

THE SECOND

The second, symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency $\Delta v_{\rm Cs}$, the unperturbed ground-state hyperfine transition frequency of the caesium-133 atom, to be 9 192 631 770 when expressed in the unit Hz, which is equal to s⁻¹.

THE METRE

The metre, symbol m, is the SI unit of length. It is defined by taking the fixed numerical value of the speed of light in vacuum c to be 299 792 458 when expressed in the unit m s⁻¹, where the second is defined in terms of the caesium frequency $\Delta v_{\rm Cs}$.

THE KILOGRAM

The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15×10^{-34} when expressed in the unit J s, which is equal to kg m 2 s⁻¹ , where the metre and the second are defined in terms of c and $\Delta v_{\rm Cs}$.

THE KELVIN

The kelvin, symbol K, is the SI unit of thermodynamic temperature. It is defined by taking the fixed numerical value of the Boltzmann constant *k* to be 1.380 649 × 10^{-23} when expressed in the unit J K⁻¹, which is equal to kg $m^2 s^{-2} K^{-1}$, where the kilogram, metre and second are defined in terms of h, c and Δv_{Cs} .

THE MOLE

The mole, symbol mol, is the SI unit of amount of substance. One mole contains exactly $6.022 140 76 \times 10^{23}$ elementary entities. This number is the fixed numerical value of the Avogadro constant, N_A , when expressed in the unit mol-1 and is called the Avogadro number.

The amount of substance, symbol *n*, of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles.

THE CANDELA

THE AMPERE

The ampere, symbol A, is the SI unit of electric current. It is defined by taking the fixed numerical value of the elementary charge *e* to be 1.602 176 634 \times 10⁻¹⁹ when expressed in the unit C, which is equal to A s, where the second is defined in terms of Δv_{Cs} .

The candela, symbol cd, is the SI unit of luminous intensity in a given direction. It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency 540×10^{12} Hz, K_{cd} , to be 683 when expressed in the unit Im W⁻¹, which is equal to cd sr W⁻¹, or cd sr kg⁻¹m⁻²s³, where the kilogram, metre and second are defined in terms of h, c and $\Delta v_{\rm Cs}$.