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Preface 
 
 
 

This monograph is one of a series published by the Bureau International des Poids et Mesures 
(BIPM) on behalf of the Comité Consultatif des Rayonnements Ionisants (CCRI). The aim of 
this series of publications is to review topics that are of importance for the measurement of 
ionizing radiation and especially of radioactivity, in particular those techniques normally used 
by participants in international comparisons. It is hoped that these publications will prove to 
be useful reference volumes both for those who are already engaged in this field and for those 
who are approaching such measurements for the first time. 
 
The purpose of this monograph, number 7 in the series, is to present a mathematically 
compact and elegant way of modelling the photon and electron efficiency curves of ionization 
chambers, developed specifically for the International Reference System for gamma-ray 
activity comparisons (SIR). Corrections for impurities are taken into account in a manner that 
is consistent with the modelling of the photon and electron response of the chamber. A 
comprehensive scheme for determining the uncertainties is provided. The model also provides 
reliable and robust values for radionuclides measured in the SIR for the first time. 
 
Although the computer code has been developed for the SIR, the method is generally 
applicable to all well-type ionization chambers. Consequently, the computer code will be 
made available to National Metrology Institutes together with a protocol to explain its 
detailed application. 
 
 
 
 
 
 
 G. Moscati A.J. Wallard 
 President of the CCRI Director of the BIPM 
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Abstract

The photon and electron efficiency curves of an ionization chamber, as part of the SIR (Inter-
national Reference System for activity measurements of γ-ray emitting radionuclides), have
historically been determined using an iterative approach. That approach accounts for the
influence of γ-ray-emitting impurities on the SIR measurement data based on experimental
knowledge of the contributing effects or using the efficiency curves during the iterative pro-
cess. Extrapolation of the curves is needed at the ends of the energy range to cover all photon
and electron energies of interest.

The approach described here is based on a model that at the outset accounts for all avail-
able information, including impurity corrections and beta spectrum shapes. It also accounts
for the uncertainties and known correlations associated with the SIR measurement data, the
nuclear reference data and other effects. The only empirical parts of the model are the math-
ematical forms selected for the efficiency curves. Rather than using conventional functions
such as polynomials, the approach works with the exponentials of polynomials. These forms
are capable of exhibiting physically possible behaviour throughout the energy range, even
though there is relatively sparse radionuclide data available at high energies.

Rather than correcting the measurement data for impurities, as is conventional in this area,
the model itself is adjusted. The benefit of this approach is that the polynomial coefficients can
be determined using generalized non-linear least-squares minimization. The adjusted model
matches the SIR measurement data as closely as possible, taking account of the uncertainties
and correlations indicated above. Although the solution to this least-squares formulation
requires iterative solution algorithmically, it is not iterative in the sense of previous methods.

This process provides estimates of the efficiency values of the ionization chamber, and the
associated uncertainties, at any photon or electron energy. The uncertainties associated with
the response of the ionization chamber for all radionuclides of interest are also evaluated.

∗Work supported by the National Measurement Directorate of the UK Department of Trade and Industry as
part of its NMS Ionizing Radiation Metrology and Software Support for Metrology programmes and by the BIPM.
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Executive summary

1. The SIR ionization chamber at the BIPM is used to establish equivalence of radioactivity
measurements made by the national metrology institutes (NMIs) of the signatory members
of the Metre Convention.

2. To this end each NMI submits to the BIPM samples of solutions of radionuclides and their
measured values of the activity of these solutions. Each NMI also provides information on
any radionuclidic impurities that may be present. The BIPM measures these samples in
the ionization chamber, comparing the current produced with that produced by a radium
reference source.

3. The so-called equivalent activity is derived from the ratio of the currents and the NMI-
supplied activity, with corrections for radioactive decay and impurities.

4. The correction for impurities requires that any impurities present have previously been
measured and their equivalent activities known. Unfortunately this knowledge is frequently
not available. A model is therefore required to predict the responses for such radionuclides.

5. The ionization chamber efficiency curves are modelled empirically by exponentials of poly-
nomials, the polynomial coefficients being determined by a generalized non-linear least-
squares fit. The least-squares procedure takes as input the photon and electron emission
spectra and known equivalent activities and produces as output the best estimate of the
polynomial coefficients for the efficiency curves.

6. The photon emission spectra are generally well known and there is evaluated and published
data of good quality for most of the radionuclides of interest. However, the beta spectra
are less well known (being considerably more difficult to measure) and a calculation from
first principles is required.

7. The radionuclides 177Lu, 182Ta and 99Mo are used as test cases following the least-squares
fit. The model successfully predicts equivalent activities for these radionuclides.

8. By comparing modelled and measured equivalent activities it is possible to identify ra-
dionuclides for which there may be inconsistencies in the published photon emission data.
This is the case for 201Tl and 65Zn [32].

1 Introduction and overview of approach

1.1 General

The SIR (International Reference System for activity measurements of γ-ray emitting radionu-
clides) was established in 1976 at the Bureau International des Poids et Mesures (BIPM) to
complement the international comparisons of activity measurements organized by Section II of
the CCRI (Comité Consultatif des Rayonnements Ionizants). Participating laboratories sub-
mit SIR glass ampoules containing their standardized solutions of radionuclides to the BIPM,
where the current produced by these samples in a 4π-ionization well chamber (ionization cham-
ber) is compared with the current obtained with a 226Ra reference source [40]. The simplicity
and rapidity of the measurement as well as the long-term stability of the ionization chamber has
allowed the comparison over 30 years of hundreds of radioactive solutions for a total of about 60
radionuclides.

Some of the radionuclides considered are also beta emitters. The consequent bremsstrahlung
(radiation emitted by charged particles under deceleration) produced mainly in the wall of the
ionization chamber contributes to the measured ionization current and must be taken into ac-
count.
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The detection efficiency of the SIR ionization chamber for a given photon of energy E or electron
of energy W is the ionization current produced in the ionization chamber by a source emitting 103

such radiations per second, expressed relative to the ionization current produced in the ionization
chamber by the BIPM 226Ra reference source IRa,5.

Similarly, the detection efficiency ε of the SIR ionization chamber for a given radionuclide is the
ratio of (a) the ionization current I produced in the ionization chamber per activity A of that
radionuclide measured by a laboratory in kBq and (b) the ionization current IRa,5.

Efficiency curves (detection efficiency versus photon energy and detection efficiency versus elec-
tron energy) are required for the calculation of the response of the ionization chamber for ra-
dionuclides not previously measured in the SIR. They are needed to evaluate the correction for
a photon-emitting impurity present in an ampoule when the efficiency for this impurity is not
known experimentally [30], or to give a point of comparison when a radionuclide is measured in
the SIR for the first time. Each SIR measurement can be considered as a determination of the
efficiency of the ionization chamber for a given radionuclide [36, 38]. In consequence the whole
set of SIR measurement data can be used, in principle, to establish the required efficiency curve.

However, in order to obtain reliable efficiency curves, a selection of the data is made: only
the results based on NMI primary standardizations are used, which are those retained for the
calculation of the key comparison reference values (KCRVs) of the CIPM MRA [7]. In addition,
for physical reasons, gaseous radionuclides and strong β+ emitters are excluded. Further, for
low-energy photon emitters and strong β emitters, radioactive solutions of low acid and carrier
concentrations are selected in order to minimize the influence of self-attenuation.

Since physical models for the efficiency curves are not available, previous methods have used
empirical representations of these curves in the form of polynomials, exponentials, and products
of polynomials and exponentials. The adjustable parameters (e.g., polynomial coefficients) in the
representations are determined by iteration. This is to account for the influence of gamma-ray-
emitting impurities and also to deal with the multi-photon emitters, the efficiency for one photon
being deduced from the measured equivalent activity by subtracting the contribution of all other
photons as estimated from the previous iteration [31, 41, 42]. The iterative schemes have been
based on a physical knowledge of the relative magnitudes of the contributory effects. Least-
squares minimizations were also applied by several authors [23, 43, 44]. However, corrections for
impurities were not included in the model equations and the associated uncertainty evaluation
was not fully treated.

The approach considered here is different. A least-squares formulation is used that accounts for
available physical information and measurement uncertainties (section 3). The formulation, as in
the above cited references, allows for the presence of radioactive impurities [30]. Families of em-
pirical functions are used within this formulation to represent the efficiency curves (section 3.2).
Although as in previous approaches these functions are empirical in nature, they are chosen to
take a form that ensures they are capable of possessing physically possible behaviour.

In the context of data modelling, the nature of the problem is unconventional. The measurement
data would not be expected to lie on the desired model curve, even if it were possible to make
each measurement perfectly and correct it precisely for the respective radioactive decays and
any impurity content. Such a ‘perfectly adjusted’ measured value of a radionuclide in solution
would only lie on the curve if it decayed by a single energy photon emission. The model curve
is a continuous function of energy, whereas each radionuclide has a number of discrete energy
emissions and so cannot be represented by a single energy.

The use of appropriate least-squares modelling principles permits a statistically valid solution to
be obtained. Such a solution would not be obtainable were some of the data inconsistent with the
model, for example as a consequence of an incorrectly recorded measured value or the stipulation
of too small an uncertainty associated with a measured value. The approach simultaneously
provides the required efficiency curves and corrects the measurements for impurities (section 5).

The parameters of the empirical functions occur non-linearly within the overall model. Ac-
cordingly, recognized, high-quality algorithms for solving generalized non-linear least-squares
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problems are applied [2]. In particular, the uncertainties associated with the various physical
quantities involved are properly taken into account [18].

The resulting efficiency functions enable efficiency values to be provided for any radionuclide
with known nuclear reference data, whether previously measured in the SIR or not, together with
the associated uncertainties.

Validation procedures (section 7) (a) permit the selection of appropriate members of the families
of empirical functions considered, (b) check the adequacy of the numerical quadrature rule used
when evaluating the model, (c) provide an assessment of the consistency of the model and the
data and the uncertainties associated with the data, and (d) consider the physical feasibility of
the computed model.

The formulation caters for the uncertainties associated with the measured values of radionuclide
activity provided by the laboratories. The uncertainties associated with the estimates of the
model parameters can be formed from the information provided by the algorithm used to solve the
generalized non-linear least-squares problem. In turn, these uncertainties are propagated through
the models for a given energy to obtain the uncertainties associated with the corresponding
efficiency values. There are further uncertainty sources that are taken into account and that
influence the uncertainties associated with these efficiency values. These sources relate to the
tabular values of the nuclear reference data used in the model for photon and beta-transition
energies and the corresponding probabilities. They also relate to the relative impurity activities.
The uncertainties associated with these sources are propagated through the model, and combined
with the above-mentioned uncertainties.

In this work, a distinction is made between (a) quantities themselves and (b) estimates of quan-
tities or data values of quantities. Quantities are regarded as random variables in that they are
not known exactly. Knowledge of a quantity is characterized by a probability distribution. A
best estimate of that quantity is then the expectation of that quantity so characterized, and the
standard uncertainty associated with that estimate is the standard deviation of the quantity. An
example of a quantity is a parameter in a model, such as the gradient of a straight-line calibration
function. An estimate of that quantity would generally be obtained by fitting that function to
calibration data. Another example of a quantity is the emission probability of a photon. A data
value of the quantity would be provided in nuclear reference data tables. These considerations
are consistent with those of the GUM [9].

Annex A contains a glossary of symbols used.

A distillation of the detailed exposition here is available [32, 36].

1.2 Overview of approach

The starting point of the approach is the consideration of the data that is available relating
to the problem of concern and the physical quantities of which this data constitutes particular
values (section 2). There are four categories of data:

1. data vector R̂, regarded as a best estimate of R, the vector representing the relative
impurity activities (section 2.2);

2. data vector D̂, regarded as a best estimate of D, the vector of equivalent activity mea-
surement quantities for the radionuclides and laboratories of concern (section 2.1);

3. data vector N̂ , regarded as a best estimate of N , the vector representing nuclear reference
data quantities (section 2.3);

4. data vector K̂, regarded as a best estimate of K, the vector representing those KCRVs
available for the radionuclides of concern (section 2.4).

Associated with each of these data vectors is an uncertainty matrix (covariance matrix). The
uncertainty matrix associated with R̂ is denoted by V

R̂
, with a similar notation for the other
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uncertainty matrices. Mostly, these uncertainty matrices are diagonal, with the diagonal elements
containing the squares of the standard uncertainties associated with the individual data items
or estimates. When a covariance associated with a pair of data items, the ith and jth, say, is
available, it is included as elements (i, j) and (j, i) of the corresponding uncertainty matrix.

Account is not taken here of the uncertainties associated with the elements of K̂, since their
influence compared with those of D̂, N̂ and R̂ would be expected to be small. See section 11.

It is necessary to incorporate correction factors that compensate for the fact that a solution con-
taining a particular radionuclide measured by a laboratory may contain impurities (section 2.1).
Such correction is not necessarily purely numerical because in general it depends on the vector B
of parameters of the efficiency curves that is to be determined and also on R and N . The manner
in which this aspect is handled is covered in the approach used for the modelling (section 3.3).

An established generic form for the model [31] for the efficiency (the reciprocal of equivalent
activity) εi of the ionization chamber for radionuclide i is used (section 3.1). Letting E denote
photon energy and W electron energy, this model is expressed in terms of the photon efficiency
function ε(E) and the electron efficiency function εβ(W ). Since functional forms for the photon
and electron efficiency functions are not available from physical considerations, they are modelled
empirically in terms of appropriate functions involving unknown parameter vectors B(1) and B(2),
respectively, constituting the (combined) parameter vector B (section 3.2.1).

The empirical modelling functions used are transformed polynomial functions having the prop-
erties that they exhibit physically possible behaviour, namely they are positive for all energy
values and they tend to zero at low energy. To ensure numerical stability of the consequent
computation, these polynomials are expressed in Chebyshev form (section 3.2.2).

To account for impurities, a functional form for impurity correction based on the considerations
of section 2.1 is used that depends on B, N and R (section 3.3). This form is generalized
through the use of a mixing ratio to reflect the use of previously evaluated but not totally reliable
equivalent activity values. This use also results in a simplification of the formulae subsequently
required in the uncertainty evaluation.

In order to estimate the parameter vector B, an appropriate measure of match of modelled and
measured values of equivalent activity is minimized. A measure based directly on the consider-
ations so far would give rise to an unconventional formulation because of the dependence of the
‘measured’ equivalent activities on B through the modelled correction for impurities. It is shown,
however (section 4.1), that a simple transformation of the problem results in a formulation in
conventional form, in which a model consisting of the quotient of modelled equivalent activity and
impurity correction factor is matched to D. The resulting measure is discussed (section 4.2.1) in
the context of a formulation that incorporates the given uncertainty information. Minimization
of this measure constitutes solving a generalized non-linear least-squares problem.

In the full formulation of this problem, D, B, N and R are estimated to provide posterior
estimates given prior estimates D̂ (laboratories’ measured equivalent activity values not corrected
for impurities), B̂ (e.g. from previous work on determining efficiency curves), N̂ (published
nuclear reference data), and R̂ (relative impurity activity data). Any evidence of a mis-match of
posterior and prior estimates could be used to propose a consequent adjustment to the nuclear
data but in practice would be used to focus the radionuclide community on making appropriate
investigations. Moreover, this full formulation, although appropriate for the problem, gives
rise to computational difficulties because of the large number of quantities and hence the large
matrices involved. Instead, therefore, a partial formulation is given that avoids these difficulties,
which has good rather than near-optimal statistical properties (section 4.2.2). All quantities are
fixed at their prior estimates apart from the curve parameters B. Solution of this formulation
also constitutes solving a generalized non-linear least-squares problem, but of much smaller size.
Although they are not needed in solving this least-squares problem, equations characterizing the
resulting solution (section 4.3) are given. They are required subsequently in order to evaluate
the uncertainty matrix associated with the estimate B∗ of B (section 6).
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The algorithm recommended for solving generalized non-linear least-squares problems is iterative
in nature, at each iteration producing what is generally an improved approximation to the solu-
tion. For each approximation to B∗, the algorithm requires the values of the partial derivatives
of first order of the impurity-corrected equivalent activity model. Expressions are derived for
these derivatives (section 5.2 and appendix B). The use of a generalized non-linear least-squares
solver (section 5.3) and the determination of initial approximations to the model parameters
(section 5.4), required for iterative solution, are considered.

Were the solution of the full formulation feasible, the uncertainty matrix V B∗ associated with
the estimate B∗ of the model parameter vector B would be available as a by-product of the least-
squares procedure. This uncertainty matrix would reflect the uncertainties associated with D̂, N̂
and R̂. For the partial formulation, the V B∗ provided would account only for the uncertainties
associated with D̂, and take the form [29]

VB∗ =
(
Js

T(B)V −1

D̂
Js(B)

)−1
,

where Js(B) is the (Jacobian) matrix containing the partial derivatives of first order of the
model residual deviations s with respect to the model parameters.

The further sources of uncertainty to be taken into account, associated with the estimates N̂
of N and R̂ of R, are propagated through the least-squares solution, to be combined with
the above-mentioned uncertainties. These further uncertainties are taken into account using a
generalization of the GUM uncertainty framework.

The solution obtained as described corresponds to the use of estimates regarded as the expec-
tations of distributions for the corresponding quantities. On the basis of the principles of GUM
Supplement 1 [8], such distributions would be assigned to be Gaussian with expectations equal to
the estimates and standard deviations equal to the standard uncertainties associated with these
estimates.

At the solution to the generalized non-linear least-squares problem, the partial derivatives with
respect to the adjustable quantities B are zero. The resulting expressions provide a measurement
model relating input quantities D, R and N to output quantities B that can be used as the
basis for applying the GUM uncertainty framework. In terms of a classification of measurement
models [19], this model is categorized as (a) multivariate (having a number of output quantities),
(b) implicit (being defined in such a way that B cannot be expressed directly in terms of D, R
and N), and (c) real (not involving complex quantities).

2 Input data, associated uncertainties and data corrections

This section discusses the various data items and the quantities of which these data items con-
stitute realizations that are used in the modelling, namely those indicated in 1–4 at the start
of section 1.2. It also considers the available uncertainties associated with these data items. It
further considers the correction factors that compensate for the presence of impurities in the
radioactive solutions.

2.1 Equivalent activity measurement data

Equivalent activity measurement data are derived from more fundamental measurement data.
Consider an SIR measurement of a radioactive solution, in a glass ampoule, containing a ra-
dionuclide, generally with impurities. Let A denote the activity of the solution at a reference
date tr, that is when the measurement was made by a participating laboratory.

The equivalent activity Ae is the activity of the solution that would produce the same ionization
current as the reference 226Ra source number 5 at the fixed SIR reference date t0.

Let IRa,s and I denote the ionization currents produced by the 226Ra source number s and the
ampoule, respectively. Let If denote the background current. There will be a value for each of
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these three currents corresponding to each laboratory’s measurement.

Let tm be the date of the SIR measurement of the solution, and λRa and λi the decay constants
of 226Ra and a measured radionuclide i, respectively.

Three multiplicative factors are used to transform A to Ae [30]:

1. The product of the quotient
IRa,s − If
I − If

of the respective ionization currents, allowing for the background current, and a factor Fs

that is the quotient of currents of radium source numbers 5 and s.

2. The decay-correction factor
exp(−λi(tm − tr))

exp(−λRa(tm − t0))

due to the respective decay constants and the times elapsed to the date of the SIR mea-
surement.1

3. An impurity correction factor C that accounts for the impurities in the solution.

Thus [30],
Ae = AMC, (1)

where
M = Fs

IRa,s − If
I − If

exp(−λ(tm − tr))
exp(−λRa(tm − t0))

and C is considered below. The A and M are combined to form the current- and decay-corrected
measurement quantity

D = AM = AFs
IRa,s − If
I − If

exp(−λ(tm − tr))
exp(−λRa(tm − t0))

.

Expression (1) corresponds to the equivalent activity per se that is current-, decay- and impurity-
corrected.

The above notation is qualified as follows when a measurement is made of radionuclide i by a
laboratory (indexed by) `:

(Ae)meas
i,` = Di,`Ci,`, (2)

where
Di,` = Ai,`Mi,`. (3)

The superscript in (Ae)meas
i,` is used to emphasize that equivalent activity is based on measurement.

(Subsequently, another superscript will indicate when equivalent activity is based on a model.)
The Ai,` denotes the measured value for the activity of radionuclide i provided by laboratory `.
The Mi,` denotes the value of M in expression (1) relevant to radionuclide i and laboratory `,
namely,

Mi,` = Fs
(IRa,s)i,` − (If )i,`

Ii,` − (If )i,`

exp(−λi((tm)i,` − (tr)i,`))
exp(−λRa((tm)i,` − t0))

. (4)

The Ci,` is the correction factor that compensates for the fact that the solution containing
radionuclide i that is measured by laboratory ` may contain impurities, and is given [30] by

Ci,` = 1 +
∑

k∈Ki,`

Ri,`,k
(Ae)i

(Ae)k
(5)

(see section 2.2).
1This factor is not applicable to short-lived radionuclides for which the decay is significant during measurement

and the decay correction is evaluated by integrating the numerator over measurement time.
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Let D denote the vector of values of theDi,`. It constitutes the set of current- and decay-corrected
measurement quantities, or in brief the data quantity vector.

The modelling approach described here utilizes the Di,` and therefore requires the standard
uncertainties u(D̂i,`) associated with estimates D̂i,` of the Di,` given by

D̂i,` = Âi,`M̂i,`,

using expression (3), where Âi,` is the measured value provided by laboratory ` of the activity of
radionuclide i and M̂i,` is the value of Mi,` given by substituting measured values for the various
quantities in the right-hand side of expression (4).

These uncertainties are given by applying the law of propagation of uncertainty to expression (3),
under the assumption that the quantities involved are mutually independent, to give

u2(D̂i,`)
D̂2

i,`

=
u2(Âi,`)
Â2

i,`

+
u2(M̂i,`)

M̂2
i,`

, (6)

where u(Âi,`) is the standard uncertainty associated with Âi,` as declared by laboratory `,
and u(M̂i,`) that associated with M̂i,`. The u(M̂i,`) is obtained by applying the law of prop-
agation of uncertainty to expression (4), given the standard uncertainties associated with the
measured values of the quantities involved.

Generally the Ci,` in expression (5) will depend on the model parameters B, say, which are to
be determined. They also depend on N and R, estimates of which, with associated standard
uncertainties, are available (see section 3.3).

2.2 Data relating to relative impurity activities

Consider the activity ratio quantities R̃i,`,k, k ∈ Ki,`, corresponding to the activities at the
reference date of impurity k in a solution of radionuclide i for laboratory `, for all relevant i, `
and k. The Ki,` denotes the index set relating to impurities associated with that solution. Let R
denote the vector of decay-corrected quantities Ri,`,k for relevant i, ` and k. Data constituting a
best estimate R̂ of R is available, as are the associated standard uncertainties.

The Ri,`,k is given by
Ri,`,k = R̃i,`,kHi,`,k,

where
Hi,`,k = exp(−(λk − λi)((tm)i,` − (tr)i,`))

is the appropriate decay correction.

Consider the correction factors Ci,` in expression (5). The value provided by laboratory ` in
its measurement of a solution containing radionuclide i will fall into one of three categories,
corresponding to the measurement of a radionuclide

1. that is pure, in which case Ci,` = 1,

2. together with impurities that have all previously been well characterized in terms of reli-
able measurement, meaning that KCRVs for the equivalent activities (Ae)i and (Ae)k in
expression (5) would be available, and hence a numerical value for Ci,` could be determined,
and

3. together with impurities not all of which have previously been well characterized. For
the well-characterized impurities, KCRVs for the (Ae)k in expression (5) would again be
available, but the efficiency model is used to estimate the remaining impurities.
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2.3 Nuclear reference data

For a radionuclide (indexed by) i let

Ji denote the set of indices of the photons associated with this radionuclide,

βJi the set of indices of the beta transitions associated with this radionuclide,

Ei,j the energy associated with the jth photon,

Pi,j the emission probability for the jth photon2,

Wi,j the maximum energy associated with the jth beta-transition,

βPi,j the emission probability for the jth beta-transition,

Si,j(W ) the energy distribution function for the spectrum corresponding to the jth beta-
transition, normalized such that ∫ ∞

1
Si,j(W )dW = 1,

where W = E/(mec
2) + 1 is the reduced total electron energy, me being the rest mass of

the electron and c the speed of light.

Values of the quantities {Ei,j : j ∈ Ji}, {Pi,j : j ∈ Ji}, {Wi,j : j ∈ βJi} and {βPi,j : j ∈ βJi} are
available as published nuclear reference data, together with associated standard uncertainties (see
e.g. [4]). These published energies and probabilities are regarded as best-available estimates N̂
of quantities collectively labelled N . In general, only a subset of the nuclear reference data is
used and N and N̂ are interpreted accordingly.

For the problem here most of the quantities concerned are independent and hence V
N̂

is pre-
dominantly diagonal. However, there are some correlation effects associated with (a) the nuclear
reference data relating to the normalization of the relative emission probabilities3, and (b) an
emission probability in the case where two laboratories provide activity estimates having small
associated uncertainties. The V

N̂
will consequently contain some off-diagonal non-zero elements.

The beta energy distribution function Si,j , for the jth beta transition, is calculated as in the
publications of Wilkinson [45, 46, 47, 48, 49]. The first- and second-forbidden non-unique decays
are approximated by allowed and first-forbidden unique decays, respectively. The required values
of the Coulomb functions λn are approximated as independent of energy and estimated from
the tables of Behrens and Jänecke [5]. The ‘finite nuclear radius’ is estimated by the relation
given in Grau Malonda [28]. The electron shielding correction is calculated by the method of
Rose [39], where the total positron/electron energy in the Fermi function is shifted by a screening
potential ±Vs.

The emission of conversion electrons of energy Wc is taken into account by defining a special
case of energy distribution: Si,j = δ(W −Wc).

2The ‘emission probability’ Pi,j of a given particle or photon is the mean number of such particles or photons
emitted per decay. For β± and γ emissions the Pi,j are physically constrained to 0 ≤ Pi,j ≤ 1 and equate to the
probabilities of emission following decay. For X-rays or annihilation radiation there may be more than one photon
emitted per decay and the Pi,j no longer represent probabilities per se. However, the Pi,j are conventionally
referred to as ‘emission probabilities’ regardless of the physical process.

3For a particular radionuclide i, the Pi,j are obtained as Pi,j = ηiIi,j , where Ii,j is the relative emission
probability for the jth photon for radionuclide i and ηi is a normalization factor for that radionuclide. Standard
uncertainties are available for the ηi and the Ii,j . The Pi,j so obtained are correlated. Specifically, applying the
law of propagation of uncertainty, u2(Pi,j) = I2

i,ju
2(ηi) + η2

i u2(Ii,j) and u(Pi,j , Pi,j′) = Ii,jIi,j′u
2(ηi).

11



2.4 Key comparison reference values

Let (Ae)KCRV
i denote a key comparison reference value (KCRV) for radionuclide i. For many of

the radionuclides, such a KCRV is published in the BIPM Key Comparison Database (KCDB) [6]
and is considered to be a best estimate, together with an associated standard uncertainty, of the
equivalent activity. The model may be used ultimately to derive KCRVs for other radionu-
clides [37]. The set of such KCRVs is denoted by K̂ and the vector of quantities of which K̂ is
a realization is denoted by K.

Account is not taken here of the uncertainties associated with the elements of K̂, since their
influence compared with those of D̂, N̂ and R̂ would be expected to be small. See section 11.

3 Model building

3.1 Generic form for the efficiency function of the ionization chamber

Denote by ε(E) the efficiency of the ionization chamber for photons of energy E, and by εβ(W )
its efficiency for electrons of energy W . The function ε(E) is known as the photon efficiency
function or photon efficiency curve and εβ(W ) as the electron efficiency function or curve. Since
analytical forms for these functions derived from physical principles are not available, ε(E) is
modelled by an appropriate empirical function F (B(1), E) and εβ(W ) by G(B(2),W ). The B(1)

and B(2) denote sets of adjustable model parameters, with B = ((B(1))T, (B(2))T)T, that is

B =

[
B(1)

B(2)

]
,

representing the aggregated set of adjustable model parameters.

The model for the efficiency of the chamber for radionuclide i is given [31] by

εi =
∑
j∈Ji

Pi,jF (B(1), Ei,j) +
∑

j∈βJi

βPi,j

∫ Wi,j

1
Si,j(W )G(B(2),W )dW. (7)

The corresponding model for the equivalent activity [31, 38, 41] of radionuclide i, indicating
explicitly that it depends on B and N , is

(Ae)model
i (B,N) = ε−1

i =

∑
j∈Ji

Pi,jF (B(1), Ei,j) +
∑

j∈βJi

βPi,j

∫ Wi,j

1
Si,j(W )G(B(2),W )dW

−1

.

(8)

This quantity is the model value for the equivalent activity of radionuclide i.

3.2 Representation of the photon and electron efficiency functions

3.2.1 Physically possible empirical models

Although the form of the efficiency functions F (B(1), E) and G(B(2),W ) is not known analyt-
ically, they are expected to vary smoothly with energy, reasons for which have been given [40].
Hence, appropriate smooth empirical functions containing adjustable parameters are required.
Because of the arbitrariness of choice, it is important that the functions used are validated by
confirming that there is no lack of consistency of model and data. This aspect is addressed in
section 7, and also mentioned later in this section.

Consider first models of the form

F (B(1), E) =
n∑

h=1

B
(1)
h φh(E), G(B(2),W ) =

nβ∑
h=1

B
(2)
h ψh(W ), (9)
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where (B(1)
1 , . . . , B

(1)
n ) are the elements of B(1) and (B(2)

1 , . . . , B
(2)
nβ ) those of B(2), and the φh(E)

and ψh(W ) are suitable sets of basis functions. Possible basis functions are powers of E or W
(making F (B(1), E) or G(B(2),W ) a polynomial in E or W ) and B-splines for a prescribed set
of knots (making F (B(1), E) or G(B(2),W ) a spline with these knots). Appropriately trans-
formed polynomials were used for this application. A suitable representation of polynomials
(section 3.2.2) is used for numerical purposes.

Appropriate orders of the polynomials are required to ensure that the model is consistent with
the data, accounting for the uncertainties. Generally, unless adequate data are available, a
polynomial might exhibit oscillations in order to be ‘close’ to the data in the above sense. Such
oscillations would be regarded as spurious in a representation of an efficiency curve, since they
would result in violation of the required smoothness indicated above.

A polynomial might even take negative values in part of the range of interest. A polynomial that
took such values at meaningful energies would not provide a physically possible representation of
an efficiency curve. In particular, it could not be used for predictive purposes at such energies.

Both oscillations and negative values indeed occurred when using a prototype version of a software
implementation based on ‘pure polynomials’.

Two modifications were made to address this aspect. They were based on studying the ‘shape’
of the SIR photon efficiency curve, which is often plotted as F (B(1), E)/E against E in order to
display more clearly the deviations of the efficiency curve from linearity.

First, a polynomial with argument lnE rather than E was used in modelling the photon efficiency
curve, because the interval of values of E covers three orders of magnitude and the shape of
this curve is more polynomial-like when expressed in terms of lnE. The use of this argument
helped to overcome problems with spurious oscillations when applied to the measurement data of
concern. The principal reason for the improvement is the changes made to the spacing between
the relatively sparse radionuclide data available at high energies.

The interval of values of W was such that a logarithmic transformation was not necessary in
modelling the electron efficiency curve.

Second, to ensure that a mathematical representation of an efficiency curve could never take a
negative value, and therefore remained physically possible, each of the models for F (B(1), E)/E
and G(B(2),W )/W was expressed as the exponential of a polynomial rather than a pure poly-
nomial.4 Such a form is positive everywhere for any polynomial. In fact, this is equivalent to
plotting the photon efficiency curve on a log-log scale. The use of the exponential of a polynomial
has a further advantage. For the SIR, the graph of F (B(1), E)/E constitutes a ‘peak’. In areas
such as spectroscopy, peaks are often represented by a Gaussian function or a variant of such
a function. A Gaussian function can be written as the exponential of a polynomial of order
three.5 For exponentials of polynomials of order greater than three, various degrees of asym-
metry, bulbousness, etc. can be reproduced. This should give the model sufficient flexibility to
reproduce the shape of efficiency curves for an ionization chamber different from those of the
SIR (see section 10.2).

The variants of expressions (9) used are thus

F (B(1), E) = E exp

(
n∑

h=1

B
(1)
h φh(lnE)

)
, G(B(2),W ) = W exp

( nβ∑
h=1

B
(2)
h ψh(W )

)
. (10)

Now consider how estimates of B(1) and B(2) in the models (10) can be determined. If these
4A class of models consisting of ‘exponentials of polynomials’ has been used in spectral characteristic mod-

elling [20], behaving like a Gaussian function in a log variable (a ‘log-normal’) for polynomial order three (degree
two or quadratic), and providing greater approximation power for higher orders.

5The exponential of a polynomial of order three can be expressed in at least two ways, namely,
p1 exp(−p2(E − p3)

2) and exp(q1 + q2E + q3E
2). The first form is a scaled Gaussian function and the second

the exponential of a quadratic polynomial. For any value of the Gaussian parameters p1, p2 and p3, the polyno-
mial coefficients q1, q2 and q3 can be formed in terms of them. Conversely, for any polynomial coefficients q1, q2

and q3, with q3 < 0, the Gaussian parameters p1, p2 and p3 can be formed from them. The condition q3 < 0
implies that the function is a ‘peak’, as opposed to a ‘valley’.
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models adequately describe the efficiency curves, that is the approximation errors committed by
their use are negligible compared with the uncertainties associated with D̂, N̂ and R̂ (an aspect
addressed in section 7), expressions (10) can be substituted into the model (8), and the resulting
expression employed. Thus,

(Ae)model
i (B,N) =

∑
j∈Ji

Pi,jEi,j exp

(
n∑

h=1

B
(1)
h φh(lnEi,j)

)

+
∑

j∈βJi

βPi,j

∫ Wi,j

1
WSi,j(W ) exp

( nβ∑
h=1

B
(2)
h ψh(W )

)
dW

−1

, (11)

the form for the model that is used henceforth.

3.2.2 Polynomial representation

For purposes of numerical stability [14], essential here to avoid unnecessary loss of numerical
precision for polynomials of arbitrary order, φh(lnE) in expression (10) is represented as

φh(lnE) = Th−1(x), (12)

where Tj(x) is the Chebyshev polynomial of the first kind of degree j in the normalized variable

x =
(lnE − lnEmin)− (lnEmax − lnE)

lnEmax − lnEmin
, (13)

and [Emin, Emax] is the energy range over which the modelling is to be carried out. It is
recommended that the values

Emin = min
j∈Ji,i∈I

Ei,j , Emax = max
j∈Ji,i∈I

Ei,j (14)

are taken. Reasons for the specific form (13) of the linear transformation formula have been
given [11].

The G(B(2),W ) is treated similarly: ψh(W ) in expression (10) is represented as

ψh(W ) = Th−1(x), (15)

where
x =

(W −Wmin)− (Wmax −W )
Wmax −Wmin

, (16)

with
Wmin = 1, Wmax = max

j∈βJ
i
,i∈I

Wi,j . (17)

3.3 Accounting for impurity corrections

Any particular correction Ci,` (section 2.1) is either known or depends on B, N and R, and can
thus generally be represented by Ci,`(B,N ,R).

To account for the categories of correction factor considered in section 2.1, and in order to
generalize the treatment, a mixing ratio θi relating to each radionuclide of concern is introduced.
This ratio is taken as unity or zero according to whether or not radionuclide i had previously
been well-characterized, that is whether or not a reliable value (Ae)KCRV

i for the equivalent
activity (Ae)i is available. Then, expression (5) can be interpreted as

Ci,`(B,N ,R) = 1 +
∑

k∈Ki,`

Ri,`,kQi,k(B,N), (18)
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where

Qi,k(B,N) =
(Ae)

cmptd
i (B,N)

(Ae)
cmptd
k (B,N)

, (19)

and, with the superscript cmptd denoting ‘computed’,

(Ae)
cmptd
i (B,N) = θi(Ae)KCRV

i + (1− θi)(Ae)model
i (B,N). (20)

This approach has the property that a value of θi between zero and one can be chosen to reflect
the use of a previously evaluated but not totally reliable value of (Ae)i. The use of θi also results
in a simplification of the formulae used for derivatives when solving the generalized non-linear
least-squares problem and in the uncertainty evaluation (appendix B).

4 Solution characterization

4.1 Matching modelled and measured values

Let I denote the set of indices of all radionuclides of concern and Li the set of indices representing
the laboratories that have measured radionuclide i.

The current-, decay- and impurity-corrected quantity (2) is expressed as

(Ae)meas
i,` (B,D,N ,R) = Di,`Ci,`(B,N ,R). (21)

The requirement is to match in some sense the expressions (8) and (21). Both the ‘measured’
and modelled equivalent activities over all relevant radionuclides i and laboratories ` generally
depend on B, N and R. The latter activities (expression (21)) also depend on D. Matching is
achieved by estimating B in such a way that a suitable measure of closeness of the two expressions
(section 4.2) is as small as possible. However, the form of the problem is unconventional as a
consequence of the ‘measured’ equivalent activities depending on the unknown parameters B
rather than being fixed. The problem can, however, be transformed as follows.

Divide the right-hand sides of expressions (8) and (21) by Ci,`(B,N ,R). The advantage of this
simple problem transformation is that the fi,`(B,N ,R) given by

fi,`(B,N ,R) =
(Ae)model

i (B,N)
Ci,`(B,N ,R)

, i ∈ I, ` ∈ Li, (22)

which depend on B, N and R, can then be matched to the Di,`, which depend only on D.

The function fi,`(B,N ,R) will be known as the equivalent activity model for radionuclide i and
laboratory `. The vector of the fi,`(B,N ,R) will be denoted by f(B,N ,R) and known as the
equivalent activity model vector.

To reiterate, the information available for use in the determination of a match includes

1. the vector estimate D̂ of D provided by the laboratories’ measured values of the activities
of the radionuclides and by the ionization current measurements in the SIR,

2. a vector estimate B̂ of the efficiency curve parameters B, e.g. from previous work on
determining efficiency curves (see section 5.4),

3. a vector estimate N̂ of N from published nuclear reference data,

4. a vector estimate R̂, the elements of which are provided by the laboratories, of the relative
impurity activities R, and

5. the uncertainty matrices associated with the vector estimates in 1–4.
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Denote by Z the composite vector of quantities B, N and R:

ZT = [BT, NT, RT].

It is taken that D and Z are mutually independent.

4.2 Measure of deviation of model from data

4.2.1 Full formulation

If all the estimates D̂, B̂, N̂ and R̂ and their associated uncertainty matrices, discussed in
section 4.1, are to be used within the generalized non-linear least-squares regression, these es-
timates can be regarded as prior values of the corresponding quantities, and the results of the
analysis would furnish posterior estimates of these quantities. In this context, denote by Ẑ the
corresponding prior estimate of Z,

Ẑ
T

= [B̂
T
, N̂

T
, R̂

T
],

and by V
Ẑ

= diag
(
V

B̂
, V

N̂
, V

R̂

)
the uncertainty matrix associated with Ẑ.

A measure of the deviation of D and Z from their prior estimates that accounts for the provided
uncertainty information is

(D̂ −D)TV −1

D̂
(D̂ −D) + (Ẑ −Z)TV −1

Ẑ
(Ẑ −Z).

This formulation constitutes a non-linear counterpart of a Gauss-Markov measure [2].

Since the posterior estimate of D is to be equal to that of the model vector f(B,N ,R) ≡ f(Z),
this measure can be expressed as

Sfull(Z) = [D̂ − f(Z)]TV −1

D̂
[D̂ − f(Z)] + (Ẑ −Z)TV −1

Ẑ
(Ẑ −Z). (23)

A statistically valid match of model and data would be achieved by minimizing Sfull(Z) with
respect to Z to obtain the posterior vector estimate Z∗, say, of this quantity. The uncertainty
matrix V Z∗ associated with Z∗ could also be obtained as a by-product of the minimization
algorithm, from which the required uncertainty matrix V B∗ associated with B∗, the posterior
estimate of B, could be extracted.

Were the model linear in the parameters, the corresponding (linear least-squares) estimator would
be the most efficient (that is, having minimum variance) of all unbiased estimators that can be
expressed in terms of linear functions of the data (from Gauss-Markov theory). For a model
that is non-linear in the parameters, as here, that result would apply only approximately. There
may exist another estimator that is more efficient, but obtaining such an estimator would be a
challenging task.

There are two difficulties associated with the measure (23), relating to (a) the appreciable amount
of computation that would be required to minimize it, and (b) the interpretation and repercus-
sions of the results, leading to several consequences, as indicated in the following paragraph.

The approach formulates a priori the problem in a manner that respects the knowledge of
the uncertainties associated with all relevant effects. The function Sfull(Z) in expression (23)
is minimized with respect to Z = [BT, NT, RT]T to give estimates B∗ of B, N∗ of N ,
and R∗ of R. If all these estimates were to be ‘accepted’ in some sense, assuming that statistical
tests of the model were satisfied, B∗ would provide an improved definition of the efficiency
curves. Moreover, N∗ could arguably be used as replacements for the tabulated nuclear reference
data. The rationale for this statement is that further information (the SIR measurement data)
has been used, the statistical tests were satisfied (meaning there is no reason to suspect any
inconsistency), and hence the adjusted values should constitute improvements. However, it would
be unreasonable to expect that the tables of the transition energies and probabilities would be
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updated on every occasion a statistically consistent model fit was made. Therefore, one approach
could be to use the energy curve parameters B∗ so provided, but not explicitly to propose change
to the tables of nuclear reference data (although the relevant authors could be informed). Should
the model fit be statistically inconsistent with the data, an intriguing possibility is raised. It is
recommended in section 7.2 that following a failure of the consistency check, the model residuals
are used to identify radionuclide measurement data regarded as discrepant. This check would
naturally also include the nuclear reference data. As a consequence, possible erroneous values
for some transition energies and probabilities could be identified.

Similar approaches have been used to determine some nuclear data, such as atomic masses [1].

The full formulation generates a demanding problem computationally. It would appear there is
no available software for such problems.6

4.2.2 Partial formulation

Instead, therefore, an approach is used that avoids this difficulty, which has good rather than
near-optimal statistical properties. The approach does not provide V Z∗ directly. Rather, this un-
certainty matrix is obtained by a stage of uncertainty propagation once B∗ has been determined
(section 6).

The measure (23) is adapted as follows. First, the vector components N and R of Z are not
regarded as quantities for which posterior estimates are to be determined. Rather they are
set to the prior estimates N̂ and R̂ and kept fixed at these values. Second, no prior estimate
of B is used. (Such an estimate is used, however, as an initial approximation to B when
solving iteratively the problem formulated below.) Consequently, instead of the measure (23),
the measure

Spart(B) = [D̂ − f(B, N̂ , R̂)]TV −1

D̂
[D̂ − f(B, N̂ , R̂)]. (24)

is used. This measure, a function of B only, is minimized with respect to B using a reliable
generalized non-linear least-squares algorithm [2]. The resulting uncertainty matrix associated
with the estimate B∗ so determined does not, however, account for the effects of the uncertainty
matrices associated with N̂ and R̂. The manner in which such account can be taken is considered
in section 6.

In consistent cases this approach based on a partial formulation can be expected to yield only
slightly different estimates N∗ from those provided by the full least-squares formulation in sec-
tion 4.2.1.

4.3 Equation characterizing the solution

Specifically, B∗ is the B that minimizes the measure (24). At the solution, the partial derivatives
of the measure with respect to B are zero. The solution hence satisfies [26]

h(B, D̂, N̂ , R̂) ≡
(
∂f(B, N̂ , R̂)

∂B

)T

V −1

D̂
[D̂ − f(B, N̂ , R̂)] = 0, (25)

6It constitutes a generalized non-linear least-squares problem with a number of adjustable parameters equal
not just to the dimension of B (of order 10), but to the dimension of Z = [BT, NT, RT]T (of order 1000). Such
problems can be solved on today’s computers, especially if advantage is taken of the structure of the matrices
that arises in their formulation. For the problem of concern here, the Jacobian matrix (section 1.2) would be
bordered (or augmented band) [10] and the uncertainty matrix block-diagonal. Algorithms and software already
exist [10, 12] for problems with a bordered Jacobian and a diagonal uncertainty matrix. For the problem here,
with a bordered Jacobian and a block-diagonal uncertainty matrix, it seems that software is not available for such
a computation, although the technology exists for developing an implementation.
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where

∂f(B,N ,R)
∂B

=

 ∂f1/∂B1 · · · ∂f1/∂BN
...

. . .
...

∂fm/∂B1 · · · ∂fm/∂BN

 .
Vector equation (25), constituting a system of non-linear algebraic equations, is not generally
solved as such for B = B∗, but Spart(B) in expression (24) is minimized using a generalized non-
linear least-squares algorithm to provide B∗. Equation (25) is, however, important regarding
uncertainty evaluation for the solution of the problem (section 6).

5 Model parameter determination

5.1 General

The generalized non-linear least-squares algorithm mentioned in section 4.2 is iterative. Starting
with an initial approximation to B, at each iteration it constructs what is generally an improved
approximation. The sequence of approximations ultimately converge to B∗. At each iteration,
the model deviation

s(B,D,N ,R) = D − f(B,N ,R) (26)

and the partial derivatives of that deviation with respect to B are evaluated for the current value
of B, with

D = D̂, N = N̂ , R = R̂.

5.2 First-order derivative evaluation

These derivatives constitute the Jacobian matrix

J(B) =
∂s(B, D̂, N̂ , R̂)

∂B
= −∂f(B, D̂, N̂ , R̂)

∂B
.

The model vector f(B,N ,R) has components fi,`(B,N ,R) and the model deviation vec-
tor s(B,D,N ,R) has component deviations si,`(B,D,N ,R), with respect to the elements
of the efficiency curve parameter vector B, the decay-corrected measurement vector D, the nu-
clear reference data vector N , and the relative impurity activities vector R. The components
are related by

si,`(B,D,N ,R) = Di,` − fi,`(B,N ,R) (27)

where, to recapitulate, Di,` is an element of D, and fi,`(B,N ,R) is equal to the quotient of
the model function (Ae)model

i (B,N) and the parametrized correction term Ci,`(B,N ,R). The
first set of such derivatives is needed when using an algorithm to solve the generalized non-linear
least-squares problem to determine a vector estimate B∗ of B when the quantities D, N and R
are set to their best prior estimates (section 4.2.2). All these derivatives are needed as part of
the evaluation of the uncertainties associated with B∗.

The various first-order derivatives are given in appendix B.

5.3 Use of a generalized non-linear least-squares solver

The solution of the generalized non-linear least-squares formulation of section 4.2.2 is carried
out using a high-quality library software implementation [24] of a recognized algorithm for such
problems.

Such an algorithm requires for its operation:

1. A procedure for calculating the residual deviations s(B,D,N ,R) given B, D, N and R.
This procedure is based on expressions (27), (22), (12)–(17), (18)–(20);
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2. A procedure for calculating the first-order partial derivatives of these deviations with re-
spect to the elements of B. Appendix B gives details.

3. An approximation to the required estimate of B, to initialize the iterative solution proce-
dure used by the algorithm. Section 5.4 gives details.

Let (B(1))∗ denote the estimate of B(1), and (B(2))∗ that of B(2), given by minimizing Spart(B)
in expression (24). Let B∗ = {[(B(1))∗]T, [(B(2))∗]T}T.

The generalized non-linear least-squares software also provides the uncertainty matrix V B∗ as-
sociated with B∗. This uncertainty matrix accounts only for V

D̂
, and not V

N̂
and V

R̂
.

5.4 Initial approximations to the model parameters

The following approach is used to provide initial approximations to the model parameters B:

1. Provide a set of points (Es, εs), s = 1, . . . , q, adequately covering the energy spectrum of
concern. Previously published curves or preliminary results of Monte Carlo simulations or
points derived from single photon emitters may be used for this purpose.

2. Solve the (unweighted) linear least-squares problems of fitting the function

n∑
h=1

B
(1)
h φh(lnE)

to the data (Es, ln(εs/Es)), s = 1, . . . , q, to obtain approximations to the values of the B(1)
h .

In carrying out this step, use the approach described in section 7.1 to provide an appropriate
value for n.

3. Carry out the counterpart of Steps 1 and 2 for the electron efficiency curve to obtain
approximations to the values of the B(2)

h .

6 Model parameter uncertainties

6.1 General

This section is concerned with the evaluation of the uncertainty matrix V B∗ associated with the
vector estimate B∗ of the model parameter vector B. The evaluation constitutes the propagation
of the uncertainties associated with all the data used in the least-squares modelling, namely, the
vector D̂ containing the set of the laboratories and SIR decay-corrected measurement data
used, the vector N̂ of relevant published values of the nuclear reference data N used, and
the estimate R̂ of the relative impurity activities vector R used. For this purpose, the vector
estimates D̂, N̂ and R̂ are available, as are the associated uncertainty matrices V

D̂
, V

N̂

and V
R̂

.7

6.2 Implicit model

The contribution to V B∗ from V
D̂

is already provided as part of the least-squares solution
process (section 5.3). That contribution is identical to that obtained by uncertainty propagation
as considered here applied to V

D̂
alone.

7The elements of D may not be independent of those of N , but information on the correlations is not readily
available, other than that the effects would be expected to be small. Therefore, consideration is not given to this
form of correlation, although an extension of the analysis here is possible should they be quantifiable.
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Since B is related to D, N and R through a least-squares minimization process, rather than
there being an explicit expression for B in terms of these quantities, B satisfies an implicit vector
function

h(B,D,N ,R) = 0, (28)

given by differentiating with respect to B the function to be minimized and equating the result
to 0.

The solution B∗ is the B satisfying equation (28) after setting D, N and R to their best prior
estimates.

The form of the vector function h is identical to that in equation (25) except that the quan-
tities D, N and R rather than the estimates D̂, N̂ and R̂ are involved, but the uncertainty
matrix V

D̂
associated with D̂ is retained:

h(B,D,N ,R) ≡
(
∂f(B,N ,R)

∂B

)T

V −1

D̂
[D − f(B,N ,R)] = 0.

The least-squares solution B∗ satisfies equation (25) per se, and V B∗ satisfies the matrix equa-
tion8

HBV B∗HT
B −

∑
α=D,N ,R

HαV α̂HT
α

∣∣∣∣∣∣
B=B∗,D=D̂,N=N̂ ,R=R̂

= 0, (29)

where the Hessian matrices HB and Hα

HB =
∂h

∂B
, Hα =

∂h

∂α
.

Expressions for HB and the Hα are given in appendix C.

7 Validation of model and uncertainty evaluation

Unless the model itself and aspects relating to the model are validated, the results produced may
not be reliable. Therefore, attention is paid to the following issues:

1. The choice of models from families of (e.g. polynomial or spline) models;

2. Consistency of model and data;

3. Uncertainty evaluation;

4. Adequacy of quadrature rules (needed in forming the integrals in expression (11)).
8Equation (29) is obtained by applying the treatment of real implicit multivariate models in a best-practice

guide on uncertainty evaluation [17]. In the notation of that guide, the model is

h(Y , X) = 0,

where X is a vector input quantity and Y a vector output quantity. Given an estimate X̂ of X, the estimate Ŷ
of Y is given by solving

h(Ŷ , X̂) = 0.

In terms of the Jacobian matrices (Jacobians with respect to h, but Hessians with respect to f),

J(X̂) =
∂h

∂X
, J(Ŷ ) =

∂h

∂Y
,

the uncertainty matrix V
Ŷ

associated with Ŷ is related to that, V
X̂

, associated with X̂, by

J(Ŷ )V
Ŷ

JT(Ŷ ) = J(X̂)V
X̂

JT(X̂),

a system of linear equations that is solved for V
Ŷ

. The extension of this result when X corresponds to the set

of mutually independent vector quantities D, N and R, and Y to B, constitutes equation (29). A numerical
procedure for solving equation (29) for V B∗ is given in appendix D.
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7.1 Choice of models from model families

The problem as posed requires choices for the values of n and nβ, the orders (numbers of coeffi-
cients) in the models (10). It is necessary to deduce suitable orders to generate a model that is
consistent with the data.

For problems in fields where there is just one model curve (strictly a family of models) containing
a number of coefficients to be determined, a common approach [13] is to fit the model a number
of times, with increasing order of model, namely with 1, 2, . . . coefficients. For each model order,
the chi-squared ratio, defined as the ratio of the observed chi-squared value and a critical value
of the chi-squared distribution is formed. The observed chi-squared value is the value Sfull(Z)

in expression (23) evaluated at the solution Z∗ = ((B∗)T, N̂
T
, R̂

T
)T.9 The chi-squared distri-

bution used is that for a degrees of freedom equal to the number of data less the number of
model parameters. The critical point of the chi-squared distribution is that corresponding to
an appropriate percentile of that distribution. If the family of models is appropriate for the
data and the associated uncertainties, it can be expected that, for a sufficiently high order, the
chi-squared ratio will saturate to a value approximately equal to unity. The model of lowest
order corresponding to this saturation level can be taken as the required model.

For the models in expression (11), a different strategy is required, because a choice of two model
orders is to be made. The following approach is used. Select provisional values nmax and nmax

β

for the largest plausible values of n and nβ to be considered, for example, based on previous work
on obtaining efficiency curves. There are nmax × nmax

β pairs of values in all. For each possible
pair from the nmax × nmax

β pairs, fit the corresponding model and form the chi-squared ratio.
Arrange these values into a rectangular array of dimensions nmax × nmax

β . If the chi-squared
ratio saturates to unity within the body of the array, the provisional maximum orders can be
regarded as sufficient. Otherwise, choose one or two larger orders, as appropriate, and carry out
the necessary additional computations to complete the larger array.

Once an array containing saturation has been obtained, select appropriate orders. The strategy
for this selection evolves as experience is gained with the use of the models. Since the electron
efficiency curve is simpler in form, a polynomial of low order, such as three, would be expected
to suffice in this case. A polynomial of higher order would be required in the modelling of the
photon efficiency curve. This information helps to inform the decision regarding choices of model
order.

In practice, this statistical approach to model selection was not implemented in the software
presented in section 9, since it was straightforward to handle this aspect manually.

7.2 Consistency of model and data

This section provides a test, under the assumption of normality of the various quantities involved,
for the consistency of the model and the data.

Form the value of the measure (23) at the solution B = B∗. This value is a computed value
of chi-squared for ν = m − n − nβ degrees of freedom, the number of measured data (the
dimension of D) less the number of model parameters. If the probability of the value of the chi-
squared distribution for ν degrees of freedom exceeding this computed chi-squared value is less
than 0.0001, the consistency check is regarded as failed. The use of this probability corresponds
to four standard deviations under a normality assumption. This check is actually less stringent
than that often recommended in the context of key comparison data evaluation [15, 34].

9It is essential to use Sfull(Z) rather than Spart(B) in expression (24). The latter only takes uncertainties

associated with D̂ into account, whereas the former also accounts for those associated with N̂ and R̂.
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7.3 Determining a consistent subset

A normalized deviation is defined as a model deviation in expression (26) normalized by the
standard uncertainty associated with this deviation. The corresponding component of D̂ is
classified as discrepant if the magnitude of this normalized deviation exceeds 4. This threshold
has been adopted by the Section II of the Consultative Committee for Ionizing Radiation [33].

Approaches have been used in key comparison data evaluation [21, 34] for determining a consis-
tent subset based on a successive exclusion strategy. Such a strategy involves excluding one by
one those measurement results judged to be discrepant until a consistent subset is obtained. For
the present problem, a variant of that procedure is used:

1. Set the current subset ID to the set of indices relating to the vector D of equivalent activity
measurement quantities for the radionuclides and laboratories of concern;

2. Fit the model to the data identified by ID;

3. Carry out the consistency test described in section 7.2 for this data;

4. Finish if the test is satisfied, accepting ID as identifying a subset of consistent data and
the corresponding B∗ as estimates of the parameters of the efficiency curves;

5. Identify the most discrepant components of D̂ in the subset, namely those for which the
magnitude of the normalized deviation exceeds four;

6. Exclude these measurement components from further consideration: remove the index of
these results from ID;

7. Return to step 2.

Normally, this procedure is cycled once or twice. In the software implementation SIRIC (sec-
tion 9), the user has the option to perform just one cycle, in which case a computed chi-squared
value for the whole data set is provided, together with a list of discrepant components of D̂.
This option corresponds to steps 1–5 (executed once).

7.4 Uncertainty check by Monte Carlo calculation

Arguably the simplest form of validation of the uncertainties provided by direct evaluation is the
use of the propagation of distributions, implemented using a Monte Carlo method (MCM). To
apply MCM, first a joint probability density function (PDF) is assigned to the input quantity N .
Invoking the maximum entropy principle implies that a Gaussian PDF should be so assigned.
This Gaussian PDF has vector expectation N̂ and covariance matrix V

N̂
. Also, on a similar

basis, assign PDFs to the vector quantities R of relative radioactive impurities and D of the
decay-corrected measurement quantities.

The Monte Carlo calculation consists of a large number NMC of trials. Each trial comprises
the determination of a realization of the vector quantity B given a realization of the vector
values of N , R and D. Each realization of the vector quantities N , R and D is given by
sampling randomly from the above joint PDFs. The NMC realizations of the vector value of B
are assembled into an (n+nβ)×NMC matrix. Let BMC denote this matrix after correcting each
row by its arithmetic mean. Then, BMC(BMC)T provides an approximation to V

B̂
, which is

compared with V
B̂

as provided.

If the comparison is favourable, it may reasonably be concluded that the software implementa-
tion is sound. There may be two reasons for an unfavourable comparison. One, the software
implementation is inadequate. Two, the extent of the non-linearity of the model is such that the
above approximation to V

B̂
is better than V

B̂
itself because of the non-linearity of the model.

(The law of propagation of uncertainty is based on a linear approximation.) See section 11.
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7.5 Adequacy of quadrature rule

Consider the use of a quadrature rule for carrying out the integrations required when evalu-
ating (Ae)model

i (B,N) for any particular values of B in expression (11). The results of the
overall computation can subsequently be confirmed, or re-determined, as appropriate, using a
rule with a larger number of quadrature rule nodes. The extent of the agreement that should be
sought would be a numerical precision that is at least an order of magnitude smaller than the
uncertainties associated with the corresponding results.

The manner in which the integrals in expression (11) are evaluated numerically would ideally take
into account the nature of the integrands and how the energy distribution functions Si,j(W ) are
specified. However, to avoid the potential difficulties10 associated with the choice of an adaptive
quadrature rule, a fixed-point rule, e.g. the trapezoidal rule, with a large number of nodes, could
be used.

8 Determination of the required quantities and the associated
uncertainty evaluation

The primary quantities of interest are

• parameters of the photon and electron efficiency curves,

• corrected measured equivalent activities, and

• modelled equivalent activities.

This section provides the method used to obtain the estimates and associated standard uncer-
tainties of these quantities. All this information can be obtained once parameter vector B of the
efficiency curves has been estimated and the associated uncertainty matrix evaluated.

8.1 Parameters of the photon and electron efficiency curves

The solution provided by the generalized non-linear least-squares algorithm constitutes an es-
timate B∗ of the efficiency curve parameter vector B. This estimate can be used to obtain
estimates of quantities that depend on B such as the modelled equivalent activities (section 8.3).

The generalized non-linear least-squares algorithm provides the contribution from the uncertainty
matrix V

D̂
associated with D̂, to the uncertainty matrix V B∗ associated with B∗.

Section 6 describes the manner in which the contributions from the uncertainty matrices V
N̂

and V
R̂

associated with N̂ and R̂ can also be taken into account following the determination
of the least-squares solution.

8.2 Corrected measured equivalent activity

Expression (21) is used for each radionuclide considered and each laboratory concerned to provide
corrected measured equivalent activities based on the laboratory and SIR measured values and
the modelled correction factor. The estimate provided by expression (21) based on measurement
and modelled correction factors for radionuclide i and laboratory ` is

10Difficulties arise because an adaptive quadrature rule induces discontinuities in the function that can adversely
affect the behaviour of the optimization algorithm used to determine the model parameters. Each evaluation of
the function would be influenced by the numerical precision, δq, say, prescribed for the quadrature scheme. Each
function value will be accurate to within a quantity depending on δq, and thus not be smooth, with a deleterious
effect on convergence (the convergence proofs for the method would no longer apply), and even introduce spurious
local minima in the neighbourhood of the required global solution.
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(Âe)meas
i,` = D̂i,`Ci,`(B∗, N̂ , R̂). (30)

The application of the law of propagation of uncertainty to expression (21) yields the standard
uncertainty u((Âe)meas

i,` ) given by

u2((Âe)meas
i,` ) = C2

i,`(B
∗, N̂ , R̂)u2(D̂i,`)+D̂2

i,`

[(
∂Ci,`(B,N ,R)

∂Z

)T

V Z∗
∂Ci,`(B,N ,R)

∂Z

]∣∣∣∣∣
Z=Z∗

,

(31)
where here

Z = (BT,NT,RT)T, Z∗ = ((B∗)T, N̂
T
, R̂

T
)T.

The partial derivatives required in expression (31) are given in appendix B.2.1.

8.3 Modelled equivalent activity

Estimates of modelled equivalent activities are provided by expression (8). For radionuclide i,

(Âe)model
i = (Ae)model

i (B∗, N̂). (32)

The application of the law of propagation of uncertainty to expression (8) yields the standard
uncertainty u((Âe)model

i ) given by

u2((Âe)model
i ) =

(∂(Ae)model
i (B,N)
∂Z

)T

V Z∗

(
∂(Ae)model

i (B,N)
∂Z

)∣∣∣∣∣∣
Z=Z∗

, (33)

where here
Z = (BT,NT)T, Z∗ = ((B∗)T, N̂

T
)T.

The partial derivatives required in expression (33) are given in appendices B.2.2 and B.2.3.

9 Summary of computational procedure

This section describes the computational procedure, relating its elements to the various sec-
tions and formulations in this work. This procedure has been implemented as software known
as SIRIC [32], using the Fortran 95 language and the NAG Library(http://www.nag.co.uk/).
There are some differences between this implementation and the described approach, as indi-
cated in section 11.

Overall, the procedure constitutes the steps:

1. Data input;

2. Efficiency curve generation;

3. Uncertainty evaluation for the efficiency curve parameters;

4. Model-data consistency testing and data exclusion;

5. Efficiency curve interpolation and associated uncertainty evaluation;

6. Results output.

The first five of these steps are subdivided into action points as follows.

24



Data input

1. Read the control data corresponding to items such as the names of the data files holding the
activity measurement data and the nuclear reference data, and also the maximum orders
of polynomial to be used in the model.

2. Read nuclear reference data constituting {Ei,j : j ∈ Ji}, {Pi,j : j ∈ Ji}, {Wi,j : j ∈ βJi}
and {βPi,j : j ∈ βJi}, for all relevant radionclides i, the associated standard uncertainties,
and other relevant items (section 2.1).

3. Read measurement data constituting the decay-corrected measurement data Di,` corre-
sponding to the activity measurement data Ai,` provided by the laboratories multiplied by
the SIR measurement value Mi,`, and the associated standard uncertainties u(Di,`) (sec-
tion 2.1). Also read the impurity activities and their associated standard uncertainties and
the relevant radionuclide and impurity names.

4. Read key comparison reference data, namely, the KCRVs for the radionuclides of concern
and their associated uncertainties (section 2.4). Also read the mixing ratios θi (section 3.3),
usually equal to zero or one.

5. Read initial efficiency values (Es, εs) needed to start the non-linear least-squares minimiza-
tion. See section 5.4.

6. Perform other operations including the determination of atomic number and mass for the
relevant radionuclides, which are needed for the evaluation of the shapes of the beta spec-
tra Si,j .

Efficiency curve generation

1. Transform the data, namely (a) transform the gamma energies to logarithmic units,
(b) transform the electron energies to natural units, and (c) normalize both transformed en-
ergies to forms suitable for polynomial approximation based on a Chebyshev representation
(section 3.2.2).

2. Link the nuclear reference data to the decay-corrected measurement data, and the nuclear
reference data and the KCRV data to the impurity data for each measurement.

3. Provide initial approximations to the efficiency curve parameters by applying the method
of section 5.4.

4. Solve a generalized non-linear least-squares problem to provide estimates of the efficiency
curve parameters (section 5.3), using the initial approximations as a starting point.

Uncertainty evaluation for the efficiency curve parameters

1. Evaluate, at the solution of the generalized non-linear least-squares problem, the Jacobian
matrices associated with the model equations for each of the input quantities having an
associated uncertainty (appendix B).

2. Propagate the uncertainty matrices associated with the relative activity impurities and the
nuclear reference data, using the evaluated Jacobian matrices, through the generalized non-
linear least-squares model to provide the uncertainty matrix associated with the efficiency
curve parameters (section 6). This propagation, together with the action above, constitutes
an implementation of the partial formulation (section 4.2.2).
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Model-data consistency and determination of a consistent data subset

1. Test for consistency of the fitted model and the data (section 7.2).

2. Determine a consistent subset of the data by employing a data exclusion strategy (sec-
tion 7.3).

Efficiency curve interpolation and associated uncertainty evaluation

1. Produce the efficiency curves defined by the parameter estimates B∗ (section 3.2.1).

2. Determine the modelled equivalent activity corresponding to each radionuclide and evaluate
the associated standard uncertainty (section 8.3).

3. Determine the measured equivalent activity corrected for impurities corresponding to each
data value and evaluate the associated standard uncertainty (section 8.2).

10 Results

10.1 Application of the procedure to the SIR

The SIRIC software, which applies the procedure described in this monograph, was used to
produce the efficiency curves of the SIR. About 275 input Ameas

e values covering 40 different
radionuclides, including four pure beta emitters, were used. Radionuclides for which fewer than
two SIR results based on primary standardizations are available were excluded from the min-
imization, but were used to test the predictive capabilities of SIRIC. The radionuclides 65Zn,
67Ga, 99Mo, 153Gd, 169Yb, 177Lu and 201Tl were excluded because either the SIR values or the
nuclear data were not considered sufficiently robust. On the other hand, the 125I SIR results
are essential to constrain the photon efficiency curve at low energy, even though these results
were not considered sufficiently reliable to establish the 125I KCRV. Similarly, the 124Sb SIR
data are used in the minimization to constrain better the high energy part of the photon curve,
despite these data exhibiting discrepancies that are perhaps related to the different standard-
ization methods. As the ionization chamber response is not expected to be the same for gases
and β+ emitters, those radionuclides were also excluded, except 56Co that is needed to constrain
the photon efficiency curve at high energy.

The nuclear data used were taken from the first two volumes of Monographie BIPM-5 [4], the
Decay Data Evaluation Project 2004 database [25] and, when not otherwise available, from
the 2004 Evaluated Nuclear Structure Data File [35]. In order to speed up the execution of
the software, a 20 keV cut-off for photon energy, a 10−5 cut-off for photon intensities and 10−3

cut-off for beta emission probabilities were applied. Indeed, these choices of cut-off values enable
a saving of time that would otherwise be spent in handling radiations that would anyway have
a negligible effect on the results.

The chosen cut-off values should be optimized for each type of ionization chamber. In the case
of the SIR, the cut-off should not be higher than 20 keV in order to include the 109Cd x-rays.
A run of SIRIC with one preliminary cycle to exclude discrepant data (see section 7.3) takes
about two hours with a Pentium 4 (2 GHz) processor, most of this time being dedicated to the
uncertainty calculation related to the nuclear data due to the volume of data involved.

As indicated in section 5.4, initial efficiency values are needed to start the least-squares minimiza-
tion. The values used for the photon efficiency curve of the SIR are given in table 1 and are based
on quasi-monoenergetic photon emitters. Indeed, for such radionuclides, the efficiency value εs
at energy Es can easily be calculated from εs = 1/ ((Ae)meas

i Ps), with Es = Ei,j and Ps = Pi,j .
For a radionuclide such as 60Co, emitting only two photons with close energies E1 and E2 and
intensities P1 and P2,

Es =
E1P1 + E2P2

P1 + P2
and Ps = P1 + P2.
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Table 1: Initial values used for the photon efficiency curve.

Radionuclide Es /keV εs
— 30.0 1.00× 10−8

241Am 59.5 1.35× 10−6

109Cd 88.0 3.39× 10−6

57Co 123.7 6.16× 10−6

99Tcm 140.5 7.34× 10−6

47Sc 159.4 8.95× 10−6

111In 209.0 1.26× 10−5

51Cr 320.1 2.08× 10−5

85Sr 514.0 3.40× 10−5

137Cs 661.7 4.27× 10−5

95Nb 765.8 4.84× 10−5

54Mn 834.8 5.20× 10−5

46Sc 1 004.9 6.01× 10−5

60Co 1 252.9 7.09× 10−5

88Y 1 380.0 7.50× 10−5

24Na 2 061.3 1.01× 10−4

For the electron efficiency curve, the initial values were taken from the curve obtained by the
iterative method [31]. Although in the iterative method, beta spectra were replaced by delta
functions at the mean beta energy, the resulting efficiency values were found satisfactory as initial
values for SIRIC.

The choice of orders for the ‘photon polynomial’ and the ‘electron polynomial’ in the model was
based on the chi-squared ratio

χ2
obs

χ2
crit

,

where χ2
obs is the observed chi-squared value and χ2

crit is the critical value of the chi-squared dis-
tribution for the appropriate degrees of freedom ν (section 7.1). Relevant results for appropriate
polynomial orders that led to the orders selected are shown in table 2. The different values for
the degrees of freedom ν are due to different numbers of measurement results excluded at the
end of the first cycle of SIRIC (section 7.3).

Table 2: Chi-squared values, chi-squared ratios and degrees of freedom for relevant orders n
and nβ, respectively, of the ‘photon polynomial’ and the ‘electron polynomial’ in the model.

Polynomial orders nβ = 4 nβ = 5 nβ = 6
n = 8 χ2

obs 400 399 383
ν 234 234 233
χ2

crit 323 323 322
χ2 ratio 1.24 1.24 1.19

n = 9 χ2
obs 366 367 350
ν 234 234 230
χ2

crit 323 323 318
χ2 ratio 1.13 1.14 1.10

n = 10 χ2
obs 366 367 350
ν 233 233 229
χ2

crit 322 322 317
χ2 ratio 1.14 1.14 1.10
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The cases nβ = 6 with n = 9 and 10 were excluded from further consideration because the
corresponding electron efficiency curves diverge at high energy. Since order 10 for the photon
polynomial does not improve the chi-squared ratio, n = 9 is selected. For the electron polynomial,
nβ = 5 is preferred to nβ = 4 since the corresponding fifth-order electron efficiency curve displays
a behaviour closer to preliminary Monte Carlo simulation results [32].

The values of the parameter vector B∗ obtained with n = 9 and nβ = 5 are listed in table 3.
The uncertainty values given are the square root of the diagonal elements of the uncertainty
matrix VB∗ . The corresponding photon efficiency curve F ((B(1))∗, E) and electron efficiency
curve G((B(2))∗,W ) (cf. section 3.2.1) are shown in figures 1 and 3. The energy ranges covered
are [20 keV, 3 866.14 keV] and [1, 7.93] for the photon energy E and the reduced total electron
energy W respectively.

Table 3: Values and uncertainties of the efficiency curve parameters (B(1)
h )∗ and (B(2)

h )∗ obtained
with n = 9 and nβ = 5.

Photon efficiency curve Electron efficiency curve
h (B(1)

h )∗ u((B(1)
h )∗) (B(2)

h )∗ u((B(2)
h )∗)

1 −37.84 0.05 −30.2 0.3
2 3.91 0.04 4.76 0.18
3 −3.33 0.05 −0.6 0.2
4 2.07 0.04 0.61 0.10
5 −1.28 0.04 −0.62 0.09
6 0.71 0.02
7 −0.35 0.02
8 0.128 0.009
9 −0.049 0.006

Figure 1: SIR photon efficiency curve.

It should be noted that these results were obtained after data exclusion carried out automatically
by SIRIC following procedure 7.3. At the end of the first cycle, the observed chi-squared value
was 502 with ν = 240 and SIRIC identified 6 SIR results to be excluded (one result for each of
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the following radionuclides: 111In, 124Sb, 134Cs, 137Cs, 106Ru, 204Tl).

The photon efficiency function obtained, scaled by 6× 10−8E, that is F ((B(1))∗, E)/6× 10−8E,
is shown in figure 2 (upper) (cf. section 3.2.1). The relative standard uncertainty associated with
the curve is shown with the ordinate on the right-hand side.

Figure 2: SIR photon efficiency curve: comparison of the curve obtained applying the present procedure
(SIRIC software) with the curve published in 2002 based on the iterative method [31].

Figure 2 (upper) also shows, for comparison, the curve obtained by the iterative method (sec-
tion 1) [31]. Figure 2 (lower) shows the ratio of both curves and their combined standard
uncertainty. Both curves agree within one standard uncertainty except at high energy, where
the SIRIC curve seems to display inappropriate behaviour due to the lack of data to constrain
the minimization at high energy. It should be noted that the SIRIC curve behaves satisfactorily
at low energy, as opposed to the 2002 curve that was negative below 30 keV.
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Figure 3: SIR electron efficiency curve.

The electron efficiency curve (figure 3) displays a slight decrease at high-energies that is non-
physical. This decrease could be related to the approximate beta spectrum shapes used for
non-unique transitions (see section 11.3 and reference [32]).

Figure 4 compares modelled equivalent activity values and measurement results. The reasons for
discrepancies between modelled and measured equivalent activities can be problems in the SIR
results, in the nuclear data or in the modelled efficiency curves. The larger spread observed in
figure 4 for strong beta emitters (open squares) is related to the lack of SIR data for pure beta
emitters, and consequently, the large uncertainty associated with values of the modelled electron
efficiency curve. The results for all other radionuclides used in the minimization are in agreement
within one or two standard uncertainties.

It is interesting to note that the modelled equivalent activities for 103Ru, 85Sr, 134Cs, 137Cs
and 95Nb, which all emit photons mainly between 490 keV and 770 keV, seem to be slightly
overestimated. This systematic behaviour, which was already present in [31], is difficult to
understand.

Figure 4 also shows that SIRIC does not reproduce the SIR results for strong β+ emitters, as
expected, due to the extended source effect. Discrepancies observed between the predictions
of SIRIC and the measured equivalent activities are discussed below (see also reference [32]):

• For 56Mn, 140Ba and 243Am the problem may come from the measurement results or the
nuclear decay data. As there is only a single SIR result for each of these radionuclides, it
is difficult to draw a conclusion;

• The discrepancy observed for 65Zn is due to the nuclear data. Indeed a new SIRIC predic-
tion based on a more recent evaluation of 65Zn decay data [3] is in perfect agreement with
the SIR measurement results (circle in figure 4);

• The discrepancy for 153Gd is probably due to the nuclear data. This view is supported
by the fact that for 153Sm, which presents a similar photon emission, no discrepancy is
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Figure 4: Comparison of modelled equivalent activity values and measurement results (the KCRV when
available). Each bar represents ±1 standard uncertainty associated with the indicated value at the centre
of the bar. Radionuclides used as input to the minimization process are indicated by squares, with
(a) open squares denoting pure β emitters or radionuclides with a contribution of the beta emission to
the ionization current larger than 15 %, and (b) solid squares denoting the remainder (the bulk) of the
radionuclides used as input. Predictions of the SIRIC program for other radionuclides are indicated by
asterisks or triangles for strong β+ emitters. The circle indicates a second prediction for 65Zn using a
recent re-evaluation of its decay-scheme parameters.

observed. The efficiency curve therefore provides motivation to investigate the decay data
of that radionuclide;

• For 177Lu the two SIR results available do not agree with each other. The SIRIC prediction
is in excellent agreement with one of those results;

• The case of 201Tl is complex and discussed in reference [32].

10.2 Application of the procedure to other ionization chambers

The SIRIC software has also been applied successfully to an ionization chamber similar to that
of the SIR, but filled with argon rather than nitrogen. Although the shape of the photon
efficiency curve was very different, particularly at low energy, SIRIC succeeded in reproducing
the measurement data using a polynomial of order 8 ([32], and paper in preparation).

This further application demonstrates the flexibility of the software, which is related to the fact
that any ionization chamber is expected to show a linear dependence at high photon energy so
that the SIRIC model for photon efficiency curve should be appropriate. Nevertheless, tests of
SIRIC for various types of ionization chambers would be welcomed. It cannot be excluded that
in some cases a different model could enable an adjustment to the data to be made using fewer
parameters.

Finally, it has been shown in the literature [22] that ionization chambers with thin outer walls
and surrounded by lead shielding may show a discontinuity in the photon efficiency curve at the
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level of the Pb x-rays K-edge energy. In such a case, the model in SIRIC should be modified but
this would have no fundamental consequence on the formulation of the problem to be solved and
thus on the procedure applied to find the solution.

11 Conclusions

11.1 Problem formulation

The problem of modelling the photon and electron efficiency curves of an ionization chamber,
as part of the SIR (International Reference System for activity measurements of γ-ray emitting
radionuclides), has historically been solved using an iterative approach. The approach is iterative
in order to deal with the multi-photon emitters. The iteration also relates to adjusting the mea-
sured equivalent activities to account for impurities, so that a match can be made with a model
depending on the parameters of the efficiency curves by, in turn, adjusting these parameters. In
this work, the measured data are not adjusted, but the model itself incorporates the recipro-
cal of the adjustment. The efficiency curves are expressed empirically, since no physical forms
are available. However, they are represented in a way that ensures that whatever the values of
the adjustable parameters defining them may be, they remain physically possible (positive and
tending to zero at low energy).

11.2 Problem solution

The nature of the formulation means that the efficiency curve parameters can be estimated us-
ing a conventional mathematical algorithm for generalized non-linear least-squares minimization,
and, moreover, the uncertainty matrix associated with these estimates can be evaluated. How-
ever, treating the full formulation of the problem would be computationally prohibitive, since it
involves solving not only for the efficiency curve parameters but also for improved estimates of the
nuclear data and other quantities. Therefore, a partial formulation is used that can be expected
to provide good estimates of the efficiency curve parameters. It is, however, only directly capable
of providing estimates of the efficiency curve parameters, and the associated uncertainties that
are a consequence of the uncertainties associated with SIR equivalent activity data. Therefore,
the law of propagation is applied to the measurement model defined by the generalized non-linear
least-squares minimization to obtain the contributions from the uncertainties associated with the
nuclear data and other input quantities.

11.3 Scope for further work

The account here does not describe the propagation of the uncertainties associated with the
elements of K̂ as their influence is small compared with those of D̂, N̂ and R̂. However, SIRIC
actually carries out this propagation although the analysis is not included here.

The emission probabilities Pi,j for a given radionuclide i are regarded here as independent.
However, SIRIC takes account of the correlation associated with the normalization factor when
emission probabilities are expressed in relative terms ( Pi,j = ηiIi,j). The real situation is consid-
erably more complicated and in general there will be other appreciable unquantified correlations
present. Should information on these correlations be published, the model could be refined to
take account of this new data.

It would also be appropriate to consider further correlations that are expected to be present
in some cases. Although there is negligible correlation associated with the elements of D̂ for
the SIR, correlation effects could be appreciable for a NMI where all primary measured values
are obtained using the same method, the same balance, etc. A similar comment applies to
correlations associated with the elements of D̂ and N̂ , an individual correlation being associated
with an element of D̂ and an element of N̂ ; indeed, an NMI could use nuclear data that it itself
measured using the same primary measured values as those included in D̂.
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In some cases the use of the beta energy distribution functions (section 2.3) provided in tabular
form may be preferred. In these cases, either the tabular data can be represented by a suitable
mathematical function or an appropriate quadrature rule applied to carry out the integration
numerically [16] required in evaluating the model (11) in section 3.2.1.

The formulae in appendix B for certain derivatives are implemented using (central) finite-
difference formulae. Since this aspect accounts for almost all the computer time required to
run the software, replacement of the finite-difference formulae by analytical expressions would
give an appreciable improvement in this regard. This aspect would be a useful future develop-
ment.

The uncertainty calculation described here is complicated, involving applying a generalization of
the law of propagation of uncertainty to a vector measurand defined by a generalized non-linear
least-squares solution. An implementation of the uncertainty check by Monte Carlo calculation
(section 7.4) would be valuable in validating this aspect of the work.
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A Glossary

Symbol Definition
A activity of solution at reference date
Ai,` measured value for activity of radionuclide i provided by laboratory `
Âi,` estimate of Ai,`

Ae generic equivalent activity (i.e. current-, decay- and impurity-corrected) of
solution at reference date

(Ae)i equivalent activity (i.e. current-, decay- and impurity-corrected) for ra-
dionuclide i

(Ae)
cmptd
i (B,N) computed parameter-dependent equivalent activity (i.e. current-, decay-

and impurity-corrected) for radionuclide i given by (Ae)
cmptd
i (B,N) =

θi(Ae)KCRV
i + (1− θi)(Ae)model

i (B,N)
(Ae)meas

i,` equivalent activity (i.e. current-, decay- and impurity-corrected) corre-
sponding to measured value Ai,`

(Âe)meas
i,` estimate of (Ae)meas

i,` equal to (Ae)meas
i,` (B∗, D̂, N̂ , R̂)

(Ae)meas
i,` (B,D,N ,R) quantity-dependent equivalent activity corresponding to measured value

Ai,`

(Ae)model
i (B,N) quantity-dependent model value for equivalent activity of radionuclide i

(Âe)model
i estimate of (Ae)model

i (B,N) equal to (Ae)model
i (B∗, N̂)

(Ae)KCRV
i published KCRV for equivalent activity of radionuclide i

B column vector ((B(1))T, (B(2))T)T of adjustable parameters
B(1) column vector of adjustable parameters in empirical model for photon effi-

ciency function
B(2) column vector of adjustable parameters in empirical model for electron

efficiency function
B

(1)
h element of B(1)

B
(2)
h element of B(2)

B̂ prior estimate of B
B∗ posterior estimate of B

(B(1))∗ posterior estimate of B(1)

(B(2))∗ posterior estimate of B(2)

C generic impurity correction factor
Ci,` impurity correction factor for radionuclide i and laboratory `
Ĉi,` estimate of Ci,`

Ci,`(B,N ,R) quantity-dependent impurity correction factor for radionuclide i and labo-
ratory `

c speed of light
D generic current- and decay-corrected measurement quantity, i.e., equivalent

activity not corrected for impurities
D vector of the Di,` for relevant i, `
D̂ estimate of D
Di,` value of D for radionuclide i and laboratory `
D̂i,` estimate of Di,`

E energy of photon
Ei,j energy associated with photon j for radionuclide i
Emax right-hand endpoint of photon energy range over which modelling is carried

out
Emin left-hand endpoint of photon energy range over which modelling is carried

out
Es sth initial photon energy value
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Symbol Definition
Fs quotient of ionization currents of radium source numbers 5 and s
F (B(1), E) empirical model for photon efficiency function
f(B,N ,R) equivalent activity model vector given by the vector of the fi,`(B,N ,R)

for relevant radionuclides i and laboratories `
fi,`(B,N ,R) so-called equivalent activity model for radionuclide i and laboratory `
G(B(2), E) empirical model for electron efficiency function
Hi,`,k exp(−(λk − λi)((tm)i,` − (tr)i,`))), the decay correction applied in the cor-

rection for impurities
h index for model basis functions
h(B,D,N ,R) implicit function
h(Y ,X) generic implicit function relating input quantities X and output quantities

Y
I identity matrix
I set of indices of radionuclides of concern
I ionization current produced by generic ampoule
ID subset of indices relating to the vector D of equivalent activity measurement

quantities for the radionuclides and laboratories of concern
If background current
Ii,j relative emission probability for jth photon for radionuclide i
IRa,s ionization current produced by 226Ra source number s, s = 1, . . . , 5
i index for radionuclide
Ji set of indices of photons associated with radionuclide i
βJi set of indices of beta transitions associated with radionuclide i
j index for photon or beta transition
j′ index for photon or beta transition
K vector of KCRV quantities
K̂ vector estimate of K (KCRVs) containing the (Ae)KCRV

i

Ki,` index set for impurities associated with radionuclide i provided by labora-
tory `

k index for radionuclide
Li set of indices of laboratories that measured radionuclide i
` index for laboratory
M generic quantity equal to Fs

IRa,s−If

I−If

exp(−λ(tm−(tr))
exp(−λRa(tm−t0))

Mi,` value of M for radionuclide i and laboratory `
M̂i,` measured value of Mi,`

Mk general matrix, k = 1, 2, . . .
m number of actually measured data values
me rest mass of electron
N set of quantities constituting the nuclear reference data of which tabulated

energies and probabilities {Ei,j : j ∈ Ji}, {Pi,j : j ∈ Ji}, {Wi,j : j ∈ βJi}
and {βPi,j : j ∈ βJi} constitute estimates

N̂ prior (tabular) estimate of N
N∗ posterior estimate of N
n number of basis functions in empirical model for photon efficiency function
nmax largest value of n to be considered
nβ number of basis functions in empirical model for electron efficiency function
nmax

β largest value of nβ to be considered
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Symbol Definition
Pi,j emission probability for jth photon for radionuclide i
βPi,j emission probability for jth beta transition for radionuclide i
Q(· · ·) orthogonal matrix
Qi,k(B,N) the quotient (Ae)

cmptd
i (B,N)/(Ae)

cmptd
k (B,N)

q generic number of measurement data
R vector of quantities Ri,`,k for relevant i, ` and k
R̂ prior estimate of R
R∗ posterior estimate of R
Ri,`,k decay-corrected activity of impurity k relative to activity of radionuclide i

provided by laboratory `
R̃i,`,k uncorrected counterpart of Ri,`,k

r generic index
Spart(B) function of adjustable parameters constituting least-squares measure of fit
Sfull(Z) full least-squares objective function
Si,j(W ) normalized energy distribution function for spectrum corresponding to jth

beta transition for radionuclide i
s(B,D,N ,R) vector of model deviations si,`(B,D,N ,R) arranged according to a pre-

scribed ordering
si,`(B,D,N ,R) model deviation for radionuclide i and laboratory `
T matrix transpose
Th(x) Chebyshev polynomial of first kind of degree h (order h+ 1) in x
t0 fixed SIR reference date
tm SIR measurement date
tr reference date
u(·) standard uncertainty associated with argument
u(·, ·) covariance associated with arguments
V (·) uncertainty matrix (covariance matrix) associated with argument
V (k)(·) uncertainty matrix (covariance matrix) associated with argument, k =

1, 2, . . .
Vs screening potential
W total energy of electron
Wc total energy of conversion electron
Wi,j maximum total energy associated with jth beta-transition for radionuclide

i
Wmax right-hand endpoint of electron energy range over which modelling is carried

out
Wmin left-hand endpoint of electron energy range over which modelling is carried

out
X generic vector of input quantities
X̂ estimate of X
x argument of Chebyshev polynomial
Y generic vector of output quantities
Ŷ estimate of Y

Z (BT,NT)T or (BT,NT,RT)T as appropriate, according to textual context
Ẑ estimate of Z
Z∗ posterior estimate of Z
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Symbol Definition
α generic element of D, N , B or R as appropriate, according to textual

context
α vector representing N , D or R
ε generic detection efficiency of ionization chamber
εi detection efficiency of ionization chamber for radionuclide i
ε(E) efficiency function or curve for ionization chamber for photons of energy E
εs sth efficiency value
εβ(W ) efficiency function or curve for ionization chamber for electrons of energy

W
ηi normalization factor for photon emission probabilities of radionuclide i
θi mixing ratio associated with radionuclide i parameter lying between zero

and one
λi decay constant for radionuclide i
λn Coulomb function
λRa decay constant for radionuclide 226Ra
ν degrees of freedom
φh(E) basis function in empirical model for photon efficiency function
ψh(W ) basis function in empirical model for electron efficiency function
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B Derivatives required by the generalized non-linear least-
squares algorithm and in the evaluation of uncertainties

This appendix provides expressions for the derivatives required by the generalized non-linear
least-squares algorithm and in the evaluation of uncertainties associated with estimates of the
efficiency curve parameters (section 5.2).

B.1 Derivatives with respect to decay-corrected measurement quantities

Let α denote any element of D. Since fi,`(B,N ,R) does not depend on D,

∂fi,`(B,N ,R)/∂α = 0, all i, `.

From expressions (27) and (22),

∂si,`(B,D,N ,R)
∂α

=

{
1, α ≡ Di,`,
0, otherwise.

(34)

B.2 Derivatives with respect to the remaining quantities

B.2.1 General

Let α denote any element of B, N or R. From expression (27),

∂si,`(B,D,N ,R)
∂α

= −∂fi,`(B,N ,R)
∂α

,

and hence the derivatives of the model values fi,`(B,N ,R) are considered. From expression (22),

∂fi,`(B,N ,R)
∂α

=
1

C2
i,`(B,N ,R)

(
Ci,`(B,N ,R)

∂(Ae)
cmptd
i (B,N)
∂α

− (Ae)
cmptd
i (B,N)

∂Ci,`(B,N ,R)
∂α

)
. (35)

From formula (18) for the correction factor,

∂Ci,`(B,N ,R)
∂α

=
∑

k∈Ki,`

[
Ri,`,k

∂Qi,k(B,N)
∂α

+Qi,k(B,N)
∂Ri,`,k

∂α

]
, (36)

with

∂Qi,k(B,N)
∂α

=
1

(Ae)
cmptd
k (B,N)

[
∂(Ae)

cmptd
i (B,N)
∂α

−Qi,k(B,N)
∂(Ae)

cmptd
k (B,N)
∂α

]
(37)

and
∂Ri,`,k

∂α
=

{
1, α ≡ Ri,`,k,
0, otherwise.

Then, from expression (20), since (Ae)KCRV
i is a constant,

∂(Ae)
cmptd
i (B,N)
∂α

= (1− θi)
∂(Ae)model

i (B,N)
∂α

. (38)

Thus, the derivatives ∂Ci,`(B,N ,R)/∂α are expressed in terms of

1. Qi,k(B,N), which in turn is expressed in terms of (Ae)
cmptd
i (B,N),
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2. (Ae)
cmptd
i (B,N), which in turn is expressed in terms of (Ae)model

i (B,N),

3. ∂(Ae)
cmptd
i (B,N)/∂α, which in turn is expressed in terms of ∂(Ae)model

i (B,N)/∂α, and

4. R.

It follows that the provision of (Ae)model
i (B,N) and derivatives ∂(Ae)model

i (B,N)/∂α for α
corresponding to all particular elements of B and N will permit all relevant derivatives to be
formed. The following two sections give expressions for the derivatives of (Ae)model

i (B,N) with
respect to elements of B, N and R, thus, together with expression (34), permitting all derivatives
of si,`(B,D,N ,R) with respect to the elements of B, D, N and R to be determined.

B.2.2 Derivatives with respect to efficiency curve parameters

From the use of expressions (8),

∂(Ae)model
i (B,N)

∂B
(1)
h

= − 1(
(Ae)model

i (B,N)
)2 ∑

j∈Ji

Pi,j
∂F (B(1), Ei,j)

∂B
(1)
h

,

∂(Ae)model
i (B,N)

∂B
(2)
h

= − 1(
(Ae)model

i (B,N)
)2 ∑

j∈βJi

βPi,j

∫ Wi,j

1
Si,j(W )

∂G(B(2),W )

∂B
(2)
h

dW,

where, using expressions (10),

∂F (B(1), E)

∂B
(1)
h

= φh(lnE)F (B(1), E),
∂G(B(2),W )

∂B
(2)
h

= ψh(W )G(B(2),W ).

B.2.3 Derivatives with respect to nuclear reference data quantities

The use of expression (8) gives

∂(Ae)model
i (B,N)
∂Ei,j

= − 1
Pi,j [(Ae)model

i (B,N)]2
∂F (B(1), Ei,j)

∂Ei,j
,

∂(Ae)model
i (B,N)
∂Pi,j

= − 1
[(Ae)model

i (B,N)]2
F (B(1), Ei,j),

∂(Ae)model
i (B,N)
∂Wi,j

= −βPi,jSi,j(Wi,j)
1

[(Ae)model
i (B,N)]2

G(B(2),Wi,j),

∂(Ae)model
i (B,N)
∂(βPi,j)

= − 1
[(Ae)model

i (B,N)]2

∫ Wi,j

1
Si,j(W )G(B(2),W )dW,

where, from expression (10),

∂F (B(1), Ei,j)
∂Ei,j

= F (B(1), Ei,j)

(
1
Ei,j

+
n∑

h=1

B
(1)
h φ′h(lnEi,j)

)
.

B.2.4 Derivatives with respect to relative impurity activities

The partial derivatives relating to the relative impurity activities are zero:

∂(Ae)model
i (B,N)
∂Ri,`,k

= 0, all i, `, k.
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C Hessian matrices

This appendix provides the Hessian matrices, HB and the Hα, required to implement formu-
lae (29). The Hessian matrices require both first derivatives, as given in appendix B in the
context of the solution of the generalized non-linear least-squares problem, and second deriva-
tives, as indicated.

Expressions for the matrices HB and the Hα in matrix equation (29) in terms of s, the vector
of model deviations, obtained from expression (25), are

HB =
(
∂s

∂B

)T

V −1

D̂

∂s

∂B
+

(
∂2s

∂B2

)T

V −1

D̂
s(B,D,N ,R),

HD =
(
∂s

∂B

)T

V −1

D̂

∂s

∂D
+

(
∂2s

∂B∂D

)T

V −1

D̂
s(B,D,N ,R),

HN =
(
∂s

∂B

)T

V −1

D̂

∂s

∂N
+

(
∂2s

∂B∂N

)T

V −1

D̂
s(B,D,N ,R),

HR =
(
∂s

∂B

)T

V −1

D̂

∂s

∂R
+

(
∂2s

∂B∂R

)T

V −1

D̂
s(B,D,N ,R).

Expressions for the derivatives of the components of s with respect to the components of B, D,
N and R are given in appendix B.

The above four formulae are implemented using (central) finite-difference formulae. Also see
section 11.3.
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D Implicit multivariate model

Consider the implicit multivariate model

h(Y ,X) = 0,

where X is a vector input quantity comprising mutually independent vector quantities
X1, . . . ,XQ, i.e. X = [XT

1 , . . . ,X
T
Q]T, and Y a vector output quantity. Suppose that, for r =

1, . . . , Q, vector estimates X̂r of the Xr are given, as are the associated uncertainty matri-
ces V (X̂r). Suppose that the Jacobian matrices

J(Xr) =
∂h

∂Xr
, r = 1, . . . , Q, J(Y ) =

∂h

∂Y

are available. The J(Xr) are generally rectangular and J(Y ) is square. An estimate Ŷ of Y is
obtained by solving

h(Ŷ , X̂) = 0, (39)

and the uncertainty matrix V
Ŷ

associated with Ŷ satisfies

J(Ŷ )V
Ŷ

JT(Ŷ ) =
Q∑

r=1

J(X̂r)V X̂r
JT(X̂r). (40)

Since
V

X̂
= diag[V

X̂1
, . . . ,V

X̂Q
], J(X) = [J(X1), . . . ,J(XQ)],

expression (40) can be written as

J(Ŷ )V
Ŷ

JT(Ŷ ) = J(X̂)V
X̂

JT(X̂), (41)

a system that can be solved for V
Ŷ

.

Using recognized concepts from numerical linear algebra [27], a numerically stable way to form
V

Ŷ
, which accounts for the fact that J(X) is a rectangular matrix and J(Y ) a square matrix,

is as follows [19]:

1. Form the Cholesky factor U(X̂) of V
X̂

. This factor is the upper triangular matrix such

that UT
(X̂)U (X̂) = V

X̂
;

2. Factorize J(X̂) as the product J(X̂) = Q(X̂)Ũ(X̂), where Q(X̂) is an orthogonal matrix
and Ũ(X̂) is upper triangular;

3. Factorize J(Ŷ ) as the product J(Ŷ ) = L(Ŷ )Ũ(Ŷ ), where L(Ŷ ) is lower triangular
and Ũ(Ŷ ) is upper triangular;

4. Solve the matrix equation Ũ
T
(Ŷ )M1 = I for M1;

5. Solve LT(Ŷ )M2 = M1 for M2;

6. Form M3 = QT(X̂)M2;

7. Form M4 = UT(X̂)M3;

8. Form M = Ũ(X̂)M4;

9. Orthogonally triangularize M to give the upper triangular matrix U∗.

10. Form V
Ŷ

= (U∗)TU∗.

This procedure was verified using elementary matrix algebra and tested.
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