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Certain equipment or materials are identified in this paper in order to specify the
experimental procedure adequately. Such identification is not intended to imply
endorsement by the National Institute of Standards and Technology, nor is it intended
to imply that the materials or equipment identified are necessarily the best available.

Opinions expressed are those of the speaker only



(Temperature )Sensing is Pervasive

Petro-chemicals and pharmaceuticals Armed Services

http://www.nbkls.com/the-emergence-of-injection-molding-in-plastic-industry.html  http://www.recallwarning.com/actos-warning.html
http://www.global-greenhouse-warming.com/biodiesel-from-algae.html http://someinterestingfacts.net/how-big-is-an-aircraft-carrier/



We live in interesting times

From a metrology perspective there are three key technologies that presents
challenges and opportunities in the coming years:

* (nano)photonics and Quantum Technologies
e Additive Manufacturing
* Al or deep machine learning
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We see three pressure points in in the metrology ecosystem that one could use to bring
disruptive change:

Photonics/Quantum — Transitioning from electrons to photons
(Deep) Machine Learning— Eliminate the “Phd-in-the-loop”
Additive manufacturing — shortening the innovation to consumption gap



(nano)Photonics




Gas phase refractivity-based measurements

Doppler Broadening measurements

Light scattering-based measurements
Solid-phase refractivity-based measurements
Optomechanics-based measurements

Photonic chip



Vacuum

Cavity enhanced refractometer
Developed for Pressure metrology

— Nearing commercialization
— Relies on telecom COTS techonology

Expected Uncertainty: 1-10 mK
Advantages:

— Thermodynamic Temperature
* Traceable to frequency and pressure

— Cross-platform utility

* Pressure and dimensional metrology
Disadvantages:
— Centimeter scale footprint

— Temperature < 150 °C (mirror
coatings)

— Working gas is susceptible to
chemical contamination

ETA: 3-5 years
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Photonic chip

Molecular spectroscopy-based Quantum Sl

realization

Builds on history of free space DBT work

Expected Uncertainty: 0.1 mK - 100 mK

Advantages:
— Thermodynamic Temperature
— Small chip scale footprint

Disadvantages:
— Uncertainties likely to be in the 100 ppm
— Susceptible to magnetic fields

ETA: 5 years



Light Scattering Based Thermometry

Brillouin Stokes
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Spectroscopic measurement
Developed for Pressure metrology

— Nearing commercialization
— Relies on telecom COTS techonology

Expected Uncertainty: 0.01 K- 10K
Advantages:

— Spatial range covers several orders of
magnitude (cm to km)

— Suitable for static and dynamic
measurements

— Resistant to ionizing radiation and chemical
corrosion

— Thermodynamic Temperature

Disadvantages:

— Lower accuracy compared to most common
temperature sensors

— Susceptible to strain

— Expensive and complex detection system

ETA: available in some form



Fiber Optic based Thermometry

e Refractive index-based temperature

Bragg Grating i
transduction to frequency
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https://doi.org/10.1088/1361-6501/ab7611 * ETA: on-market



https://doi.org/10.1088/1361-6501/ab7611

What'’s holding back fiber thermometry?

Metrology specific understanding of device
performance is lacking
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https://doi.org/10.1088/1361-6501/ab7611

Si Bragg Thermometer shows a quadratic dependence

Silicon Bragg thermometer, compared to
FBG sensor:

* ~8x greater temperature sensitivity
e 50X smaller footprint
* impervious to moisture

Uncertainty = 1.25 °C (k = 2)

e driven by uncertainty in peak center
measurement.

Optics Letters, 2015, vol 40, pg 3934-3936
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(Ring) Resonator Thermometry

Optical ring resonators exhibit a periodic notch-filter
like response where the resonant wavelength shows

a temperature-dependent shift in frequency y lL :
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SPoT Wavelength (nm)

Allan Deviation(uK)
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Continuous measurement over extended
temperature range from room up to indium
melting point temperature have been
achieved

Long-term stability measured in WTP is less
than 0.5 mK
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We Shall Overcome These Problems:

Because very smart people are taking a hard look at these problems

06 L 1 i 1 " 1 " 1 i
‘ 35°C
0.5 -
@
S 044
£ 3 * 30°C
(A
5 034
s
(o) 2
o
= 02
o v 25°C
Q. -
o
0O 01-
0.0 . . . . . . - » .
1550 1552 1554 1556 1558 1560

Wavelength (nm)

https://doi.org/10.1364/0E.390966 https://doi.org/10.1364/0E.394642



Quantum and Quantum-inspired Technologies



Opto-mechanical Thermometry

* Quantum realization of temperature
 Expected Uncertainty: 1 K

 Advantages:
— On-Chip Thermodynamic temperature

Thermal Noise

! ! ! — Integrate-able with on-chip photonic
thermometer
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0.0 — Easy integration into QIS

— Unknown, unknowns

Quantum Noise
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— Current uncertainties on the order of few
percent

— Long-term device performance unknown

Split photodetector Heating laser cycle

(@)

— Unknown unknowns
off

e Bath engineering, new materials,
longer wavelengths could be key to
Silicon substrate new breakthroughs

SiN membrane ° ETA 5+ years

T. P. Purdy, K. E. Grutter, K. Srinivasan, J. M. Taylor, arXiv:1605.05664 10.1103/PhysRevLett.125.120603



Tunnel Junction shot noise thermomete

* Primary Thermometer
— 0.1% accuracy at 1 K

— Relies on electron charge, Boltzmann's
constant, and assumption that
electrons in a metal obey Fermi-Dirac
statistics

— Demonstrated range: 10 mK to 300 K

DOI: 10.1126/science.1084647
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NV Diamond Thermometry

e Spectroscopy based
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* Disadvantages:
— Relatively high uncertainties
— Susceptible to environmental
variables e.g:
* Electric and Magnetic fields

* Humidity
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Machine Learning
(the completely speculative part of the talk)



Machine Learning and thermo
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Potential areas of impact:

e Discovery of new materials
e Calibration-by-crowd sourcing
e Calibration over network of sensor

* Developing complex, physics-based
models for novel sensors




Grand Challenges

How do we bring the rigor of metrology to emerging technologies?
How good are these devices? What are they good for?
What would an interpolation model look like?
Is interchangeability possible with these devices?
What does temperature mean at the nanoscale?

How do we communicate in a cross disciplinary field?
Temperature, frequency, photonics, communication, ML

How do we train the metrology workforce?

The next generation of temperature metrology experts will need to freely
move amongst all these different technologies



