4.0	μg
Mass	Mass standard	Subdivision method	0.1	1.0	g	4.0	4.2	μg
Mass	Mass standard	Direct comparison in air	1.0	10.0	g	4.2	6.5	μg
Mass	Mass standard	Direct comparison in air	10.0	100.0	g	6.5	31.0	μg
Mass	Mass standard	Direct comparison in air	0.1	1.0	kg	31.0	45.0	μg

GRAVITY

Quantity	Instrument or Artifact	Measurement method	Measurand Minimum value	Measurand Maximum value	Unit	Expanded uncertainty	Unit
Gravity (free fall) acceleration	On (stable) site	Absolute measurement	9.77	9.85	m/s²	2.08E-7	m/s²

HARDNESS

Quantity	Instrument or Artifact	Measurement method	Parameters	Unit	Expanded uncertainty	Unit
Hardness	Primary hardness standard block	Vickers	Total force : for 49.03 N to 294.2 N	(dimensionless)	1.5	%

18th meeting of CCM

RESEARCH PROJECTS

Project 19RPT02, "Improvement of the realisation of the mass scale" (EMPIR [1] Call 2019 – Research Potential)

The project will facilitate cooperation leading to improved calibration capabilities at participating, less-developed, NMIs. It will also produce draft EURAMET calibration guidance applicable to the new definition of the kilogram, backed by software, training tools and maintenance methods. This will provide opportunities for upgraded research activities for which mass measurement accuracy is critical

- Research of additional factors in the measurement equation and the uncertainty budget of the results of hardness measurements
- Development and research of a ballistic laser gravimeter based on precision mobile devices using linear pulse electromechanical transducers to measure the absolute value of gravitational acceleration

Prospective works:

Development and advancement of an absolute gravimeter based on precision atomic interferometry of ultracold atoms with laser cooling of atoms and space localization

SOME PUBLICATIONS

Z. Zelenka, S. Alisic, B. Stoilkovska, R. Hanrahan, I.Kolozinska, G.Popa, D. Pantić, V.Dikov, J.Zůda, M.Coenegrachts, A.Malengo. Improvement of the Realisation of the Mass Scale. ACTA IMEKO

G. Narodnytskyi, P. Neyezhmakov. Measures to ensure the necessary accuracy of accounting petroleum products in the tanks. Ukrainian Metrological Journal. 2020. No. 4. P. 16–21. DOI: https://doi.org/10.24027/2306-7039.4.2020.224266.

A. Aslanyan, E. Aslanyan, E. Obozniy, E. Galat, Ya. Dovzhenko, M. Zhamanbalin. RMO Brinell suplementary comparison COOMET M.H.-S4. Metrologia 2020 57 Tech. Suppl. 07003.

O. Botsiura, O. Patsenko, I. Zakharov. Accounting for the kurtoses of input quantities in the procedure of evaluating measurement uncertainty using the example of weight calibration. Ukrainian Metrological Journal. 2020. No. 3. P. 36–41. DOI: https://doi.org/10.24027/2306-7039.3.2020.216839.

pavel.neyezmakov@metology.kharkov.ua

irina.kolozinskaya@metology.kharkov.ua

18th meeting of CCM