Report on the work programme of the BIPM electricity laboratories 2019-2021

CCEM meeting 14-15 April 2021

BIPM ongoing comparisons

On-site comparisons of quantum standards, using transportable BIPM quantum standards

BIPM.EM-K10.a/b	JVS on-site comparison: 1.018 V and 10 V
BIPM.EM-K12	QHR on-site comparison: $R_{\rm H}(2)/100$ Ω, 100 Ω/1 Ω, 10 kΩ/100 Ω

Bilateral comparisons using conventional BIPM transfer standards

BIPM.EM-K11.a/b	voltage: 1.018 V and 10 V
BIPM.EM-K13.a/b	resistance: 1 Ω and 10 k Ω
BIPM.EM-K14.a/b	capacitance: 10 pF and 100 pF at 1592 Hz and/or 1000 Hz

BIPM.EM-K10: on-site Josephson comparison (1.018 V and 10 V)

- Comparison with MIKES (10 V), Finland, in Oct. 2019
 under review by WGLF chair
- Comparison planned with BIM, Bulgaria, in 2020: cancelled

Future on-site comparison using PJVSs at ac – Possible measurement scheme using differential sampling

Challenges for an on-site comparison protocol for JVSs at low-frequency ac (<1 kHz)

1- Protocol should be applicable over a large range of existing setups:

- turn-key setups with limited flexibility designed for calibration of commercial calibrators;
- versatile systems designed in-house by NMIs;

2- As a consequence, the BIPM system must be adaptable to different configurations;

3- BIPM must propose the participant to measure a transfer standard capable of better metrological characteristics than traditional commercial AC sources;

4- Considering the large number of possibilities, the protocol must ensure that the comparison results are comparable between participants.

Possible comparison schemes

- Direct comparison of two approximated stepwise sinewaves : 'fast DC comparison';
- Differential sampling measurements using a commercial calibrator as a transfer standard (for turn-key systems);
- Differential sampling measurements of a "BIPM" transfer standard with better metrological capabilities (for NMI-designed systems).
- Several pilot studies and collaborations carried out with NMIs:
 - 2015: NMIJ
 - 2016: CENAM
 - ✤ 2017: PTB
 - 2018: NMIA, VNIIM, KRISS
 - 2019: NMIA, VNIIM, KRISS, PTB
 - 2020: PTB (interrupted)

Bureau

- International des
 - Mesures

At WGLF meeting support group created: CENAM, KRISS, METAS, MIKES, NMIA, NMIJ, NPL, NRC, PTB

« how to create maximum impact »

On-site quantum Hall resistance key comparisons (BIPM.EM-K12)

- To verify coherence of primary resistance standards by comparing quantum Hall effect based standards of the NMIs with that of the BIPM
- Resumed in 2013 at the request of the CCEM
- Programme now fully operational with 2-3 comparisons per year

On-site quantum Hall resistance key comparisons (BIPM.EM-K12)

2013:	РТВ
2015:	VSL
2017:	CMI, METAS
2018:	NRC, NMIJ
2019:	A*STAR, NIM, KRISS

blanned	
2021:	INMETRO (??)
2022:	LNE, INRIM

interested: NIST, NMIA, RISE, MSL, UME, CEM

On-site quantum Hall resistance key comparisons (BIPM.EM-K12)

Bilateral comparisons using transfer standards

Calibrations

Test of QHR based on graphene (1): Samples

Two commercial samples (Graphene Waves) were received for testing \rightarrow selection of one of them for purchase and further characterization

These samples are based on the fabrication technology developped at NIST \rightarrow Epitaxial graphene growth on SiC

 \Rightarrow These devices allow a controllable and reversible tunability of carrier density by annealing in vacuum (up to 90-100°C, typically).

Sample #1

Sample #2

Width: 1600 µm Length: 3600 µm Gap between voltage pads: 400µm

 $$B_1\ B_2\ B_3\ B_4\ B_5\ B_6$$ Width: 500 μm Length: 2800 μm Gap between voltage pads: 400 μm

Design of a specific cryo-probe allowing carrier density tuning by vacuum annealing directly in the sample chamber of the cryostat prior measurements

Test of QHR based on graphene (2): Carrier density tuning process

Controllable tuning is possible by annealing the sample in vacuum to the targeted carrier density while monitoring the longitudinal resistivity *Rxx*.

Variation of the value of *Rxx* along the warm up & annealing process

- \Rightarrow Tuning process rather easy to implement but requires experience to stop the annealing at exactly the targeted Rxx
- \Rightarrow After tuning, the samples have shown to be reliable for a typical measurement period of at least one to two weeks
- \Rightarrow The tuning process has shown to be reversible after exposition of the sample to air during at least one day

Test of QHR based on graphene (3): comparison to a GaAs reference sample

Comparison measurements between graphene and reference GaAs samples were performed using a 100 Ω transfer standard

 \Rightarrow In the actual operating conditions, dispersion is observed on the measured difference depending on the voltage terminal pair used

 \Rightarrow The results are still dispersed at 1.4 K and 5T but less for higher flux density.

 \Rightarrow Information from Graphene Waves indicate that less dispersed results can be obtained for higher current values (\geq 80 μ A).

14

Calculable capacitor

The **assembling** of the calculable capacitor (CC) has been resumed recently.

- Alignment of the main electrode bars:
- ⇒ After relocation of the CC in a new room a few years ago, its re-assembling was stopped close the end of the alignment process
- \Rightarrow A first step in resuming assembly was then to check the actual alignment and improve it as necessary
- ⇒ First results show that the alignment of the bars is similar to what was measured few years ago; however, the alignment must still be improved to obtain a better final uncertainty on the realization of the farad
- ⇒ Improving alignment require the improvement of the capacitive probe or the design of a new probe dedicated to the measurement of the adjacent main bar gaps (poor repeatability with that currently used)

International des Poids et Mesures

- Relocation of the laser in the CC room:
- \Rightarrow The laser has recently been relocated in CC lab and its frequency stabilization electronics improved
- \Rightarrow The new electronics is based on that developped for the watt balance experiment; it has been implemented and is now operational

BIPM Kibble balance: measurement & improvement

Measurements in 2019

- participation in CCM.M-K8.2019
- standard uncertainty 49 µg limited by parasitic coil motion & voltage measurement (electrical grounding)

H. Fang, F. Bielsa, S. Li, A. Kiss, M. Stock, Metrologia 57 (2020) 045009

Various improvements in 2020

- Upgrade of laser frequency servo-control and of various electronics for position sensors
- automation & refinement of data processing programs
- investigation & improvement of electrical circuit \rightarrow further investigation is required

BIPM Kibble balance: towards Mark II apparatus

- STEP I: new middle & lower suspension
 - much stiffer and more easily adjustable mechanics
 - new bifilar coil having a larger wire length
 - operation in vacuum confirmed
 - STEP II: replacing upper suspension (motor + 3 levers for generating the coil vertical motion) → minimize unwanted coil motion (reduce type B uncertainty)
 - replacing commercial weighing cell
 - a first beam balance prototype being fabricated

Thank you for your attention !