ITRI Industrial Technology Research Institute

Report on Activities and Measurement Capabilities in Mass and Related Quantities of CMS/ITRI

Dr. Sheng-Jui Chen

Center for Measurement Standards

18th meeting of the CCM 20-21, May, 2021

©ITRI. 工業技術研究院著作

Contents

- Introduction
- Metrology for Mass and Related Quantities at NML/CMS
- Research Projects
- Technical Services
- Participation in International Standardized Committees
- Future works

Industrial Technology Research Institute

a nonprofit R&D organization engaging in applied research and technical services

2030 Technology Strategy & Roadmap

Intelligentization Enabling Technologies for boosting multiple applications

Center for Measurement Standards

Organization chart of CMS/ITRI

- ITRI's largest linking center
- One of the DIs for Chinese Taipei's participation in CIPM MRA
- National Measurement Laboratory (NML) Project - Establishing and maintaining national measurement standards in area of AUV, EM, L, M, PR, QM and T

Center for Measurement Standards

Fluid Flow Standards

Standard and calibration system	Measurement range	Туре
F01 : Large Water Flow Calibration System	(10 to 8000) L/min	Primary standard
F02 : Small Water Flow Calibration System	(2 to 700) L/min	Primary standard
F03 : Low-Viscosity Oil Flow Calibration System	(60 to 6000) L/min @ 2.6 mm²/s to 4.8 mm²/s	Primary standard
F04 : High-Viscosity Oil Flow Calibration System	(60 to 6000) L/min @ 37 mm²/s to 150 mm²/s	Primary standard
F05 : High Pressure Gas Flow Calibration System	(15 to 12000) Sm ³ /h	Primary standard
F06 : Low Pressure Gas Flow Calibration System - Piston Prover	(0.002 to 24) L/min	Primary standard
F08 : Low Pressure Gas Flow Calibration System – (Bell Prover:600 L)	(20 to 1000) L/min	Primary standard
F10 : Air Speed Calibration System	(0.5 to 25) m/s	Primary standard
F11: Micro Flow Calibration System	0.1 µL/min to 10 mL/min	Primary standard
F12 : Low Pressure Gas Flow Calibration System (PVTt) – PVTt Method	0.01 L/min to 300 L/min	Primary standard

Water Flow and Oil Flow Calibration System

Low Pressure Gas System

High Pressure Gas System

Air Speed Calibration System

Micro Flow Calibration System

Gravimetry Standards

Absolute gravity measurements system

- CMS has two FG5 (#224 and #231) absolute gravimeters as national standard of the acceleration of free fall
- Standard uncertainty is 20 nm/s²

Relative Gravimeter

- LACOSTE-ROMBERG gravity meters #1184 and #1200
- Standard uncertainty is 100 nm/s²

Superconducting gravimetry

- High quality continuously recording gravimeters
- Sensitivity of the instrument reaches the level of 10^{-12} nm/s²

Hardness Standards

Rockwell Hardness Calibration System

The system provides calibration for hardness with a measurement range of 29.4 N to 1470 N, the uncertainties are as follows,

0.30 HRA 0.40 HRB 0.30 HRC

Vickers Hardness Calibration System

The system provides calibration for hardness with a measurement range of 9.8 N to 294.2 N, the relative uncertainty is 3.0 %.

Micro Vickers Hardness Calibration System

The system provides calibration for hardness with a measurement range of 489.46 mN to 9789.14 mN, the relative uncertainty is 6.7 %.

Nanoindentation Calibration System

The system provides calibration for hardness and reduced modulus with a measurement range of 0.2 mN to 10 mN, the relative uncertainty is 2.4 % and 3.1 %, respectively

Pressure Standards

Gas pressure calibration system

The system provides calibration for gas pressure gauges with the measurement range from **1 Pa to 10 kPa** with the uncertainty of **0.25 Pa** and the measurement range from **5 kPa to 7000 kPa** with relative uncertainty of **3.4E-05 to 4.2E-05**.

Hydraulic pressure calibration system

The system provides calibration for liquid pressure gauges with a measurement range from **2.8 MPa to 280 MPa** with the relative uncertainty of **3.3E-05 to 7.4E-05**.

Vacuum Standards

Vacuum Gauge Comparative Calibration System

The system provides calibration for vacuum gauges with a measurement range of **0.1 Pa to 100 kPa**, the relative uncertainty is **1.8 %**.

Dynamic Expansion Vacuum Calibration System

The system provides calibration for vacuum gauges with a measurement range of 5×10^{-6} Pa to 8.6×10^{-3} Pa, the relative uncertainty is between 4 % to 9 %.

Research & Development

- New kg realization via XRCD method
- Development of Optical Pressure Standard
- Micro-force/small mass standard
- Natural gas metrological research

New kg realization via XRCD method

New kg realization via XRCD method

• Vacuum-air transfer the mass from the Si-sphere to the stainless steel kg standard

$$m_{\rm ss,air} = m_{\rm ss,vac} + A_{\rm ss} \cdot (s) \longrightarrow s = \frac{\Delta m_{\rm vac} - \Delta m_{\rm air}}{\Delta A}$$

Sorption coefficient *s* estimated by measuring the mass difference of sorption artefacts in air and vacuum with vacuum mass comparator.

Vacuum mass comparator

	$\Delta m_{\rm vac}$	Δm_{air}	ΔA	S
	(mg)	(mg)	(cm ²)	$(\mu g/cm^2)$
10 disks	-0.1865	-0.1717	434.4310	0.0342

Development of Optical Pressure Standard

Fabry-Perot Interferometer for refractive index measurement

Microforce/small mass Standard

Electrostatic Sensing and Actuating Force Balance

- Range: $\leq 200 \,\mu\text{N}$
- Uncertainty: $\sqrt{(4.7 \times 10^{-9})^2 + (1.4 \times 10^{-4} \Delta f_e)^2}$ N

Natural gas metrological research

Natural Gas Metering and Industry Status of Taiwan

Participation in International Standardized Committees

• CCM

- Member of CCM-WGM
- Observer of CCM-WGPV
- APMP Asia Pacific Metrology Programme
 - Full Member since 1992
 - Technical Committee for Mass and Related Quantities: Member, Chair (2019 ~ 2021)
 - Medical Metrology Focus Group: Member, Chair (2015 ~ 2019)
- **APMF** Asia-Pacific Measurement Forum on Mechanical Quantities
 - International Program Committee Member
 - Hosting Organization (APMF 2013)
- IMEKO TC16 (Pressure and Vacuum Measurement)
 - Member

Future works

- Commissioning the XRF/XPS surface analysis system
 - XPS is under test and final integration
 - Contribute to the future kg realization comparisons
- Dynamic Measurements
 - Development of dynamic force/torque standard under way
 - Other mechanical quantities under evaluation
- Establishing quantum based optical pressure standard

