Table of Radionuclides (Vol. 8 - A = 41 to 198)

M.-M. BÉ, V. CHISTÉ, C. DULIEU, M.A. KELLETT, X. MOUGEOT A. ARINC V.P. CHECHEV, N.K. KUZMENKO T. KIBÉDI A. LUCA A.L. NICHOLS

2016

BUREAU INTERNATIONAL DES POIDS ET MESURES

Pavillon de Breteuil, F-92310 SÈVRES

Édité par le BIPM, Pavillon de Breteuil F-92312 Sèvres Cedex France

Imprimé par Reproduction Service

ISBN-13 978-92-822-2264-5 (Vol. 8)

Preface

This monograph is one of several published in a series by the Bureau International des Poids et Mesures (BIPM) on behalf of the Consultative Committee for Ionizing Radiation (*Comité Consultatif des Rayonnements Ionisants*, CCRI¹). The aim of this series of publications is to review topics that are of importance for the measurement of ionizing radiation and especially of radioactivity, in particular those techniques normally used by participants in international comparisons. It is expected that these publications will prove to be useful reference volumes both for those who are already engaged in this field and for those who are approaching such measurements for the first time.

The purpose of this monograph, number 5 in the series, is to present the recommended values of nuclear and decay data for a wide range of radionuclides. Activity measurements for more than sixty-seven of these radionuclides have already been the subject of comparisons under the auspices of Section II (dedicated to the Measurement of radionuclides) of the CCRI. The material for this monograph is now covered in eight volumes. The first two volumes contain the primary recommended data relating to half-lives, decay modes, x-rays, gamma-rays, electron emissions; alpha- and beta-particle transitions and emissions, and their uncertainties for a set of sixty-eight radionuclides, Volume 1 for mass numbers up to and including 150 and Volume 2 for mass numbers over 150. Volume 3 contains the equivalent data for twenty-six additional radionuclides and re-evaluations for ¹²⁵Sb and ¹⁵³Sm. Volume 4 contains the data for a further thirty-one radionuclides with a re-evaluation for ²²⁶Ra. Volume 5 includes seventeen new radionuclide evaluations and eight re-evaluations. Volume 6 contains twenty-one new radionuclide evaluations and four re-evaluations. Volume 7 contains twenty-four new radionuclide evaluations and five re-evaluations. The present Volume 8 contains twenty-three new radionuclide evaluations and nine re-evaluations for ⁸⁸Y, ^{93m}Nb, ¹⁰⁹Cd, ¹³¹I, ¹³¹mXe, ¹³³Ba, ¹⁴⁰Ba, ¹⁴⁰La and ¹⁹⁸Au. The data have been collated and evaluated by an international working group (Decay Data Evaluation Project, DDEP) led by the Laboratoire National de Métrologie et d'Essais -Laboratoire National Henri Becquerel (LNE-LNHB).

The evaluators have agreed on the methodologies to be used and their comments for each radionuclide in addition to the data tables in the present monograph can now both be found on the BIPM website at http://www.bipm.org/en/publications/scientific-output/monographies-ri.html. Consequently, the CD-ROM that accompanied previous issues is no longer deemed necessary and has been discontinued.

The work involved in evaluating nuclear data is ongoing and the recommended values are kept up to date on the LNE-LNHB website at <u>http://www.nucleide.org/DDEP_WG/DDEPdata.htm</u>.

The BIPM and the DDEP are most grateful to the International Atomic Energy Agency (IAEA) for their assistance and financial support to some evaluators in the production of data for Volumes 1 to 3 through their Coordinated Research Project "Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications", for Volumes 4 to 7 through their Coordinated Research Project "Updated Decay Data Library for Actinides" and for Volume 8 through their Coordinated Research Projects "Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF)" and "Nuclear Data for Charged-particle Monitor Reactions and Medical Isotope Production". The BIPM and the DDEP are indebted also to some other evaluators who participate in the United States Nuclear Data Program (USNDP) for their support to these publications. The publication of further volumes of Monographie 5 is envisaged when necessary to add new radionuclide data or re-evaluations in this more permanent format that can be referenced easily.

Although other data sets may still be used when evaluating radionuclide activity, the CCRI encourages the use of this common, recommended data set that should help to reduce the uncertainties in activity evaluations and lead to more coherent results for comparisons (2009, CCRI Report of 21^{st} meeting, section 17.2).

W. Louw President of the CCRI M.J.T. Milton Director of the BIPM

¹ previously known as the Comité Consultatif pour les Étalons de Mesure des Rayonnements Ionisants (CCEMRI)

Monographie BIPM-5 – Table of Radionuclides, Volume 8

Marie-Martine BÉ, Vanessa CHISTÉ, Christophe DULIEU, Mark KELLETT, Xavier MOUGEOT, Laboratoire National Henri Becquerel (LNHB), France; Arzu ARINC, National Physical Laboratory (NPL), United Kingdom; Valery CHECHEV, Nikolay KUZMENKO, Khlopin Radium Institute (KRI), Russia; Tibor KIBÉDI, Australian National University (ANU), Australia; Aurelian LUCA, National Institute for Physics and Nuclear Engineering "Horia Hulubei" (IFIN-HH), Romania; Alan L. NICHOLS, Department of Physics, University of Surrey, United Kingdom.

"TABLE DE RADIONUCLÉIDES"

Sommaire - Ce volume regroupe l'évaluation des radionucléides suivants :

⁴¹Ca, ⁴⁷Sc, ⁵²Fe, ⁵⁸Co, ⁶¹Cu, ⁶³Zn, ⁷³Se, ⁸²Rb, ⁸²Sr, ⁸⁸Y, ⁸⁹Zr, ⁹³Zr, ⁹³mNb, ^{94m}Tc, ¹⁰⁶Ru, ¹⁰⁶Rh, ¹⁰⁹Cd, ¹²⁷Xe, ¹³¹I, ^{131m}Xe, ¹³³Ba, ¹³⁸La, ¹⁴⁰Ba, ¹⁴⁰La, ¹⁴⁴Ce, ¹⁴⁴Pr, ^{144m}Pr, ¹⁴⁸Pm, ¹⁵¹Sm, ¹⁶⁹Er, ¹⁹⁸Au.

Les valeurs recommandées et les incertitudes associées comprennent : la période radioactive, les modes de décroissance, les émissions α , β , γ , X et électroniques ainsi que les caractéristiques des transitions correspondantes.

"TABLE OF RADIONUCLIDES"

Summary - This volume includes the evaluation of the following radionuclides:

⁴¹Ca, ⁴⁷Sc, ⁵²Fe, ⁵⁸Co, ⁶¹Cu, ⁶³Zn, ⁷³Se, ⁸²Rb, ⁸²Sr, ⁸⁸Y, ⁸⁹Zr, ⁹³Zr, ⁹³mNb, ^{94m}Tc, ¹⁰⁶Ru, ¹⁰⁶Rh, ¹⁰⁹Cd, ¹²⁷Xe, ¹³¹I, ^{131m}Xe, ¹³³Ba, ¹³⁸La, ¹⁴⁰Ba, ¹⁴⁰La, ¹⁴⁴Ce, ¹⁴⁴Pr, ¹⁴⁴Pr, ¹⁴⁸Pm, ¹⁴⁸Pm, ¹⁵¹Sm, ¹⁶⁹Er, ¹⁹⁸Au.

Primary recommended data comprise half-lives, decay modes, X-rays, gamma-rays, electron emissions, alpha- and beta-particle transitions and emissions, and their uncertainties.

"TABELLE DER RADIONUKLIDE"

Zusammenfassung – Dieser Band umfaßt die Evaluation der folgenden Radionuklide:

⁴¹Ca, ⁴⁷Sc, ⁵²Fe, ⁵⁸Co, ⁶¹Cu, ⁶³Zn, ⁷³Se, ⁸²Rb, ⁸²Sr, ⁸⁸Y, ⁸⁹Zr, ⁹³Zr, ⁹³mNb, ^{94m}Tc, ¹⁰⁶Ru, ¹⁰⁶Rh, ¹⁰⁹Cd, ¹²⁷Xe, ¹³¹I, ^{131m}Xe, ¹³³Ba, ¹³⁸La, ¹⁴⁰Ba, ¹⁴⁰La, ¹⁴⁴Ce, ¹⁴⁴Pr, ^{144m}Pr, ¹⁴⁸Pm, ¹⁴⁸Pm, ¹⁵¹Sm, ¹⁶⁹Er, ¹⁹⁸Au.

In diesem Bericht sind evaluierte Werte der Halbwertszeiten, Übergangswahrscheinlichkeiten und Übergangsenergien von α , β^- , β^+ , EC- und Gammaübergängen, Konversionskoeffizienten von Gammaübergängen sowie der Emissionswahrscheinlichkeiten von Röntgen- und Gammaquanten, Auger- und Konversionselektronen und deren Unsicherheiten zusammengefaßt.

"ТАБЛИЦА РАДИОНУКЛИДОВ"

<u>Резюме.</u> Этот том включает оценки характеристик распада для следующих нуклидов:

⁴¹Ca, ⁴⁷Sc, ⁵²Fe, ⁵⁸Co, ⁶¹Cu, ⁶³Zn, ⁷³Se, ⁸²Rb, ⁸²Sr, ⁸⁸Y, ⁸⁹Zr, ⁹³Zr, ⁹³mNb, ^{94m}Tc, ¹⁰⁶Ru, ¹⁰⁶Rh, ¹⁰⁹Cd, ¹²⁷Xe, ¹³¹I, ^{131m}Xe, ¹³³Ba, ¹³⁸La, ¹⁴⁰Ba, ¹⁴⁰La, ¹⁴⁴Ce, ¹⁴⁴Pr, ¹⁴⁴Pr, ¹⁴⁸Pm, ¹⁴⁸Pm, ¹⁵¹Sm, ¹⁶⁹Er, ¹⁹⁸Au.

Основные рекомендуемые данные включают периоды полураспада, виды распада, Х-излучение, гамма-излучение, электронное излучение, альфа- и бета- переходы и излучения, а также погрешности рассмотренных величин.

"TABLA DE RADIONUCLEIDOS"

Contenido – Este volúmen agrupa la evaluación de los radionucleidos siguientes:

⁴¹Ca, ⁴⁷Sc, ⁵²Fe, ⁵⁸Co, ⁶¹Cu, ⁶³Zn, ⁷³Se, ⁸²Rb, ⁸²Sr, ⁸⁸Y, ⁸⁹Zr, ⁹³Zr, ⁹³mNb, ^{94m}Tc, ¹⁰⁶Ru, ¹⁰⁶Rh, ¹⁰⁹Cd, ¹²⁷Xe, ¹³¹I, ^{131m}Xe, ¹³³Ba, ¹³⁸La, ¹⁴⁰Ba, ¹⁴⁰La, ¹⁴⁴Ce, ¹⁴⁴Pr, ^{144m}Pr, ¹⁴⁸Pm, ¹⁵¹Sm, ¹⁶⁹Er, ¹⁹⁸Au.

Los valores recomendados y las incertidumbres asociadas comprenden: el período de semidesintegración radiactiva, los modos de desintegración, las emisiones α , β , γ , X y electrónicas incluyendo las características de las transiciones correspondientes.

TABLE DE RADIONUCLÉIDES TABLE OF RADIONUCLIDES TABELLE DER RADIONUKLIDE ТАБЛИЦА РАДИОНУКЛИДОВ TABLA DE RADIONUCLEIDOS

Marie-Martine BÉ, Vanessa CHISTÉ, Christophe DULIEU, Mark KELLETT, Xavier MOUGEOT, Laboratoire National Henri Becquerel (LNHB), France;

Arzu ARINC, National Physical Laboratory (NPL), United Kingdom;

Valery CHECHEV, Nikolay KUZMENKO, Khlopin Radium Institute (KRI), Russia;

Tibor KIBÉDI, Australian National University (ANU), Australia;

Aurelian LUCA, National Institute for Physics and Nuclear Engineering "Horia Hulubei" (IFIN-HH), Romania; Alan L. NICHOLS, Department of Physics, University of Surrey, United Kingdom.

TABLE DE RADIONUCLÉIDES

INTRODUCTION

Le Laboratoire National Henri Becquerel (LNHB) a commencé l'étude des données nucléaires et atomiques qui caractérisent la décroissance des radionucléides en 1974. Ces évaluations ont fait l'objet de la publication des quatre volumes de la Table de Radionucléides [87Ta, 99Be] et de sept volumes de la *Monographie* BIPM-5 [04Be, 06Be, 08Be, 10Be, 11Be, 13Be]. Ce nouveau volume s'inscrit dans la continuation du travail précédent.

D'autre part, pour des raisons évidentes, telles la facilité de mise à jour des données ou la commodité de consultation pour les utilisateurs, le LNHB a créé une base de données informatisée. Le logiciel NUCLEIDE est la forme informatisée de cette table, il permet un accès aisé aux différentes informations à l'aide de menus déroulants atteints par un simple « clic » sur un « bouton ».

Le propos de la Table est d'étudier un nombre limité de radionucléides utiles dans le domaine de la métrologie ou dans des domaines variés d'applications (médecine nucléaire, environnement, cycle du combustible, etc.) et d'en présenter une étude complète.

Les données recommandées comprennent : la période radioactive, les modes de décroissance, les émissions α , β , γ , X et électroniques ainsi que les caractéristiques des transitions associées.

Dans le but de mettre à jour et d'ajouter de nouvelles évaluations plus rapidement Le Laboratoire National Henri Becquerel (LNHB, France) et le Physikalisch - Technische Bundesanstalt (PTB, Germany) ont établi un accord de coopération. Ils ont ensuite été rejoints par Idaho National Engineering & Environmental Laboratory (INEEL, USA), Lawrence Berkeley National Laboratory (LBNL, USA) et Khlopin Radium Institute (KRI, Russia). Le premier travail de cette collaboration internationale a été d'établir une méthode et des règles communes d'évaluation. Les évaluations proposent des valeurs recommandées et leurs incertitudes. Ces valeurs ont été évaluées à partir des données expérimentales disponibles. A défaut, elles sont issues de calculs théoriques. Toutes les références utilisées pour l'évaluation d'un radionucléide sont listées à la fin de chaque chapitre.

Ce volume est le huitième de la Monographie 5 publiée sous l'égide du BIPM.

VALEURS RECOMMANDÉES ET INCERTITUDES

Les principales étapes pour l'évaluation des données et leurs incertitudes sont :

- une analyse critique de toutes les publications disponibles afin de retenir ou non une valeur et son incertitude, ramenée à l'incertitude-type composée ;

- la détermination d'une valeur recommandée qui est, selon les cas, une moyenne simple ou pondérée des valeurs issues des publications, ceci est décidé après examen du chi carré réduit. Dans le cas d'une moyenne pondérée, le poids relatif de chaque valeur est limité à 50 %. L'incertitude, notée u_c , est la plus grande des valeurs des incertitudes interne ou externe ; dans le cas de valeurs incompatibles elle peut être étendue pour recouvrir la valeur la plus précise.

Pour certaines applications il est nécessaire de définir une incertitude élargie, notée *U*, telle que : $U(y) = k \times u_c(y)$ où *k* est le facteur d'élargissement. La valeur de k retenue pour cette publication est : k = 1.

Les valeurs d'incertitude indiquées portent sur les derniers chiffres significatifs, ainsi : 9,230 (11) signifie $9,230 \pm 0,011$ et 9,2 (11) $9,2 \pm 1,1$

Si une valeur est donnée sans incertitude, cela signifie qu'elle est considérée comme douteuse. Elle est indiquée à titre indicatif et souvent a été estimée en fonction du schéma de désintégration comme étant « de l'ordre de ».

Des précisions concernant les techniques d'évaluation peuvent être obtenues dans les références [85Zi], [96He], [99In] (voir rubrique Références) ou directement auprès des auteurs. La description physique des données évaluées est disponible dans la référence [99In].

NUMÉROTAGE

Les niveaux d'un noyau sont numérotés, arbitrairement, de 0 pour le niveau fondamental à n pour le énième niveau excité. Les diverses transitions sont ainsi repérées par leur niveau de départ et leur niveau d'arrivée. Dans le cas de transition de faible probabilité qu'il n'est pas possible de situer sur le schéma de désintégration, les niveaux de départ et d'arrivée sont notés (-1, n).

Dans le cas de l'émission gamma de 511 keV qui suit une désintégration bêta plus, la notation adoptée est : (-1, -1).

UNITÉS

Les valeurs recommandées sont exprimées :

- pour les périodes :

	Symbole
. en secondes pour $T_{1/2} \ll 60$ secondes	S
. en minutes pour $T_{1/2} > 60$ secondes	min
. en heures pour $T_{1/2} > 60$ minutes	h
. en jours pour $T_{1/2} > 24$ heures	d
. en années pour $T_{1/2} > 365$ jours	a

1 année = 365,242 198 jours = 31 556 926 secondes ;

- pour les probabilités de transition et nombre de particules émises, les valeurs sont données pour 100 désintégrations ;

- les énergies sont exprimées en keV.

<u>Remarque</u> : Si une valeur plus précise de la période est nécessaire, par exemple en jours plutôt qu'en années, le lecteur se référera aux commentaires de l'évaluation inclus sur le CD-Rom ou sur les sites web du LNE-LNHB ou du BIPM. Ceci évitera l'introduction d'erreurs d'arrondi supplémentaires en cas de conversion d'unités.

AVERTISSEMENT

Ce document a été imprimé en 2016, pour toutes les nouvelles évaluations et mises à jour ultérieures, le lecteur se référera aux documents accessibles sur : <u>http://www.nucleide.org/NucData.htm</u>

http://www.bipm.org/fr/publications/monographie-ri-5.html

TABLE OF RADIONUCLIDES

INTRODUCTION

The evaluation of decay data for the "Table de Radionucléides" by the Bureau National de Métrologie – Laboratoire National Henri Becquerel/Commissariat à L'Énergie Atomique (BNM – LNHB/CEA) began in 1974, continued to 1987 and four volumes were published [87Ta, 99Be]. This work has been pursued and seven volumes of evaluations have already been published as *Monographie* BIPM-5 [04Be, 06Be, 08Be, 10Be, 11Be, 13Be].

Moreover, LNHB developed a database and related software (NUCLÉIDE) with the objectives of making it easier to update and add data and, obviously, to offer easy access to the nuclear and atomic decay data to the user by "click on the button" facilities.

The aim of this Table is to provide recommended data for nuclides of special interest for metrology or practical applications like nuclear medicine, monitoring and reactor shielding, etc.

Primary recommended data comprise half-lives, decay modes, X-rays, gamma-rays, electron emissions, alpha- and beta-particle transitions and emissions, and their uncertainties. All the references used for the evaluations are given.

In order to update the data of the nuclides already present and to add new evaluations, the Laboratoire National Henri Becquerel (LNHB, France) and the Physikalisch-Technische Bundesanstalt (PTB, Germany) established a cooperative agreement; they were then joined by the Idaho National Engineering & Environmental Laboratory (INEEL, USA), the Lawrence Berkeley National Laboratory (LBNL, USA) and the Khlopin Radium Institute (KRI, Russia). This international collaboration is based on an informal agreement; the initial work of this group was to discuss and to agree on a methodology to be used in these evaluations. The data and associated uncertainties were evaluated from all available experiments and taking into account theoretical considerations.

This volume is the eighth in the series of the Monographie 5 published under the auspices of the BIPM.

RECOMMENDED VALUES AND UNCERTAINTIES

The main steps for the evaluation of the data and their uncertainties are:

- a critical analysis of all available original publications in order to accept or not each value and its uncertainty reduced to the combined standard uncertainty;

- the determination of the best value which is either the weighted or the unweighted average of the retained values, this is decided after examination of the reduced χ^2 value. For a weighted average of discrepant data, each weight is limited to 50 %, and the uncertainty, designated u_c , is the larger of the internal or external uncertainty values, which may be expanded to cover the most precise input value.

For some applications it may be necessary to define an expanded uncertainty, designated *U*, as: $U(y) = k \times u_c(y)$ where *k* is the coverage factor. In this publication, standard uncertainties are quoted (i.e. k = 1).

The value of the uncertainty, in parentheses, applies to the least significant digits, i.e.: 9.230 (11) means 9.230 ± 0.011 and 9.2 (11) 9.2 ± 1.1

A value given without an uncertainty is considered questionable. It is provided for information and often its order of magnitude is estimated from the decay scheme.

Information on evaluation methods may be obtained from references [85Zi, 96He, 99In] or directly from the authors.

Information on the meaning of physical data may be obtained from reference [99In].

NUMBERING

Nuclear levels are arbitrarily numbered from 0 (for the ground state level) to *n* (for the *n*th excited level). All transitions are designated by their initial and final levels.

For transitions with weak emission probabilities that are not shown by an arrow in the decay scheme, the initial and final levels are noted (-1, n).

For a 511 keV gamma emission, which follows a beta plus disintegration, the adopted numbering is (-1, -1).

. .

_

UNITS

The recommended values are given:

- for half-lives:

	Symbol
. in seconds for $T_{1/2} \leq 60$ seconds	S
. in minutes for $T_{1/2} > 60$ seconds	min
. in hours for $T_{1/2} > 60$ minutes	h
. in days for $T_{1/2} > 24$ hours	d
. in years for $T_{1/2} > 365$ days	а

1 year = 1 a = 365.242 198 d = 31 556 926 s

- for transition probabilities and number of emitted particles, the values are given for 100 disintegrations of the parent nuclide.

- for energies, the values are expressed in keV.

<u>Remark</u>: When a more precise evaluation of a half life is required, for example in days instead of years, the reader is referred to the commented evaluation included on the CD ROM or on the websites of the LNE-LNHB or the BIPM. This will avoid the introduction of rounding errors.

NOTICE

This report was printed in 2016. New evaluations and updated issues will be available on: http://www.nucleide.org/NucData.htm http://www.nucleide.org/NucData.htm

TABELLE DER RADIONUKLIDE

EINLEITUNG

Die Evaluation der Zerfallsdaten für die "Table de Radionucléides" durch das Laboratoire National Henri Becquerel (BNM-LNHB/CEA) begann im Jahre 1974, diese Arbeit wurde bis 1987 fortgesetzt, und es wurden vier Bände veröffentlicht [87Ta, 99Be]. Seitdem sind des weiteren sieben Bände der *Monographie* BIPM-5 [04Be, 06Be, 08Be, 10Be, 11Be, 13Be] erschienen. Der vorliegende neue Band stellt die Fortsetzung der vorhergehenden Arbeit dar.

Darüber hinaus wurde im LNHB eine computerbasierte Datenbank entwickelt. Die Software NUCLEIDE erleichtert die Aktualisierung und die Einbeziehung weiterer Daten und ermöglicht den Zugang zu den Kern- und Atomdaten für den Anwender "auf Tastendruck".

Der Zweck dieser Tabelle ist es, empfohlene Daten einer begrenzten Anzahl von Radionukliden für metrologische und praktische Anwendungen wie etwa in der Nuklearmedizin, der Umweltüberwachung, dem Brennstoffkreislauf, der Reaktorabschirmung usw. zur Verfügung zu stellen.

Die empfohlenen Daten betreffen die Halbwertszeit, die Art des Zerfalls und die Charakteristika der α -, β -, γ -, Röntgen- und Elektronenemissionen und der entsprechenden Übergänge.

Um die bereits vorliegenden Daten zu aktualisieren und neue Evaluationen schneller einbeziehen zu können, vereinbarten das Laboratoire National Henri Becquerel (LNHB, Frankreich) und die Physikalisch-Technische Bundesanstalt (PTB, Deutschland) eine Übereinkunft zur Zusammenarbeit. Es schlossen sich das Idaho National Engineering and Environmental Laboratory (INEEL, USA), das Lawrence Berkeley National Laboratory (LBNL, USA) und das Khlopin Radium Institute (KRI, Rußland) an. Eine der ersten Arbeiten dieser Gruppe war es, die in diesen Evaluationen benutzte Methodologie zu diskutieren und festzulegen. Die Datenbank umfaßt empfohlene Daten und ihre Unsicherheiten, die aus den verfügbaren experimentellen Daten oder theoretischen Berechnungen gewonnen wurden. Alle für die Evaluation benutzten Referenzen werden angegeben.

Dieser Band ist die achte Ausgabe der Monographie BIPM-5.

EMPFOHLENE WERTE UND UNSICHERHEITEN

Die Hauptschritte für die Evaluation der Daten und Unsicherheiten sind:

- Eine kritische Analyse aller verfügbaren Veröffentlichungen, um einen jeweils veröffentlichten Wert und seine Unsicherheit - auf die kombinierte Standardunsicherheit zurückgeführt - zu berücksichtigen oder auszuschließen.

- Die Bestimmung eines empfohlenen Wertes, der entweder das gewichtete oder das ungewichtete Mittel der veröffentlichten Werte ist. Die Entscheidung wird nach der Prüfung des reduzierten Chi-Quadrat-Werts getroffen. Im Falle des gewichteten Mittels wird das Gewicht jedes Einzelwerts auf 50 % begrenzt. Die Unsicherheit, als u_c bezeichnet, ist der größere Wert der inneren oder äußeren Unsicherheit. Für einen diskrepanten Datensatz kann sie so vergrößert werden, daß der genaueste Einzelwert in der Unsicherheit mit eingeschlossen ist.

Für einige Anwendungen ist es notwendig, eine vergrößerte Unsicherheit, als U bezeichnet, wie folgt zu definieren:

 $U(y) = k \times u_c(y)$ wo k der Erweiterungsfaktor ist.

Für die vorliegende Veröffentlichung ist die erweitere Unsicherheit mit k = 1 berechnet.

Die Werte der Unsicherheit beziehen sich auf die letzten Stellen, d. h.:

9,230(11) bedeutet 9,230 \pm 0,011 und 9,2(11) bedeutet 9,2 \pm 1,1

Wenn ein Wert ohne Unsicherheit angegeben ist, bedeutet das, daß dieser Wert als fragwürdig zu betrachten ist. Er wird zur Information mitgeteilt und ist oft abgeschätzt aus dem Zerfallsschema im Sinne "in der Größenordnung von".

Informationen über die Evaluationsprozedur können aus den Referenzen [85Zi, 96He, 99In] oder direkt von den Autoren bezogen werden.

Die Bedeutung der evaluierten Daten kann aus Ref. [99In] entnommen werden.

NUMERIERUNG

Die Kernniveaus werden willkürlich numeriert von 0 für den Grundzustand bis zu n für das n-te angeregte Niveau. Alle Übergänge werden durch ihr Ausgangs- und Endniveau gekennzeichnet. Für Übergänge mit geringen Wahrscheinlichkeiten, die nicht im Zerfallsschema gezeigt werden können, werden als Ausgangs- und Endniveau (-1, n) angegeben.

Für die 511 keV-Gamma-Emission, die dem Beta Plus-Zerfall folgt, ist die angenommene Numerierung (- 1, -1).

EINHEITEN

Die empfohlenen Werte sind ausgedrückt: - für Halbwertszeiten:

. in Sekunden für $T_{1/2} \leq 60$ Sekunden	S
. in Minuten für $T_{1/2} > 60$ Sekunden	min
. in Stunden für $T_{1/2} > 60$ Minuten	h
. in Tagen für $T_{1/2} > 24$ Stunden	d
. in Jahren für $T_{1/2} > 365$ Tage	а

1 a = 365,242 198 d = 31 556 926 s

- für Übergangswahrscheinlichkeiten und die Anzahl der emittierten Teilchen werden Werte angegeben, die sich auf 100 Zerfälle beziehen.
- die Werte der Energien sind in keV ausgedrückt.

HINWEIS

Dieses Dokument wurde im Jahre 2016 erstellt. Alle späteren Fassungen oder neueren Evaluationen können vom Leser unter

http://www.nucleide.org/NucData.htm

http://www.bipm.org/en/publications/monographie-ri-5.html abgerufen werden.

ТАБЛИЦА РАДИОНУКЛИДОВ

ВВЕДЕНИЕ

Оценка данных распада для Table de Radionucléides, BNM – LNHB/CEA, была начата в 1974 г. и продолжалась до 1987 г. К тому времени были опубликованы четыре тома [87Ta] и затем, в 1999 г., был опубликован пятый том, содержащий ревизованные оценки для 30 выбранных радионуклидов [99Be]. Эта работа была продолжена, и семь тома были опубликованы как *Monographie* BIPM-5 [04Be, 06Be, 08Be, 10Be, 11Be, 13Be].

В дополнение в LNHB была развита компьютерная форма Table de Radionucléides (программа NUCLEIDE) с тем, чтобы обеспечить более простое обновление и дополнение данных и, очевидно, также с целью предложить пользователю более легкий доступ к ядерным и атомным данным распада путем "нажатия кнопки".

Цель настоящего издания - дать рекомендованные данные для нуклидов, представляющих специфический интерес для метрологии или практических приложений, таких как ядерная медицина, мониторинг, реакторная защита и др.

Первичные рекомендованные данные включают периоды полураспада, виды распада, характеристики X- и гамма-излучений, электронных излучений, альфа- и бета-переходов и излучений и погрешности величин этих характеристик. В книге дан полный список литературы, использованной для оценок.

Для того чтобы обновить данные по нуклидам, уже имеющимся в Table de Radionucléides, и добавить новые оценки, Национальная лаборатория им. Анри Беккереля (LNHB, Франция) и Физико-Технический Институт (РТВ, Германия) заключили кооперативное соглашение. К ним затем присоединились Национальная лаборатория прикладных и экологических исследований Айдахо (INEEL, CША), Лоуренсовская Национальная Лаборатория Беркли (LBNL, CША) и Радиевый институт им. В.Г. Хлопина (KRI, Россия). Это международное сотрудничество основано на неформальном соглашении. Первоначальная работа состояла в обсуждении и принятии согласованной методологии, которая должна быть использована в этих оценках. Данные и связанные с ними погрешности были оценены с использованием всех имеющихся в распоряжении результатов экспериментов и с учетом теоретических рассмотрений.

Настоящий том представляет собой восьмой выпуск Monographie BIPM-5.

РЕКОМЕНДОВАННЫЕ ЗНАЧЕНИЯ И ПОГРЕШНОСТИ

Основные шаги для оценки данных и их погрешностей следующие:

- критический анализ всех имеющихся оригинальных публикаций, чтобы принять или отвергнуть данное значение и его погрешность, приведенную к комбинированному стандартному отклонению;
- определение лучшего значения, которое является взвешенным или невзвешенным средним сохраненных величин; выбор взвешенного или невзвешенного среднего определяется анализом величины χ². В случае среднего взвешенного вес каждого оригинального результата ограничивается 50 %. В качестве итоговой погрешности (*u_c*) принимается большая из двух погрешностей среднего взвешенного: внутренней и внешней. Для расходящегося набора данных она может быть расширена, чтобы перекрыть самое точное входное значение.

Для некоторых применений может оказаться необходимым расширенная погрешность (U), выраженная как: $U(y) = k \times u_c(y)$, где k - коэффициент перекрытия. Для этой публикации принято k = 1.

Значение погрешности, в скобках, приводится в единицах последней значащей цифры, т.е.: 9 230 (11) означает 9 230 + 0 011 и

,(11)	05114 1401	,200 - 0,011
9,2 (11)		$9,2 \pm 1,1$

Если значение величины дается без погрешности, она считается сомнительной и приводится для информации. Такие величины часто оценивались из схемы распада под рубрикой "порядка".

Информацию о процедурах оценки можно получить из публикаций [85Zi, 96He, 99In] или непосредственно от авторов.

Информация о смысле физических величин может быть получена из [99In].

НУМЕРАЦИЯ

Ядерные уровни произвольно пронумерованы от 0 для основного состояния до *n* для n-ого возбужденного уровня. Все переходы обозначаются по их начальному и конечному уровням. Для слабых переходов, не показанных стрелкой в схеме распада, начальный и конечный уровни

Для слабых переходов, не показанных стрелкой в схеме распада, начальный и конечный уровни обозначаются как (-1, *n*).

Для гамма-излучения с энергией 511 кэВ, которое следует за бета-плюс распадом, принято обозначение (-1, -1).

ЕДИНИЦЫ

Рекомендованные значения выражены:

- для периодов полураспада:
- . в секундах для $T_{1/2} \leq 60$ секунд s
- . в минутах для $T_{1/2} > 60$ секунд min
- . в часах для $T_{1/2} > 60$ минут h
- . в сутках для $T_{1/2} > 24$ часов d
- . в годах для *T*_{1/2} > 365 суток а

1 год = 365,242198 суток = 31 556 926 секунд

- для вероятностей переходов и числа испускаемых частиц значения даны на 100 распадов;
- для энергий значения выражены в килоэлектронвольтах (keV).

ПРИМЕЧАНИЕ

Этот выпуск подготовлен в 2016 г. Новые оценки и обновленные результаты можно найти на сайте: <u>http://www.nucleide.org/NucData.htm</u>

http://www.bipm.org/en/publications/monographie-ri-5.html

TABLA DE RADIONUCLEIDOS

INTRODUCCION

El Laboratorio Nacional Henri Becquerel (LNHB) inició en 1974 el estudio de datos nucleares y atómicos que caracterizan la desintegración de radionucleidos. Esas evaluaciones han permitido la publicación de cuatro volúmenes de la Tabla de Radionucleidos [87Ta, 99Be]. Este nuevo volumen es el siguiente en la continuación del estudio precedente *Monographie* BIPM-5 [04Be, 06Be, 08Be, 10Be, 11Be, 13Be].

Para facilitar la corrección de nueva información y mejorar la comodidad de consulta a los lectores, el LNHB a creado una base de datos informatizada. El programa NUCLEIDE permite el acceso a la Tabla de Radionucleidos con la ayuda de menues en cascada disponibles con un simple « clic ».

El objetivo de la Tabla de Radionucleidos es el de proporcionar información sobre un número limitado de radionucleidos utilizados en el campo de la metrología o en otras disciplinas (medicina nuclear, medio ambiente, ciclo del combustible,etc.)

Los datos recomendados incluyen : el período de semidesintegración, los modos de desintegración, las emisiones α , β , γ , X y de electrones atómicos asociados a las mismas.

Con el propósito de actualizar y agregar nuevas evaluaciones rapidamente el *Laboratoire National Henri Becquerel* (LNHB, Francia) y el *Physikalisch-Technische Bundesanstalt* (PTB, Alemania) establecieron un acuerdo de colaboración. Posteriormente se unieron el *Idaho National Engineering & Environmental Laboratory* (INEEL, USA), *Lawrence Berkeley National Laboratory* LBNL, USA) y *Khlopin Radium Institute* (KRI, Rusia). El primer trabajo de esta colaboración internacional fue el de establecer el método y las reglas comunes de evaluación. Las evaluaciones proponen valores recomendados e incertidumbres asociadas. Éstos valores han sido evaluados a partir de datos experimentales. En su ausencia, los valores se obtienen por cálculos teóricos. Todas las referencias utilizadas para la evaluación de un radionucleido se citan al final de cada capítulo.

VALORES RECOMENDADOS E INCERTIDUMBRES

Las principales etapas para evaluar datos con sus incertidumbres son:

- Un análisis crítico de todas las publicaciones disponibles con el fin de obtener un valor con su incertidumbre, considerada como incertidumbre típica combinada.
- La determinación de un valor recomendado que es, según el caso, una media simple o ponderada de valores obtenidos de publicaciones. Ésto se decide tras el chi-cuadrado reducido. En el caso de una media ponderada para conjuntos de valores discrepantes, el peso estadístico relativo de cada valor es limitado al 50 %. La incertidumbre, *u_c*, es el mayor de los valores de las incertidumbres interna o externa. En el caso de conjuntos de valores discrepantes, este valor puede ser extendido con el fin de incluir el valor experimental más preciso.

Para ciertas aplicaciones, es necesario definir una incertidumbre expandida, llamada *U*: $U(y) = k \times u_c(y)$ donde *k* es el factor de cobertura. El valor de k utilizado en esta publicación es: k = 1.

Los valores de incertidumbres indicados entre paréntesis corresponden a las últimas cifras significativas, por ejemplo:

9,230 (11)	significa	9,230 ± 0,011	у
9,2 (11)	significa	$9,2 \pm 1,1$	

Valores dados sin incertidumbres se consideran dudosos (usualmente se presentan como valores aproximados, y a menudo estimados a partir de los esquemas de desintegración).

Para más información sobre las técnicas de evaluación consultar [85Zi], [96He], [99In] o directamente con el autor.

NUMERACION

Los niveles de un núcleo están arbitrariamente numerados desde "0" (para el nivel fundamental), hasta "*n*" para el enésimo nivel excitado. Las transiciones se representan por sus niveles inicial y final.

En el caso de una transición débil e imposible de situar en el esquema de desintegración, el nivel inicial y el final están designados con la siguiente notación: (-1, n).

En el caso de una emisión γ de 511 keV que sigue a una desintegración β^+ , la notación adoptada es: (-1, -1).

UNIDADES

Los valores recomendados se dan:

- para los períodos de semidesintegración:

	Símbolo
. en segundos para $T_{1/2} \leq 60$ segundos	S
. en minutos para $T_{1/2} > 60$ segundos	min
. en horas para $T_{1/2} > 60$ minutos	h
. en días para $T_{1/2} > 24$ horas	d
. en años para $T_{1/2} > 365$ días	а

1 año = 365,242 198 días = 31 556 926 segundos;

- para las probabilidades de transición y número de partículas emitidas, los valores se dan por 100 desintegraciones;
- para las energías, los valores se expresan en keV.

ADVERTENCIA

Este documento ha sido imprimido en el 2016. Para obtener todas las nuevas evaluaciones actualizadas ulteriormente, el lector deberá referirse a los documentos disponibles en: <u>http://www.nucleide.org/NucData.htm</u> <u>http://www.bipm.org/en/publications/monographie-ri-5.html</u>

RÉFÉRENCES

REFERENCES

REFERENZEN

REFERENCIAS

[87Ta] **Table de Radionucléides**, F. Lagoutine, N. Coursol, J. Legrand. ISBN 2 7272 0078 1 (LMRI, 1982-1987).

[85Zi] W.L. Zijp, Netherland Energy Research Foundation, ECN, Petten, The Netherlands, Rep. ECN-179.

[96He] **R.G. Helmer**, Proceedings of the Int. Symp. "Advances in alpha-, beta- and gamma-ray Spectrometry", St. Petersburg, September 1996, p. 71.

[96Be] **M.-M. Bé, B. Duchemin and J. Lamé**. Nucl. Instrum. Methods A369 (1996) 523 and Bulletin du Bureau National de Métrologie 110 (1998).

[99In] **Table de Radionucléides. Introduction, nouvelle version**. Introduction, revised version. Einleitung, überarbeitete Fassung. ISBN 2 7272 0201 6, BNM-CEA/LNHB BP 52, 91191 Gif-sur-Yvette Cedex, France.

[99Be] **M.-M. Bé, E. Browne, V. Chechev, R.G. Helmer, E. Schönfeld.** Table de Radionucléides, ISBN 2 7272 0200 8 and ISBN 2 7272 0211 3(LHNB, 1988-1999).

[04Be] M.M. Bé, E. Browne, V. Chechev, V. Chisté, R. Dersch, C. Dulieu, R.G. Helmer, T.D. MacMahon, A.L. Nichols, E. Schönfeld. *Table of Radionuclides, Monographie BIPM-5, vol 1 & 2*, ISBN 92-822-2207-7 (set) and ISBN 92-822-2205-5 (CD), CEA/BNM-LNHB, 91191 Gif-sur-Yvette, France and BIPM, Pavillon de Breteuil, 92312 Sèvres, France. and

M.M. Bé, E. Browne, V. Chechev, V. Chisté, R. Dersch, C. Dulieu, R.G. Helmer, N. Kuzmenko, A.L. Nichols, E. Schönfeld. NUCLÉIDE, *Table de Radionucléides sur CD-Rom*, Version 2-2004, CEA/BNM-LNHB, 91191 Gif-sur-Yvette, France.

[06Be] Marie-Martine BÉ, Vanessa CHISTÉ, Christophe DULIEU; Edgardo BROWNE, Coral BAGLIN; Valery CHECHEV, Nikolay KUZMENKO; Richard G. HELMER; Filip G. KONDEV; T. Desmond MACMAHON; Kyung Beom LEE. *Table of Radionuclides, Monographie BIPM-5, vol. 3*, ISSN 92-822-2204-7 (set), ISBN 92-822-2218-7 (Vol. 3) and ISBN 92-822-2219-5 (CD), CEA/LNE-LNHB, 91191 Gif-sur-Yvette, France and BIPM, Pavillon de Breteuil, 92312 Sèvres, France.

[08Be] Marie-Martine BÉ, Vanessa CHISTÉ, Christophe DULIEU; Edgardo BROWNE; Valery CHECHEV, Nikolay KUZMENKO; Filip G. KONDEV; Aurelian LUCA; Mónica GALÁN; Andrew PEARCE; Xiaolong HUANG. *Table of Radionuclides, Monographie BIPM-5, vol. 4*, ISBN 92-822-2230-6 (Vol. 4) and ISBN 92-822-2231-4 (CD), CEA/LNE-LNHB, 91191 Gif-sur-Yvette, France and BIPM, Pavillon de Breteuil, 92312 Sèvres, France.

[10Be] Marie-Martine BÉ, Vanessa CHISTÉ, Christophe DULIEU, Xavier MOUGEOT, Edgardo BROWNE, Valery CHECHEV, Nikolay KUZMENKO, Filip G. KONDEV, Aurelian LUCA, Mónica GALÁN, Arzu ARINC, Xiaolong HUANG, Alan NICHOLS. Table of Radionuclides, Monographie BIPM-5, vol.5, ISBN 13 978-92-822-2234-8 (Vol. 5) et 13 978-92-822-2235-5 (CD-Rom), CEA/LNE-LNHB, 91191 Gif-sur-Yvette, France and BIPM, Pavillon de Breteuil, 92312 Sèvres, France.

Table of Radionuclides, Monographie BIPM-5, Commentaires, vol.5, ISBN 13 978-92-822-2235-5 (CD-Rom), CEA/LNE-LNHB, 91191 Gif-sur-Yvette, France and BIPM, Pavillon de Breteuil, 92312 Sèvres, France.

[11Be] Marie-Martine BÉ, Vanessa CHISTÉ, Christophe DULIEU, Xavier MOUGEOT, Valery CHECHEV, Nikolay KUZMENKO, Filip G. KONDEV, Aurelian LUCA, Mónica GALÁN, Arzu ARINC, Xiaolong HUANG, B. WANG, Alan NICHOLS. Table of Radionuclides, Monographie BIPM-5, vol.6, ISBN 13 978-92-822-2242-3 (Vol. 6) et 13 978-92-822-2243-0 (CD-Rom), CEA/LNE-LNHB, 91191 Gif-sur-Yvette, France and BIPM, Pavillon de Breteuil, 92312 Sèvres, France.

Table of Radionuclides, Monographie BIPM-5, Commentaires, vol.6, ISBN 13 978-92-822-2243-0 (CD-Rom), CEA/LNE-LNHB, 91191 Gif-sur-Yvette, France and BIPM, Pavillon de Breteuil, 92312 Sèvres, France.

[13Be] Marie-Martine BÉ, Vanessa CHISTÉ, Christophe DULIEU, Xavier MOUGEOT, Valery CHECHEV, Filip G. KONDEV, Alan L. NICHOLS, Xiaolong HUANG, Baosong WANG. Table of Radionuclides, Monographie BIPM-5, vol.7, ISBN 13 978-92-822-2248-5 (Vol. 7) et 13 978-92-822-2249-2 (CD-Rom), CEA/LNE-LNHB, 91191 Gif-sur-Yvette, France and BIPM, Pavillon de Breteuil, 92312 Sèvres, France.

Table of Radionuclides, Monographie BIPM-5, Commentaires, vol.7, ISBN 13 978-92-822-2249-2 (CD-Rom), CEA/LNE-LNHB, 91191 Gif-sur-Yvette, France and BIPM, Pavillon de Breteuil, 92312 Sèvres, France.

AUTEURS POUR CORRESPONDANCE

AUTHOR'S MAIL ADDRESSES

ADRESSEN DER AUTOREN

AUTORES PARA CORRESPONDENCIA

Toutes demandes de renseignements concernant les données recommandées et la façon dont elles ont été établies doivent être adressées directement aux auteurs des évaluations.

Information on the data and the evaluation methods is available from the authors listed below.

Informationen über die Daten und Evaluationsprozeduren können bei den im folgenden zusammengestellten Autoren angefordert werden:

Todos los pedidos de información relativos a datos recomendados y la manera de establecerlos deben dirigirse directamente a los autores de las evaluaciones.

Dr. Arzu Arinc National Physical Laboratory Teddington, Middlesex, TW11 OLM, United Kingdom E-mail: <u>Arzu.Arinc@npl.co.uk</u>

Dr. Marie-Martine Bé (retired) CEA/LNHB 91191 Gif-sur-Yvette, CEDEX, France (Contact: Dr. Mark A. Kellett)

Dr. Valery P. Chechev V.G. Khlopin Radium Institute 28, 2nd Murinsky Ave., 194021 St. Petersburg, Russia Tel: 007 (812) 2473706 Fax: 007 (812) 2478095 E-mail: <u>chechev@atom.nw.ru</u>

Dr. Vanessa Chisté CEA/LNHB 91191 Gif-sur-Yvette, CEDEX, France Tel: 33-1-69-08-63-07 E-mail: <u>vanessa.chiste@cea.fr</u>

Dr. Mark A. Kellett CEA/LNHB 91191 Gif-sur-Yvette, CEDEX, France Tel: 33-1-69-08-27-76 Fax: 33-1-69-08-26-19 E-mail: mark.kellett@cea.fr

Dr. Tibor Kibédi

Department of Nuclear Physics Australian National University Canberra, Australia, ACT 0200 E-mail: <u>Tibor.Kibedi@anu.edu.au</u>

Dr. Nikolay K. Kuzmenko

V.G. Khlopin Radium Institute 28, 2nd Murinsky Ave., 194021 St. Petersburg, Russia Tel: 007 (812) 2473706 Fax: 007 (812) 2478095 E-mail: akuzmenko@nk9433.spb.edu

Dr. Xavier Mougeot

CEA/LNHB 91191 Gif-sur-Yvette, CEDEX, France Tel: 33-1-69-08-23-32 Fax: 33-1-69-08-26-19 E-mail: <u>xavier.mougeot@cea.fr</u>

Dr. Alan L. Nichols

Department of Physics University of Surrey Guildford GU2 7XH, United Kingdom Tel: 44-1235-524077 E-mail: <u>alanl.nichols@btinternet.com</u>

(Volumes 6, 7 & 8)

List of radionuclides included in:

Volume 8 - A = 41 to 198		Volu	me 7 - $A = 14 t$	0 245	Volume 6 - A = 41 to 242			
Mass	Nuclide	Page	Mass	Nuclide	Page	Mass	Nuclide	Page
41	Ca-41	1	14	C-14	1	41	Ar-41	1
47	Sc-47	7	35	S-35	5	59	Ni-59	7
52	Fe-52	13	36	Cl-36	9	64	Cu-64*	13
58	Co-58	19	37	Ar-37	15	99	Тс-99	21
61	Cu-61	25	45	Ca-45	21	109	Pd-109	27
63	Zn-63	33	67	Ga-67*	25	125	I-125	37
73	Se-73	45	68	Ga-68	33	132	Te-132	43
82	Rb-82	57	68	Ge-68	41	182	Ta-182	49
82	Sr-82	67	127	Sb-127	47	209	Pb-209	61
88	Y-88*	71	127	Te-127	57	209	Po-209	65
89	Zr-89	79	127	Te-127m	63	211	Po-211	73
93	Zr-93	87	134	Cs-134	73	215	Po-215	79
93	Nb-93m*	93	141	Ce-141	81	215	At-215	85
94	Tc-94m	99	147	Nd-147	87	219	At-219	91
106	Ru-106	111	147	Pm-147	95	219	Rn-219	95
106	Rh-106	115	195	Au-195	101	223	Fr-223	105
109	Cd-109*	129	206	Hg-206	107	223	Ra-223	125
127	Xe-127	137	207	Tl-207	113	228	Ac-228	139
131	I-131*	145	208	T1-208*	119	231	Pa-231	165
131	Xe-131m*	153	209	T1-209	127	234	Pa-234	177
133	Ba-133*	159	211	Pb-211	135	234	Pa-234m	213
138	La-138*	167	211	At-211	143	236	Np-236*	231
140	Ba-140*	173	213	Bi-213	153	237	Np-237*	239
140	La-140*	181	215	Bi-215	163	239	U-239*	251
144	Ce-144	191	228	Th-228*	171	242	Am-242m	267
144	Pr-144	201	242	Cm-242*	179			
144	Pr-144m	209	243	Cm-243	189		* : updated ev	valuations
148	Pm-148	217	244	Cm-244*	201			
148	Pm-148m	227	245	Cm-245	209			
151	Sm-151	239						
169	Er-169	245		* : updated e	valuations			
198	Au-198*	251						

* : updated evaluations

(Volumes 3, 4 & 5)

List of radionuclides included in:

Volu	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	o 244	Volu	me 4 - $A = 133 t$	to 252	Volume $3 - A = 3 t$		244
Mass	Nuclide	Page	Mass	Nuclide	Page	Mass	Nuclide	Page
22	Na-22	1	133	I-133	1	3	Н-3	1
40	K-40	7	133	Xe-133	11	55	Fe-55	5
75	Se-75	13	133	Xe-133m	17	56	Co-56	11
124	Sb-124	21	135	Xe-135m	23	60	Co-60	23
207	Bi-207	33	139	Ce-139	31	63	Ni-63	29
211	Bi-211	41	206	Tl-206	39	65	Zn-65	33
217	At-217	47	210	Tl-210	45	79	Se-79	39
225	Ra-225	53	210	Pb-210	51	90	Sr-90	43
225	Ac-225	59	210	Bi-210	59	90	Y-90	47
228	Ra-228	81	210	Po-210	65	90	Y-90m	53
231	Th-231	85	213	Po-213	71	108	Ag-108	59
232	Th-232	95	214	Pb-214	75	108	Ag-108m	67
233	Th-233*	101	214	Bi-214	83	111	In-111	75
233	Pa-233*	117	214	Po-214	111	125	Sb-125*	81
234	Th-234	127	217	Rn-217	117	137	Cs-137	91
235	U-235	133	218	Po-218	121	153	Sm-153*	99
237	U-237*	145	218	At-218	125	159	Gd-159	109
238	Pu-238*	153	218	Rn-218	129	203	Pb-203	115
240	Pu-240*	165	221	Fr-221	135	233	Pa-233	123
241	Am-241*	175	222	Rn-222	143	233	Th-233	133
242	Pu-242*	197	226	Ra-226*	149	234	U-234	147
242	Am-242	203	227	Ac-227	155	236	Np-236	155
243	Am-243*	209	232	U-232	169	236	Np-236m	163
244	Am-244	217	236	U-236	177	237	U-237	169
244	Am-244m	223	237	Np-237	183	238	U-238	177
			238	Np-238	195	242	Cm-242	185
	* : updated ev	valuations	239	U-239	205	243	Am-243	195
			239	Np-239	221	244	Cm-244	203
			239	Pu-239	231			
			241	Pu-241	259		* : updated e	valuations
			246	Cm-246	269			
			252	Cf-252	277			

* : updated evaluations

(Volumes 1 & 2)

List of radionuclides included in:

Volume 2 - A = 151 to 242

Volume 1 - A = 1 to 150

Mass	Nuclide	Page	Mass	Nuclide	Page
152	Eu-152	1	7	Be-7	1
153	Gd-153	21	11	C-11	7
153	Sm-153	27	13	N-13	11
154	Eu-154	37	15	O-15	17
155	Eu-155	59	18	F-18	21
166	Ho-166	67	24	Na-24	27
166	Ho-166m	75	32	P-32	35
169	Yb-169	87	33	P-33	41
170	Tm-170	99	44	Sc-44	45
177	Lu-177	107	44	Ti-44	51
186	Re-186	113	46	Sc-46	57
198	Au-198	121	51	Cr-51	63
201	Tl-201	129	54	Mn-54	71
203	Hg-203	135	56	Mn-56	77
204	Tl-204	141	57	Co-57	83
208	Tl-208	147	57	Ni-57	91
212	Bi-212	155	59	Fe-59	99
212	Pb-212	167	64	Cu-64	105
212	Po-212	173	66	Ga-66	113
216	Po-216	177	67	Ga-67	133
220	Rn-220	183	85	Kr-85	141
224	Ra-224	189	85	Sr-85	147
226	Ra-226	195	88	Y-88	153
227	Th-227	201	89	Sr-89	161
228	Th-228	227	93	Nb-93m	167
238	Pu-238	235	99	Mo-99	173
240	Pu-240	247	99	Tc-99m	183
241	Am-241	257	109	Cd-109	191
242	Pu-242	277	110	Ag-110	199
			110	Ag-110m	207
			123	I-123	219
			123	Te-123m	229
			125	Sb-125	235
			129	I-129	243
			131	I-131	249

XXIII

131 Xe-131m

133 Ba-133

140 Ba-140

140 La-140

257

263

271

277

 Table of contents

 (Volumes 1 to 8 – All nuclides sorted by increasing mass number)

Mass	Nuclide	Vol/Page	Mass	Nuclide	Vol/Page	Mass	Nuclide	Vol/Page	Mass	Nuclide	Vol/Page
3	H-3	3 / 1	93	Nb-93m	1 / 167	155	Eu-155	2 / 59	225	Ac-225	5 / 59
7	Be-7	1 / 1	93	Nb-93m*	8 / 93	159	Gd-159	3 / 109	226	Ra-226	2 / 195
11	C-11	1 / 7	94	Tc-94m	8 / 99	166	Ho-166	2 / 67	226	Ra-226*	4 / 149
13	N-13	1 / 11	99	Mo-99	1 / 173	166	Ho-166m	2 / 75	227	Ac-227	4 / 155
14	C-14	7 / 1	99	Tc-99	6 / 21	169	Er-169	8 / 245	227	Th-227	2 / 201
15	0-15	1 / 17	99	Tc-99m	1 / 183	169	Yb-169	2 / 87	228	Ra-228	5 / 81
18	F-18	1/21	106	Ru-106	8/111	170	Tm-170	2 / 99	228	Ac-228	6/139
22	Na-22	5/1	106	Rh-106	8/115	177	Lu-177	2/107	228	Th-228	2 / 227
24	Na-24	1/27	108	Ag-108	3 / 59	182	Ta-182	6/49	228	Th-228*	7/171
32	P_32	1/35	100	Ag_108m	3/67	186	Re-186	2/113	220	Th-231	5 / 85
32	P_33	1/41	100	Pd_100	6/27	100	Au-195	7 / 101	231	Pa-231	6/165
35	S_35	7/5	109	Cd-109	1 / 191	198	Au-198	2 / 121	231	Th_232	5/95
26	C1 26	7/9	100	$Cd 100^{*}$	8 / 120	100	Au 100*	2/121	232	11-232	1/160
27	Ar 27	7/15	109	Ag 110	0 / 129 1 / 100	201	Au-190	8 / 231 2 / 120	232	U-232	2 / 122
40	AI-57	5/7	110	Ag-110	1/199	201	11-201 Ha 202	2/129	233	Th 222*	5 / 101
40	N-40	5/7	110	Ag-110III	1/20/	203	пg-205	2/133	255	TII-255	3/101
41	Ar-41	6/1	111	In-111 T 122	3 / 75	203	PD-203	3/115	233	Pa-233	5/125
41	Ca-41	8/1	123	1e-123m	1/229	204	11-204	2/141	233	Pa-233	5/11/
44	Sc-44	1/45	123	1-123	1/219	206	Hg-206	//10/	234	Th-234	5/12/
44	11-44	1/51	124	Sb-124	5/21	206	11-206	4/39	234	Pa-234	6/1//
45	Ca-45	7/21	125	Sb-125	1/235	207	TI-207	7/113	234	Pa-234m	6/213
46	Sc-46	1 / 57	125	Sb-125*	3 / 81	207	Bi-207	5/33	234	U-234	3 / 147
47	Sc-47	8 / 7	125	I-125	6/37	208	Tl-208	2 / 147	235	U-235	5 / 133
51	Cr-51	1 / 63	127	Sb-127	7 / 47	208	Tl-208*	7 / 119	236	U-236	4 / 177
52	Fe-52	8 / 13	127	Te-127	7 / 57	209	Tl-209	7 / 127	236	Np-236	3 / 155
54	Mn-54	1 / 71	127	Te-127m	7 / 63	209	Pb-209	6 / 61	236	Np-236*	6 / 231
55	Fe-55	3 / 5	127	Xe-127	8 / 137	209	Po-209	6 / 65	236	Np-236m	3 / 163
56	Mn-56	1 / 77	129	I-129	1 / 243	210	Tl-210	4 / 45	237	U-237	3 / 169
56	Co-56	3 / 11	131	I-131	1 / 249	210	Pb-210	4 / 51	237	U-237*	5 / 145
57	Co-57	1 / 83	131	I-131*	8 / 145	210	Bi-210	4 / 59	237	Np-237	4 / 183
57	Ni-57	1 / 91	131	Xe-131m	1 / 257	210	Po-210	4 / 65	237	Np-237*	6 / 239
58	Co-58	8 / 19	131	Xe-131m*	8 / 153	211	Pb-211	7 / 135	238	U-238	3 / 177
59	Fe-59	1 / 99	132	Te-132	6 / 43	211	Bi-211	5 / 41	238	Np-238	4 / 195
59	Ni-59	6 / 7	133	I-133	4 / 1	211	Po-211	6 / 73	238	Pu-238	2 / 235
60	Co-60	3 / 23	133	Xe-133	4 / 11	211	At-211	7 / 143	238	Pu-238*	5 / 153
61	Cu-61	8 / 25	133	Xe-133m	4 / 17	212	Pb-212	2 / 167	239	U-239	4 / 205
63	Ni-63	3 / 29	133	Ba-133	1 / 263	212	Bi-212	2 / 155	239	U-239*	6 / 251
63	Zn-63	8 / 33	133	Ba-133*	8 / 159	212	Po-212	2 / 173	239	Np-239	4 / 221
64	Cu-64	1 / 105	134	Cs-134	7 / 73	213	Bi-213	7 / 153	239	Pu-239	4 / 231
64	Cu-64*	6 / 13	135	Xe-135m	4 / 23	213	Po-213	4 / 71	240	Pu-240	2 / 247
65	Zn-65	3 / 33	137	Cs-137	3 / 91	214	Pb-214	4 / 75	240	Pu-240*	5 / 165
66	Ga-66	1 / 113	138	La-138*	8 / 167	214	Bi-214	4 / 83	241	Pu-241	4 / 259
67	Ga-67	1 / 133	139	Ce-139	4/31	214	Po-214	4/111	241	Am-241	2 / 257
67	Ga-67*	7 / 25	140	Ba-140	1 / 271	215	Bi-215	7 / 163	241	Am-241*	5 / 175
68	Ga-68	7 / 33	140	Ba-140*	8 / 173	215	Po-215	6 / 79	242	Pu-242	2 / 277
68	Ge-68	7 / 41	140	La-140	1 / 277	215	At-215	6 / 85	242	Pu-242*	5/197
73	Se-73	8/45	140	La-140*	8 / 181	216	Po-216	2/177	242	Am-242	5/203
75	Se-75	5/13	141	Ce-141	7 / 81	217	At-217	5/47	242	Am-242m	6 / 267
79	Se-79	3/39	144	Ce-144	8 / 191	217	Rn-217	4/117	242	Cm-242	3 / 185
82	Rb-82	8 / 57	144	Pr-144	8 / 201	217	Po-218	4/121	242	$Cm_{-}242^{*}$	7 / 179
82	Sr-82	8/67	144	Pr-144m	8 / 209	210	At_218	4/121	242	Am_243	3 / 195
85	SI-02 Kr-85	1 / 1/1	147	Nd_147	7/87	210	Rn_218	4/129	243	$\Delta m_{-}2/43^{*}$	5/209
85	Sr 95	1/147	147	$D_m 147$	7/05	210	A+ 210	6/01	243	Cm 243	$\frac{3720}{7/180}$
00	V 80	1 / 14 /	14/	Dm 1/0	0/017	219	Dn 210	6/05	243	Am 244	1 / 107 5 / 217
00	1-00 V 80*	1/1JJ 0/71	140	1 111-140 Dm 140	8/21/	219	Rn 220	0/93 2/102	244	Am 244	5/21/
80	1-00	0 / /1	148	rm-148m	0/22/	220	KII-220	2/183	244	AIII-244M	2/202
89	31-89	1/101	151	5m-151	8/239	221	гт-221 Dir 202	4/135	244	Cm-244	3 / 203
89	ZI-89	8/19	152	Eu-152	2/1	222	Kn-222	4 / 143	244	Cm-244	7/201
90	Sr-90	3/43	153	Sm-153	2/2/	223	FT-223	6 / 105	245	Cm-245	1/209
90	1-90 1/-90	3/4/	153	Sm-153	5/99	223	ка-223	0/125	246	Cm-246	4 / 269
90	Y-90m	3/53	153	Ga-153	2/21	224	ка-224	2 / 189	252	CI-252	4/277
93	Zr-93	8 / 87	154	Eu-154	2/37	225	Ra-225	5 / 53			

* : updated evaluations

(Volumes 1 to 8 – All nuclides sorted by <u>alphabetical order</u>)

Mass	Nuclide	Vol/Page	Mass	Nuclide	Vol/Page	Mass	Nuclide	Vol/Page	Mass	Nuclide	Vol/Page
225	Ac-225	5 / 59	134	Cs-134	7 / 73	32	P-32	1/35	75	Se-75	5 / 13
227	Ac-227	4 / 155	137	Cs-137	3 / 91	33	P-33	1 / 41	79	Se-79	3 / 39
228	Ac-228	6 / 139	61	Cu-61	8 / 25	231	Pa-231	6 / 165	151	Sm-151	8 / 239
108	Ag-108	3 / 59	64	Cu-64	1 / 105	233	Pa-233	3 / 123	153	Sm-153	2 / 27
108	Ag-108m	3 / 67	64	Cu-64*	6 / 13	233	Pa-233*	5/117	153	Sm-153*	3 / 99
110	Ag-110	1 / 199	169	Er-169	8 / 245	234	Pa-234	6 / 177	82	Sr-82	8 / 67
110	Ag-110m	1/207	152	Eu-152	2/1	234	Pa-234m	6/213	85	Sr-85	1 / 147
241	Am-241	2/257	154	Eu-152	2/37	203	Ph-203	3/115	89	Sr-89	1 / 161
241	$\Delta m_{-}2/1^{*}$	5 / 175	151	Eu-155	2/59	200	Pb_209	6/61	90	Sr-90	3 / 13
241	$\frac{1}{1}$	5 / 203	19	E 18	1/21	20)	Ph 210	4 / 51	182	Ta 182	6/40
242	Am 242m	6/267	52	Fe 52	8/13	210	Ph 211	7 / 135	04	$T_{c} 0.4m$	8/00
242	Am 242	3 / 105	55	Fo 55	2/5	211	Dh 212	2 / 167	94	To 00	6/21
243	Am 243	5/195	50	Fe-55	1/00	212	PD-212	2/10/	99	To 00m	1/192
245	Am 244	5/209	221	FC-39	1/99	214	PU-214	4/73	122	Te 122m	1 / 105
244	Am-244	5/21/	221	FI-221	4/135	109	Pa-109	0/2/	123	Te-125m	1/229
244	Am-244m	57225	223	FI-223	6/105	14/	Pm-14/	//95	127	Te-127	7/5/
3/	Ar-3/	//15	66	Ga-66	1/113	148	Pm-148	8/21/	127	Te-12/m	// 63
41	Ar-41	6/1	6/	Ga-6/	1/133	148	Pm-148m	8/22/	132	Te-132	6/43
211	At-211	7/143	67	Ga-67	7/25	209	Po-209	6/65	227	Th-227	2/201
215	At-215	6 / 85	68	Ga-68	7/33	210	Po-210	4 / 65	228	Th-228	2 / 227
217	At-217	5 / 47	153	Gd-153	2/21	211	Po-211	6 / 73	228	Th-228*	7 / 171
218	At-218	4 / 125	159	Gd-159	3 / 109	212	Po-212	2 / 173	231	Th-231	5 / 85
219	At-219	6 / 91	68	Ge-68	7 / 41	213	Po-213	4 / 71	232	Th-232	5 / 95
195	Au-195	7 / 101	3	H-3	3 / 1	214	Po-214	4 / 111	233	Th-233	3 / 133
198	Au-198	2 / 121	203	Hg-203	2 / 135	215	Po-215	6 / 79	233	Th-233*	5 / 101
198	Au-198*	8 / 251	206	Hg-206	7 / 107	216	Po-216	2 / 177	234	Th-234	5 / 127
133	Ba-133	1 / 263	166	Ho-166	2 / 67	218	Po-218	4 / 121	44	Ti-44	1 / 51
133	Ba-133*	8 / 159	166	Ho-166m	2 / 75	144	Pr-144	8 / 201	201	Tl-201	2 / 129
140	Ba-140	1 / 271	123	I-123	1 / 219	144	Pr-144m	8 / 209	204	Tl-204	2 / 141
140	Ba-140*	8 / 173	125	I-125	6/37	238	Pu-238	2 / 235	206	Tl-206	4 / 39
7	Be-7	1 / 1	129	I-129	1 / 243	238	Pu-238*	5 / 153	207	Tl-207	7 / 113
207	Bi-207	5 / 33	131	I-131	1 / 249	239	Pu-239	4 / 231	208	Tl-208	2 / 147
210	Bi-210	4 / 59	131	I-131*	8 / 145	240	Pu-240	2 / 247	208	Tl-208*	7/119
211	Bi-211	5 / 41	133	I-133	4/1	240	Pu-240*	5 / 165	209	Tl-209	7 / 127
212	Bi-212	2/155	111	In-111	3 / 75	241	Pu-241	4 / 259	210	TI-210	4/45
213	Bi-213	7 / 153	40	K-40	5/7	242	Pu-242	2 / 277	170	Tm-170	2/99
214	Bi-214	4 / 83	85	Kr-85	1 / 141	242	Pu-242*	5 / 197	232	U-232	4 / 169
215	Bi-215	7/163	138	La-138*	8 / 167	223	Ra-223	6/125	234	U-234	3 / 147
11	C-11	1/7	140	La 150 La 140	1 / 277	225	Ra 225 Ra 224	2 / 189	234	U_235	5 / 133
14	C-14	7/1	140	$L_{a} = 140^{*}$	8 / 181	224	R_{2}^{-227}	5 / 53	235	U_236	4 / 177
41	Ca-41	8/1	170	Lu 140	2 / 107	225	Ra 225 Ra 226	2 / 195	230	U_237	3 / 169
45	Ca 45	7/21	54	Mn 54	2/10/	220	Ru 220 Ra 226*	2 / 1/9	237	U 237*	5 / 145
100	Cd 100	1 / 101	56	Mn 56	1/77	220	Ra - 220	5/81	237	U-237	3/173
109	Cd 100*	8 / 120	00	Mo 00	1 / 173	220 82	Ra-220 Ph 82	8/57	230	U-230	4/205
120	Co 120	4/21	12	N 12	1/1/5	196	R0-02 Do 196	2/112	239	U-239	4 / 20J
139	C- 141	4/31	15	N-15	5/1	100	DL 100	2/113	107	U-239 V- 127	0/231
141	Ce-141	// 81	22	Na-22	5/1	217	RII-100	8/113	127	Xe-12/	0/15/
144	Ce-144	8/191	24	Na-24	1/2/	217	Kn-21/	4/11/	131	Xe-151m	1/25/
252	CI-252	4/2//	93	ND-95m	1/16/	218	Rn-218	4/129	131	Xe-151m	8/155
36	CI-36	//9	93	Nb-93m	8/93	219	Rn-219	6/95	133	Xe-133	4/11
242	Cm-242	3 / 185	147	Nd-147	7/87	220	Rn-220	2/183	133	Xe-133m	4/17
242	Cm-242*	7 / 179	57	Ni-57	1 / 91	222	Rn-222	4 / 143	135	Xe-135m	4 / 23
243	Cm-243	7 / 189	59	Ni-59	6 / 7	106	Ru-106	8 / 111	88	Y-88	1 / 153
244	Cm-244	3 / 203	63	Ni-63	3 / 29	35	S-35	7 / 5	88	Y-88*	8 / 71
244	Cm-244*	7 / 201	236	Np-236	3 / 155	124	Sb-124	5 / 21	90	Y-90	3 / 47
245	Cm-245	7 / 209	236	Np-236*	6 / 231	125	Sb-125	1 / 235	90	Y-90m	3 / 53
246	Cm-246	4 / 269	236	Np-236m	3 / 163	125	Sb-125*	3 / 81	169	Yb-169	2 / 87
56	Co-56	3 / 11	237	Np-237	4 / 183	127	Sb-127	7 / 47	63	Zn-63	8 / 33
57	Co-57	1 / 83	237	Np-237*	6 / 239	44	Sc-44	1 / 45	65	Zn-65	3 / 33
58	Co-58	8 / 19	238	Np-238	4 / 195	46	Sc-46	1 / 57	89	Zr-89	8 / 79
60	Co-60	3 / 23	239	Np-239	4 / 221	47	Sc-47	8 / 7	93	Zr-93	8 / 87
51	Cr-51	1 / 63	15	O-15	1 / 17	73	Se-73	8 / 45			

* : updated evaluations

1 Decay Scheme

⁴¹Ca disintegrates by 100% electron-capture transition to the ground state of the stable nuclide ⁴¹K. Le calcium 41 se désintègre exclusivement par capture électronique vers le niveau fondamental du potassium 41.

2 Nuclear Data

$T_{1/2}(^{41}\text{Ca})$:	1,002	(17)	10^5 a
$Q^{+}(^{41}Ca)$:	$421,\!63$	(14)	keV

2.1 Electron Capture Transitions

_	Energy (keV)	Probability (%)	Nature	$\lg ft$	P_K	P_L	P_{M+}
$\epsilon_{0,0}$	421,63 (14)	100	Unique 1st forbidden	$10,\!53$	0,894 (9)	0,0916 (9)	0,01482 (15)

3 Atomic Data

3.1 K

ω_K	:	$0,\!143$	(4)
$\bar{\omega}_L$:	0,00181	(36)
n_{KL}	:	$1,\!654$	(6)

3.1.1 X Radiations

		$\frac{\rm Energy}{\rm (keV)}$		Relative probability
$X_{\rm K}$				
	$K\alpha_2$	3,3111		$50,\!55$
	$K\alpha_1$	3,3138		100
	$K\beta_1$	3,5896	J	10 11
	${ m K}eta_5^{\prime\prime}$	$3,\!6028$	ſ	10,44
$\mathbf{X}_{\mathbf{L}}$				
	$L\ell$	0,2604		
	$L\eta$	0,263		
	$^{\cdot}$ L eta	0,29654 - 0,3618		
	$\mathrm{L}\gamma$	0,29917 - 0,29917		

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K		
KLL	2,615 - 2,985	100
KLX	3,183 - 3,296	24,5
KXY	3,540 - 3,572	1,5
Auger L	0,226 - 0,342	

4 Electron Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Electrons (per 100 disint.)
e_{AL}	(K)	0,226 - 0,342		9,16~(9)
e _{AK}	(K) KLL KLX KXY	2,615 - 2,985 3,183 - 3,296 3,540 - 3,572	<pre>}</pre>	76,6 (9)

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Photons (per 100 disint.)		
$\begin{array}{c} \text{XL} \\ \text{XK}\alpha_2 \\ \text{XK}\alpha_1 \end{array}$	(K) (K) (K)	0,2604 - 0,3618 3,3111 3,3138		$\begin{array}{c} 0,017 \ (4) \\ 3,82 \ (12) \\ 7,56 \ (23) \end{array}$	}	Kα
$egin{array}{c} { m XK}eta_1\ { m XK}eta_5^{\prime\prime} \end{array}$	(K) (K)	3,5896 3,6028	<pre>}</pre>	1,40(5)		$K' \beta_1$

6 Main Production Modes

	${}^{40}\text{Ca}(n,\gamma){}^{41}\text{Ca}$	$\sigma: 0,41 \ (2) \text{ barns } $	
Possible impurities :	${ m ^{44}Ca(n,\gamma)^{45}Ca}$	$\sigma: 0.88 (5)$ barns \int	

7 References

- H.T. RICHARDS, R.V. SMITH, C.P. BROWNE. Phys. Rev. 80 (1950) 524 (Q first measurement)
- F. BROWN, G.C. HANNA, L. YAFFE. Phys. Rev. 84 (1951) 1243 (Half-life)
- V.L. SAILOR, J.J. FLOYD. Phys. Rev. 82 (1951) 960 (EXK(K))
- F. BROWN, G.C. HANNA, L. YAFFE. Proc. Roy. Soc. (London) 220A (1953) 203 (Half-life)
- J.R.S. DROUIN, L. YAFFE. Can. J. Chem. 40 (1962) 833 (Half-life)
- L. WAHLIN. UCOL (University of Colorado) 535-561 (1966) 59 (Half-life)
- B. SITAR, J. CHRAPAN, J. ORAVEC, K. DURCEK. Jad. Energ. 16 (1970) 303 (EXK(K))
- B. MYSLEK, Z. SUJKOWSKI, J. ZYLICZ. Nucl. Phys. A 215 (1973) 79 (IB spectrum)
- B.A. ZON. Bull. Acad. Sci. USSR, Phys. Ser. 37 (9) (1974) 153 (IB calculations)
- H. MABUCHI, H. TAKAHASHI, Y. NAKAMURA, K. NOTSU, H. HAMAGUCHI. J. Inorg. Nucl. Chem. 36 (1974) 1687 (Half-life)
- P. HORNSHOJ, T. BATSCH, Z. JANAS, M. PFUETZNER, A. PLOCHOCKI, K. RYKACZEWSKI. Nucl. Phys. A 472 (1987) 139
 (IB spectrum)
- Z. JANAS, M. PFUETZNER, A. PLOCHOCKI, D. SEWERYNIAK. Nucl. Phys. A 486 (1988) 278 (Internal ionization)
- D. FINK, J. KLEIN, R. MIDDLETON. Nucl. Instrum. Methods Phys. Res. B 52 (1990) 572 (Half-life)
- M. PAUL, I. AHMAD, W. KUTSCHERA. Z. Phys. A 340 (1991) 249 (Half-life)
- J. KLEIN, D. FINK, R. MIDDLETON, K. NISHIIZUMI, J. ARNOLD. Earth Planet. Sci. Lett. 103 (1991) 79 (Half-life)
- L. KALINOWSKI, Z. JANAS, M. PFUTZNER, A. PLOCHOCKI, P. HORNSHOJ, H.L. NIELSEN. Nucl. Phys. A 537 (1992) 1
 (IB calculations)

- W. KUTSCHERA, I. AHMAD, M. PAUL. Radiocarbon 34 (1992) 436 (Half-life, IB spectrum)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instr. Meth. A 369 (1996) 527 (wK, K X-ray ratios, Auger e- ratios, atomic data)
- J.A. CAMERON, B. SINGH. Nucl. Data Sheets 94 (2001) 429 (Spins and parities of ground states, Eg of first exited state)
- S.F. MUGHABGHAB. Atlas of Neutron Resonances Elsevier (2006) Amsterdam (Neutron capture cross sections)
- P.J. MOHR, B.N. TAYLOR, D.B. NEWELL. Rev. Mod. Phys. 80 (2008) 633 (Avogadro constant)
- G. AUDI, W. MENG. Private Communication Atomic Mass (2011) Evaluation (Q value)
- M. BERGLUND, M.E. WIESER. Pure Appl. Chem. 83 (2011) 397 (Isotopic abundance)
- G. JÖRG, Y. AMELIN, K. KOSSERT, C.L.V. GOSTOMSKI. Geochimica et Cosmochimica Acta 88 (2012) 51 (Half-life)

1 Decay Scheme

Le scandium 47 se désintègre par émission bêta moins vers le niveau excité de 159 keV et le niveau fondamental du titane 47.

Sc-47 decays by beta minus emission to the 159 keV excited level and the ground state of Ti-47.

2 Nuclear Data

 $\begin{array}{rrrr} T_{1/2}({}^{47}{\rm Sc}~) &:& 3{,}3485 & (9) & {\rm d} \\ Q^-({}^{47}{\rm Sc}~) &:& 600{,}8 & (19) & {\rm keV} \end{array}$

2.1 β^- Transitions

	Energy (keV)	Probability (%)	Nature	$\lg ft$
$\beta^{-}_{0,1} \\ \beta^{-}_{0,0}$	$\begin{array}{c} 441,4\ (19)\\ 600,8\ (19)\end{array}$	$\begin{array}{c} 68,5 \ (5) \\ 31,5 \ (5) \end{array}$	Allowed Allowed	$5,3 \\ 6,1$

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy (keV)	$\begin{array}{c} P_{\gamma+ce} \\ (\%) \end{array}$	Multipolarity	$\begin{array}{c} \alpha_K \\ (10^{-3}) \end{array}$	$ \begin{array}{c} \alpha_L \\ (10^{-4}) \end{array} $	$ \overset{\alpha_M}{(10^{-5})} $	$ \begin{array}{c} \alpha_T \\ (10^{-3}) \end{array} $
$\gamma_{1,0}(\mathrm{Ti})$	159,373 (12)	68,5(5)	M1+0,97(17)%E2	5,60 (12)	5,12 (11)	6,54 (14)	6,18 (13)

3 Atomic Data

3.1 Ti

ω_K	:	0,226	(5)
$\bar{\omega}_L$:	0,00321	(64)
n_{KL}	:	1,566	(5)

3.1.1 X Radiations

		Energy (keV)	Relative probability
X _K	$egin{array}{c} { m K}lpha_2 \ { m K}lpha_1 \ { m K}eta_1 \ { m K}eta_5 \ { m K}eta_5 \end{array}$	$\begin{array}{c} 4,50491 \\ 4,5109 \\ 4,93186 \\ 4,9623 \end{array}$	$\left. \begin{array}{c} 50,76 \\ 100 \end{array} \right\} 19,98$

3.1.2 Auger Electrons

	Energy (keV)	Relative probability
Auger K		
KLL	3,79 - 4,01	100
KLX	4,33 - 4,48	18,9
KXY	4,83 - 4,90	$1,\!35$
Auger L	0,3 - 0,5	

4 Electron Emissions

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$		Electrons (per 100 disint.)
e_{AL}	(Ti)	0,3 - 0,5		0,0349 (8)
e_{AK}	(Ti) KLL KLX KXY	3,79 - 4,01 4,33 - 4,48 4,83 - 4,90	}	0,295~(7)
$\substack{ec_{1,0}\ \mathrm{K}\\ec_{1,0}\ \mathrm{L}}$	(Ti) (Ti)	$\begin{array}{r} 154,\!407 (12) \\ 158,\!809 - 158,\!918 \end{array}$		$0,381 \ (9) \\ 0,0349 \ (8)$
$\beta_{0,1}^-$	max: avg:	$\begin{array}{rrr} 441,4 & (19) \\ 142,8 & (7) \end{array}$	}	68,5~(5)
$\beta_{0,0}^-$	max: avg:	$\begin{array}{ccc} 600,8 & (19) \\ 204,2 & (8) \end{array}$	}	31,5~(5)
5 Photon Emissions

5.1 X-Ray Emissions

	Energy (keV)	Photons (per 100 disint.)	
$\begin{array}{ccc} XK\alpha_2 & (Ti) \\ XK\alpha_1 & (Ti) \\ XK\beta_1 & (Ti) \\ XK\beta_5'' & (Ti) \end{array}$	$\begin{array}{c} 4,50491 \\ 4,5109 \\ 4,93186 \\ 4,9623 \end{array}$	$\begin{cases} 0,0256 \ (9) \\ 0,0505 \ (16) \end{cases}$ $\begin{cases} 0,0101 \ (4) \end{cases}$	$ \begin{cases} & \mathbf{K}\alpha \\ & \mathbf{K}'\beta_1 \end{cases} $

5.2 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\gamma_{1,0}(Ti)$	159,373(12)	68,1(5)

6 Main Production Modes

 $\begin{cases} {\rm Ti} - 47({\rm n},{\rm p}){\rm Sc} - 47 & \sigma: 0.23 \ (4) \ {\rm barns} \\ {\rm Possible \ impurities: \ Sc} - 46, \ {\rm Sc} - 48, \ {\rm Ca} - 45 \\ \\ {\rm Ca} - 48({\rm p},{\rm 2n}){\rm Sc} - 47 \\ {\rm Possible \ impurities: \ Sc} - 46, \ {\rm Sc} - 48 \\ \\ {\rm Ti} - 49({\rm d},\alpha){\rm Sc} - 47 \\ {\rm Possible \ impurities: \ Ca} - 45 \\ {\rm Ca} - 44(\alpha,{\rm p}){\rm Sc} - 47 \\ {\rm Ca} - 46({\rm d},{\rm n}){\rm Sc} - 47 \\ {\rm Ca} - 46({\rm d},{\rm n}){\rm Sc} - 47 \end{cases}$

7 References

- C.T. HIBDON, M.L. POOL. Phys. Rev. 67 (1945) 313 (First correct identification)
- N.L. KRISBERG, M.L. POOL. Phys. Rev. 75 (1949) 1693 (Half-life)
- J.M. CORK, J.M. LEBLANC, M.K. BRICE, W.H. NESTER. Phys. Rev. 92 (1953) 367 (Half-life, ICCs, Gamma energy)
- J.E. DUVAL, M.H. KURBATOV. J. Am. Chem. Soc. 75 (1953) 2246 (Half-life)
- L. MARQUEZ. Phys. Rev. 92 (1953) 1511 (Half-life)
- L.S. CHENG, M.L. POOL. Phys. Rev. 90 (1953) 886 (Half-life, Beta emission probability, ICCs, Gamma energy)
- W.S. LYON, B. KAHN. Phys. Rev. 99 (1955) 728 (Half-life, Beta emission probability, Gamma energy)

- R.T. NICHOLS, E.N. JENSEN. Phys. Rev. 100 (1955) 1407 (Beta emission probability, Gamma energy)
- L.J. LIDOFSKY, V.K. FISCHER. Phys. Rev. 104 (1956) 759 (Half-life, Beta emission probability)
- W.E. GRAVES, S.K. SURI. Phys. Rev. 101 (1956) 1368 (Beta emission probability, Gamma energy)
- A. Poularikas, R.W. Fink. Phys. Rev. 115 (1959) 989 (Half-life)
- S. HONTZEAS, L. YAFFE. Can. J. Chem. 41 (1963) 2194 (Half-life)
- S.C. MISRA, U.C. GUPTA, N.P.S. SIDHU. Nucl. Phys. 51 (1964) 174 (Half-life, Beta emission probability, Gamma energy)
- J. KONIJN, E.W.A. LINGEMAN, S.A. DE WIT. Nucl. Phys. A 90 (1967) 558 (Gamma energy)
- J.W.T. MEADOWS, V.A. MODE. J. Inorg. Nucl. Chem. 30 (1968) 361 (Half-life)
- Z.T. BAK, P. RIEHS. Int. J. Appl. Radiat. Isot. 19 (1968) 593 (Half-life, Gamma emission probability)
- H. RAVN. J. Inorg. Nucl. Chem. 31 (1969) 1883 (Half-life)
- R.E. WOOD, J.M. PALMS, P. VENUGOPALA RAO. Nucl. Phys. A 126 (1969) 300 (Gamma energy)
- R.J. GEHRKE. ANCR 1088 (1972) 392 (Gamma energy)
- H. MOMMSEN, I. PERLMAN, J. YELLIN. Nucl. Instrum. Methods 177 (1980) 545 (Half-life)
- D. REHER, H.H. HANSEN, R. VANINBROUKX, M.J. WOODS, C.E. GRANT, S.E.M. LUCAS, J. BOUCHARD, J. MOREL, R. VATIN. Int. J. Appl. Radiat. Isot. 37 (1986) 973 (Half-life, Beta emission probability, ICCs, Gamma emission probability)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Meth. A 369 (1996) 527 (Atomic data)
- T.W. BURROWS. Nucl. Data Sheets 108 (2007) 923 (ENSDF evaluation, Mixing ratio, Gamma energy, Spins and parities)
- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR, JR. Nucl. Instrum. Meth. A 589 (2008) 202 (ICCs)
- M. WANG, G. AUDI, A.H. WAPSTRA, F.G. KONDEV, M. MACCORMICK, X. XU, B. PFEIFFER. Chin. Phys. C 36 (2012) 1603 (Q-value)

1 Decay Scheme

Fe-52 disintegrates 100% by electron capture and positron decay to excited levels in Mn-52. Le fer 52 se désintègre par capture électronique et émissions bêta plus sur des niveaux excités de manganèse 52.

2 Nuclear Data

$T_{1/2}({}^{52}\text{Fe})$:	$8,\!273$	(8)	h
$T_{1/2}^{(52}$ Mn)	:	$5,\!591$	(3)	d
$T_{1/2}^{(52m}Mn)$:	21,1	(2)	\min
$Q^{+}(^{52}\text{Fe})$:	2375	(6)	keV

2.1 Electron Capture Transitions

	Energy (keV)	Probability (%)	Nature	\lgft	P_K	P_L	P_M
$\epsilon_{0,3}$ $\epsilon_{0,2}$	957 (6) 1829 (6)	$\begin{array}{c} 0,095 \ (4) \\ 43,8 \ (13) \end{array}$	Allowed	$5,8 \\ 4,7$	$\begin{array}{c} 0,8892 \ (16) \\ 0,8898 \ (16) \end{array}$	$\begin{array}{c} 0,0950 \ (13) \\ 0,0946 \ (13) \end{array}$	$\begin{array}{c} 0,0151 \ (5) \\ 0,0150 \ (5) \end{array}$

2.2 β^+ Transitions

	Energy (keV)	Probability (%)	Nature	$\lg ft$
$\beta^+_{0,2}$	807~(6)	56,1~(7)	Allowed	4,7

	$\frac{\rm Energy}{\rm (keV)}$	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}}\\ (\%) \end{array}$	Multipolarity	α_K	$lpha_L$	$lpha_M$	$lpha_T$
$ \begin{array}{c} \gamma_{2,1}(\mathrm{Mn}) \\ \gamma_{1,0}(\mathrm{Mn}) \\ \gamma_{3,1}(\mathrm{Mn}) \end{array} $	168,689 (8) 377,749 (5) 1039,939 (19)	$\begin{array}{c} 99,9 \ (15) \\ 1,705 \ (42) \\ 0,095 \ (4) \end{array}$	M1 E4 M1+E2	$0,00705 (10) \\ 0,0356 (5) \\ 0,000130 (15)$	$\begin{array}{c} 0,000679 \ (10) \\ 0,00382 \ (6) \\ 0,0000122 \ (14) \end{array}$	$\begin{array}{c} 0,0000922\ (13)\\ 0,000515\ (8)\\ 0,00000165\ (19) \end{array}$	$0,00783 (11) \\ 0,0399 (6) \\ 0,000143 (16)$

2.3 Gamma Transitions and Internal Conversion Coefficients

3 Atomic Data

3.1 Mn

ω_K	:	0,321	(5)
$\bar{\omega}_L$:	0,0047	(7)
n_{KL}	:	$1,\!478$	(4)

3.1.1 X Radiations

		$\frac{\rm Energy}{\rm (keV)}$		Relative probability
X_{K}				
	$K\alpha_2$	$5,\!88772$		$50,\!99$
	$K\alpha_1$	$5,\!89881$		100
	$\begin{array}{c} \mathrm{K} \beta_1 \\ \mathrm{K} \beta'' \end{array}$	6,49051 6,5254	}	$20,\!52$
	$\mathbf{K} \rho_5$	0,0334	J	
X_{L}				
	$\mathrm{L}\ell$	0,5576		
	$L\alpha$	0,6394 - 0,6404		
	$L\eta$	0,5695		
	$L\beta$	0,64636 - 0,7694		
	$ m L\gamma$	0,65826 - 0,65826		

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K KLL KLX KXY	4,953 - 5,210 5,671 - 5,895 6,370 - 6,532	$100 \\ 27,2 \\ 1,85$
Auger L	0,4725 - 0,7653	

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$		Electrons (per 100 disint.)
e_{AL}	(Mn)	0,4725 - 0,7653		57,1 (15)
e _{AK}	(Mn) KLL KLX KXY	4,953 - 5,210 5,671 - 5,895 6,370 - 6,532	<pre>}</pre>	26,3(11)
$e_{2,1} T$ $e_{2,1} K$ $e_{2,1} L$ $e_{1,0} K$ $\beta_{0,2}^+$	(Mn) (Mn) (Mn) (Mn) max: avg:	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	}	$\begin{array}{c} 0,777 \ (24) \\ 0,699 \ (21) \\ 0,0674 \ (21) \\ 0,0585 \ (15) \end{array}$

5 Photon Emissions

5.1 X-Ray Emissions

		Energy (keV)		Photons (per 100 disint.)		
$\begin{array}{c} \mathrm{XL} \\ \mathrm{XK}\alpha_2 \\ \mathrm{XK}\alpha_1 \\ \mathrm{XK}\beta_1 \\ \mathrm{XK}\beta_{\mathrm{r}}'' \end{array}$	(Mn) (Mn) (Mn) (Mn) (Mn)	0,5576 - 0,7694 5,88772 5,89881 6,49051 6.5354	}	$\begin{array}{c} 0,213 \ (10) \\ 3,70 \ (17) \\ 7,3 \ (4) \\ 1,49 \ (7) \end{array}$	}	K α K $'\beta_1$

5.2 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\begin{array}{c} \gamma_{2,1}(\mathrm{Mn}) \\ \gamma_{1,0}(\mathrm{Mn}) \\ \gamma^{\pm} \\ \gamma_{3,1}(\mathrm{Mn}) \end{array}$	$\begin{array}{c} 168,\!689(8)\\ 377,\!749(5)\\ 511\\ 1039,\!939(19) \end{array}$	99,1 (15) 1,64 (4) 112,2 (14) 0,095 (4)

6 Main Production Modes

 $Cr - 50(\alpha, 2n)Fe - 52$ Mn - 55(p, 4n)Fe - 52

7 References

- D.R.MILLER, R.C.THOMPSON, B.B.CUNNINGHAM. Phys. Rev. 74 (1948) 347 (Half-life)
- E.ARBMAN, N.SVARTHOLM. Arkiv Fysik 10 (1956) 1 (Beta plus emission energies)
- J.O.JULIANO, C.W.KOCHER, T.D.NAINAN, A.C.G.MITCHELL. Phys. Rev. 113 (1959) 602 (Half-life, Electron Capture/Beta plus ratio)
- T.KATOH, M.NOZAWA, Y.YOSHIZAWA, Y.KOH. J. Phys. Soc. Jpn 15 (1960) 2140 (Half-life, Multipolarities)
- A.Pakkanen. Ann. Acad. Sci. Fennicae, Ser. A VI 253 (1967) 25 (Half-life)
- G.B.SAHA, P.A.FARRER. Int. J. Appl. Radiat. Isot. 22 (1971) 495 (Half-life)
- N.B.GOVE, M.J.MARTIN. Nucl. Data Tables 10 (1971) 205 (Electron Capture/Beta plus ratio)
- L.D.MCISAAC, R.J.GEHRKE. Report ANCR-1088 (1972) 384 (Gamma ray energies, Gamma-ray emission probabilities)
- S.J.ROTHMAN, N.L.PETERSON, W.K.CHEN, J.J.HINES, R.BASTAR, L.C.ROBINSON, L.J.NOWICKI, J.B.ANDERSON. Phys. Rev. C9 (1974) 2272 (Half-life)
- R.P.YAFFE, R.A.MEYER. Phys. Rev. C16 (1977) 1581 (Gamma ray energies, Gamma-ray emission probabilities)
- E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Meth. Phys. Res. A369 (1996) 527 (Atomic Data)
- E.SCHÖNFELD. Appl. Radiat. Isot. 49 (1998) 1353 (Fractional EC probabilities)
- E.SCHÖNFELD, H.JANSSEN. Appl. Radiat. Isot. 52 (2000) 595 (Auger electron emission probabilities, X-ray emission probabilities)
- HUO JUNDE, HUO SU, MA CHUNHUI. Nucl. Data Sheets 108 (2007) 773
- (Spin and Parity, Level energies, Half-life,, Multipolarities)
- T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR. Nucl. Instrum. Meth. Phys. Res. A589 (2008) 202 (Theoretical ICC)
- M.WANG, G.AUDI, A.H.WAPSTRA, F.G.KONDEV, M.MACCORMICK, X.XU, B.PFEIFFER. Chin. Phys. C36 (2012) 1603
 - (\mathbf{Q})

1 Decay Scheme

Co-58 decays 100% by electron capture and beta plus disintegrations to the two first excited levels in Fe-58.

Le cobalt 58 se désintègre à 100 % par capture électronique et transitions bêta plus vers les deux premiers niveaux excités du fer 58.

2 Nuclear Data

 $\begin{array}{rrrr} T_{1/2}(^{58}{\rm Co}\;) &:& 70,85 & (3) & {\rm d} \\ Q^+(^{58}{\rm Co}\;) &:& 2307,9 & (11) & {\rm keV} \end{array}$

2.1 Electron Capture Transitions

	Energy (keV)	Probability (%)	Nature	$\lg ft$	P_K	P_L	P_{M+}
$\epsilon_{0,2}\\\epsilon_{0,1}$	$\begin{array}{c} 633,2 \ (11) \\ 1497,1 \ (11) \end{array}$	$\begin{array}{c} 1,228 \ (35) \\ 83,83 \ (16) \end{array}$	Allowed Allowed	$7,7 \\ 6,6$	$0,8873 (16) \\ 0,8885 (16)$	$0,0965 (13) \\ 0,0955 (13)$	$0,0155 (5) \\ 0,0153 (5)$

2.2 β^+ Transitions

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	$\lg ft$
$\beta^+_{0,1} \\ \beta^+_{0,0}$	$\begin{array}{c} 475,1 \ (11) \\ 1285,9 \ (11) \end{array}$	$\begin{array}{c} 14,94\ (16)\\ 0,0008\ (7)\end{array}$	Allowed 2nd Forbidden	$^{6,6}_{12,8}$

	$\frac{\rm Energy}{\rm (keV)}$	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	α_K	α_L	$lpha_T$	$lpha_{\pi}$
$\gamma_{1,0}(Fe)$ $\gamma_{2,1}(Fe)$ $\gamma_{2,0}(Fe)$	810,7662 (20) 863,965 (6) 1674,731 (6)	$\begin{array}{c} 99,473\ (20)\\ 0,700\ (22)\\ 0,528\ (13) \end{array}$	E2 M1+E2 E2	$\begin{array}{c} 0,000299 \ (5) \\ 0,000208 \ (4) \\ 0,0000577 \ (8) \end{array}$	$\begin{array}{c} 0,0000287 \ (4) \\ 0,0000199 \ (4) \\ 0,00000547 \ (8) \end{array}$	$\begin{array}{c} 0,000332 \ (5) \\ 0,000231 \ (4) \\ 0,000225 \ (4) \end{array}$	0,0001606 (23)

2.3 Gamma Transitions and Internal Conversion Coefficients

3 Atomic Data

3.1 Fe

ω_K	:	$0,\!355$	(4)
$\bar{\omega}_L$:	0,0060	(6)
n_{KL}	:	$1,\!447$	(4)

3.1.1 X Radiations

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$		Relative probability
X _K	$\begin{array}{l} \mathrm{K}\alpha_{2}\\ \mathrm{K}\alpha_{1}\\ \mathrm{K}\beta_{1}\\ \mathrm{K}\beta_{5}^{''} \end{array}$	6,39091 6,40391 7,0581 7,1083	}	51,07 100 20,67
X_L	$egin{array}{c} { m L}\ell \ { m L}lpha \ { m L}\eta \ { m L}eta \ { m L}\gamma \end{array}$	0,617 0,7075 - 0,7084 0,6306 0,7148 - 0,8454 0,7284 - 0,7284		

3.1.2 Auger Electrons

	Energy (keV)	Relative probability
Auger K KLL KLX KXY	5,37 - 5,65 6,16 - 6,40 6,93 - 7,11	$100 \\ 27,4 \\ 1,87$
Auger L	0,52 - 0,84	

4 Electron and Positron Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Electrons (per 100 disint.)
e_{AL}	(Fe)	0,52 - 0,84		116,9(7)
e_{AK}	(Fe) KLL KLX KXY	5,37 - 5,65 6,16 - 6,40 6,93 - 7,11	}	48,8 (4)
$ec_{1,0\ K}$	(Fe)	803,654 (2)		0,0297~(5)
$\beta_{0,1}^+$	max: avg:	$\begin{array}{rrr} 475,1 & (11) \\ 201,3 & (5) \end{array}$	}	14,94 (16)
$\beta^+_{0,0}$	max: avg:	1285,9 (11)	}	0,0008 (7)

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Photons (per 100 disint.)		
XL	(Fe)	0,617 - 0,8454		0,609 (18)		
$\begin{array}{l} {\rm XK}\alpha_2\\ {\rm XK}\alpha_1 \end{array}$	(Fe) (Fe)	$6,39091 \\ 6,40391$		$\begin{array}{c} 7,98 \ (11) \\ 15,63 \ (19) \end{array}$	<pre>}</pre>	$K\alpha$
$egin{array}{c} { m XK}eta_1\ { m XK}eta_5^{\prime\prime} \end{array}$	(Fe) (Fe)	7,0581 7,1083	}	3,23~(5)		${\rm K}'\beta_1$

5.2 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\begin{array}{l} \gamma^{\pm} \\ \gamma_{1,0}(\text{Fe}) \\ \gamma_{2,1}(\text{Fe}) \\ \gamma_{2,0}(\text{Fe}) \end{array}$	$511 \\ 810,7602 (20) \\ 863,958 (6) \\ 1674,705 (6)$	$\begin{array}{c} 29,88 \ (32) \\ 99,44 \ (2) \\ 0,700 \ (22) \\ 0,528 \ (13) \end{array}$

6 Main Production Modes

 $\begin{cases} \text{Ni} - 58(n,p)\text{Co} - 58\\ \text{Possible impurities}: \text{Ni} - 63, \text{Co} - 57, \text{Co} - 58m, \text{Co} - 60\\ \\ \text{Mn} - 55(\alpha,n)\text{Co} - 58\\ \text{Possible impurities}: \text{none} \end{cases}$

 $\begin{cases} Co - 59(n,2n)Co - 58 \\ Possible impurities : Fe - 59, Co - 58m, Co - 60 \end{cases}$

7 References

- W.M.GOOD, D.PEASLEE, M.DEUTSCH. Phys. Rev. 69 (1946) 313 (Beta plus emission probability)
- L.S.CHENG, J.L.DICK, J.D.KURBATOV. Phys. Rev. 88 (1952) 887 (K ICC, K/L)
- C.S.COOK, F.M.TOMNOVEC. Phys. Rev. 104 (1956) 1407 (Beta plus emission probabilities)
- R.P.SCHUMAN, M.E.JONES, A.C.MCWHERTER. J. Inorg. Nucl. Chem. 3 (1956) 160 (Half-life)
- M.A.GRACE, G.A.JONES, J.O.NEWTON. Phil. Mag. 1 (1956) 363 (Beta plus emission probability)
- H.FRAUENFELDER, H.LEVINS, A.ROSSI, S.SINGER. Phys. Rev. 103 (1956) 352 (Gamma-ray emission probabilities)
- J.KONIJN, H.L.HAGEDOORN, H.VAN KRUGTEN, J.SLOBBEN. Physica 24 (1958) 931 (Beta plus emission probabilities)
- H.DANIEL. Z. Phys. 150 (1958) 144 (Beta emission probabilities)
- M.K.RAMASWAMY. Indian J. Phys. 35 (1961) 610 (Beta plus emission probabilities)
- D.MACARTHUR, R.GOODMAN, A.ARTNA, M.W.JOHNS. Nucl. Phys. 38 (1962) 106 (Gamma-ray emission probabilities)
- W.F.FREY, J.H.HAMILTON, S.HULTBERG. Ark. Fysik 21 (1962) 383 (K/L, K ICC)
- R.B.Moler, R.W.Fink. Phys. Rev. 131 (1963) 821 (PK)
- S.MALMSKOG. Nucl. Phys. 51 (1964) 690 (Gamma-ray emission probabilities)
- M.W.HILL. Report BNWL-SA-315 (1965) (Gamma-ray emission probabilities)
- R.V.RAMA MOHAN, K.V.REDDY, B.B.V.RAJU, S.JNANANANDA. Indian J.Pure Appl.Phys. 4 (1966) 420 (Mixing ratio)
- E.I.BIRYUKOV, E.G.ZALETSKII, N.S.SHIMANSKAYA. Bull. Acad. Sci. USSR 30 (1967) 514 (Beta plus emission probabilities)
- W.BAMBYNEK, E.DE ROOST, E.FUNCK. Proceeding of the Conference on Electron Capture and Higher Order Processes in Nuclear Dec. (Budapest) (1968) 253
 (Gamma-ray emission probabilities, Beta+ emission probabilities, Elec. Capture probabilities)
- J.C.RITTER, R.E.LARSON, J.I.HOOVER. Nucl. Phys. A110 (1968) 463 (Gamma-ray emission probabilities)
- P.Decowski, W.Grochulski, A.Marcinkowski, K.Siwek, I.Sledzinska, Z.Wilhelmi. Nucl. Phys. A112 (1968) 513
 - (Half-life)
- R.GUNNINK, J.B.NIDAY, R.P.ANDERSON, R.A.MEYER. Report UCID-15439 (1969) (Gamma-ray emission probabilities)
- U.SCHÖTZIG, H.SCHRADER, R.STIPPLER, F.MUNNICH. Z. Physik 222 (1969) 479 (Mixing ratio)
- V.SINGH, P.N.TANDON, S.H.DEVARE, H.G.DEVARE. Nucl. Phys. A137 (1969) 278 (Mixing ratio)

- U.FANGER, W.MICHAELIS, H.SCHMIDT, H.OTTMAR. Nucl. Phys. A128 (1969) 641 (Mixing ratio) - A.WILLIAMS. Nucl. Phys. A153 (1970) 665 (Beta plus emission probabilities) - N.C.SINGHAL, A.V.RAMAYYA, J.H.HAMILTON, S.RAMAN. Z. Physik 245 (1971) 50 (Mixing ratio) - I.W.GOODIER, M.J.WOODS, A.WILLIAMS. Proc. Int. Conf. Chemical Nuc. Data, Canterbury, M.L. Hurrell Ed. (1971) 175 (Beta plus emission probabilities) - D.F.CRISLER, H.B.ELDRIDGE, R.KUNSELMAN, C.S.ZAIDINS. Phys. Rev. C5 (1972) 419 (Half-life) N.C.DYER, A.C.RESTER, W.CROFT, J.H.HAMILTON. Proc. Int. Conf. Radioactivity in Nucl. Spectrosc., Nashville, Tenn. (1972) 1207 (Gamma-ray energies and emission probabilities) R.A.Fox, W.D.HAMILTON, M.J.HOLMES. Phys. Rev. C5 (1972) 853 (Mixing ratio) - R.WERNER, D.C.SANTRY. J. Nucl. Energy 26 (1972) 403 (Half-life) - W.BAMBYNEK, J.LEGRAND. Atomic Energy Rev. 11 (1973) 524 (Gamma-ray energies and emission probabilities) - J.ARAMINOWICZ, J.DRESLER. Report INR-1464 (1973) 14 (Half-life) - F.LAGOUTINE, F.LEGRAND, C.BAC. Int. J. Appl. Radiat. Isotop. 26 (1975) 131 (Half-life) - R.VANINBROUCK, G.GROSSE. Int. J. Appl. Radiat. Isotop. 27 (1976) 727 (Half-life) - R.L.HEATH. Aerojet Nucl. Co. Report ANCR-1000-2 (1977) (Gamma-ray energies and emission probabilities) - R.C.GREENWOOD, R.G.HELMER, R.J.GEHRKE. Nucl. Instrum. Methods 159 (1979) 465 (Gamma-ray energies) - H.HOUTERMANS, O.MILOSEVIC, F.REICHEL. Int. J. Appl. Radiat. Isotop. 31 (1980) 153 (Half-life (Pb-203).) - A.GRÜTTER. Int. J. Appl. Radiat. Isotop. 33 (1982) 533 (Gamma-ray energies and emission probabilities) - D.D.HOPPES, J.M.R.HUTCHINSON, F.J.SCHIMA, M.P.UNTERWEGER. NBS Special Publication 626 (1982) 85 (Half-life) - I.SYKORA. Rare Nuclear Processes: Proceedings of the 14th Europhysics Conference on Nuclear Physics, Bratislava, Czecho-Slovakia, 22-26 Oct. 1990 (1992) 141 (Beta plus emission probabilities) - V.A.Solé. Nucl. Instrum. Methods A312 (1992) 303 (K fluorescence yield) - E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Methods A369 (1996) 527 (Atomic Data) - R.G.HELMER, C.VAN DER LEUN. Nucl. Instrum. Methods A450 (2000) 35 (Gamma-ray energies) - I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN. At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) - G.Audi, A.H.Wapstra, C.Thibault. Nucl. Phys. A729 (2003) 21 (Asymmetric uncertainties) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (ICC) C.D.NESARAJA, S.D.GERAEDTS, B.SINGH. Nucl. Data Sheets 111 (2010) 897 (Spin and Parity) - R.FITZGERALD. J. Res. Natl. Inst. Stand. Technol. 117 (2012) 80 (Half-life) - M.WANG, G.AUDI, A.H.WAPSTRA, F.G.KONDEV, M.MACCORMICK, X.XU, B.PFEIFFER. Chin. Phys. C36 (2012) 1603 (\mathbf{Q})

1 Decay Scheme

Cu-61 decays 100% by electron capture and beta plus disintegrations to various excited levels and to the ground state of Ni-61.

Le cuivre 61 se désintègre par capture électronique et émissions bêta plus vers le niveau fondamental et des niveaux excités du nickel 61.

2 Nuclear Data

$T_{1/2}(^{61}Cu)$:	$3,\!366$	(33)	h
$Q^{+}(^{61}Cu)$:	$2237,\!5$	(10)	keV

2.1 Electron Capture Transitions

	Energy (keV)	Probability (%)	Nature	\lgft	P_K	P_L	P_M
€0 12	113.5(10)	0.040(5)	Allowed	5	0.8729(22)	0.1083(18)	0.0178(6)
$\epsilon_{0.11}$	239,8(10)	0,0043(14)	Allowed	6,7	0,8808(17)	0,1016(14)	0,0166(5)
$\epsilon_{0.10}$	508(1)	0,228(18)	Allowed	5,7	0,8843(16)	0,0987(13)	0,0160(5)
$\epsilon_{0,9}$	627,9(10)	0,063(7)	Allowed	$6,\!5$	0,8849(16)	0,0982(13)	0,0160(5)
$\epsilon_{0,8}$	1052,3(10)	4,1(5)	Allowed	5	0,8859(16)	0,0974(13)	0,0158(5)
$\epsilon_{0,7}$	1105,2(10)	0,154(17)	Allowed	6,5	0,8860(16)	0,0973 (13)	0,0158(5)
$\epsilon_{0,6}$	1137,9(10)	0,64(6)	Allowed	5,9	0,8860(16)	0,0973 (13)	0,0158(5)
$\epsilon_{0,5}$	1222,7(10)	0,006(6)	2nd Forbidden	7,8	0,8861(16)	0,0972 (13)	0,0158(5)
$\epsilon_{0,4}$	1328,9(10)	1,32(15)	Allowed	5,7	0,8862(16)	0,0971 (13)	0,0158(5)
$\epsilon_{0,3}$	1581,5(10)	10,7(12)	Allowed	4,9	0,8864(16)	0,0970(13)	0,0157(5)
$\epsilon_{0,2}$	1954,5(10)	4,0(7)	Allowed	5,5	0,8866(16)	0,0968 (13)	0,0157(5)
$\epsilon_{0,1}$	2170,1(10)	0,79(20)	Allowed	6,3	0,8866(16)	0,0968 (13)	0,0157(5)
$\epsilon_{0,0}$	2237,5(10)	16,3(8)	Allowed	5	0,8867(16)	0,0967 (13)	0,0157(5)

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	\lgft
$\beta_{0.5}^{+}$	200,7(10)	0,000032 (32)	2nd Forbidden	$7,\!8$
$\beta_{0,4}^{+}$	306,9(10)	0,0347~(40)	Allowed	5,7
$\beta_{0,3}^+$	559,5(10)	2,52 (27)	Allowed	$4,\!9$
$\beta_{0.2}^+$	932,5(10)	5,4 (9)	Allowed	5,5
$\beta_{0.1}^{+}$	1148,1(10)	2,1~(5)	Allowed	6,3
$\beta_{0,0}^{+}$	1215,5(10)	$51,\! 6\ (25)$	Allowed	5

2.2 β^+ Transitions

2.3 Gamma Transitions and Internal Conversion Coefficients

	$\frac{\rm Energy}{\rm (keV)}$	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	α_K	α_L	$lpha_M$	$lpha_T$
$\gamma_{1,0}(\mathrm{Ni})$	67,412 (3)	4,5(7)	(M1)	0,1224 (18)	0,01261 (18)	0,001776 (25)	0,1368(20)
$\gamma_{7,5}(\mathrm{Ni})$	117,5	0,010~(6)					
$\gamma_{2,1}({ m Ni})$	215,545 (4)	0,013~(7)					
$\gamma_{2,0}({ m Ni})$	282,9568 (19)	12,0(17)	(M1)	0,00295 (5)	0,000293 (5)	0,0000413~(6)	0,00329 (5)
$\gamma_{3,2}({ m Ni})$	373,0552 (36)	2,09 (30)	[M1]	0,00153~(2)	0,000151 (2)	0,0000213 (3)	0,00170 (2)
$\gamma_{8,3}({ m Ni})$	529,224 (11)	0,38~(5)					
$\gamma_{10,8}({ m Ni})$	544,8	0,006(4)					
$\gamma_{3,1}(\mathrm{Ni})$	588,600(4)	1,15(16)	[E2]				
$\gamma_{4,2}(\text{Ni})$	625,663(11)	0,044(7)	[E2]				
$\gamma_{3,0}(Ni)$	656,012(3)	10,4(15)	(M1+E2)				
$\gamma_{9,4}(Ni)$	701,019 (24)	0,0108(28)					
$\gamma_{6,2}(Ni)$	816,665(10)	0,32(5)	M1+5,0(15)%E2				
$\gamma_{10,4}(Ni)$	820,851 (15)	0,0216(39)					
$\gamma_{4,1}(N1)$	841,208 (11)	0,224(34)	M1 + 77(8)%E2				
$\gamma_{8,2}(N_1)$	902,279(11)	0,084(12)	M1 + 9.0(0) (7 E 9				
$\gamma_{4,0}(N1)$	908,620 (11)	1,12(10)	M1+3,2(9)%E2				
$\gamma_{5,1}(N1)$	947,39(40)	0,0060 (19) 0.0102 (20)	M1+80(5)%E2 E2 + 0.00(0)%M2	0,0000,(c)	0,00000,(c)	0.000009.(9)	0,0000,(c)
$\gamma_{5,0}(N1)$	1014,8(4) 1022.21(1)	0,0103(39)	E2+0,09(9)%M3	0,0002 (6)	0,00002 (6)	0,000003 (8)	0,0002 (6)
$\gamma_{6,1}(N1)$	1032,21(1) 1064,020(17)	0,053(10)	M1 + 1.0(16) 7 E9				
$\gamma_{7,1}(\mathbf{NI})$	1004,920(17) 1072,450(10)	0,032(9)	M1+1,9(10)70E2				
$\gamma_{10,3}(NI)$	1073,459(10) 10801(0)	0,042 (11) 0,00060 (8)					
$\gamma_{11,4}(\mathbf{N}_{1})$	1000,1(0) 1000,622(10)	0.257(39)					
$\gamma_{8,0}(\mathbf{N}\mathbf{i})$	1035,022 (10) $1117\ 824\ (11)$	0,231(33) 0,039(9)					
$\gamma_{7,0}(Ni)$	1132.332(17)	0.092(13)	M1+18.1(35)%E2				
$\gamma_{8,0}(\text{Ni})$	1185.236(11)	3.6(5)	(M1+E2)				
$\gamma_{10,2}(Ni)$	1446.514(10)	0.046(7)	()				
$\gamma_{9,1}(\text{Ni})$	1542.227(21)	0.029(5)	M1+0.49(35)%E2				
$\gamma_{9.0}(\text{Ni})$	1609,639(21)	0,0236(43)	M1+9,8(42)%E2				
$\gamma_{10,1}(Ni)$	1662,059(10)	0,051 (8)					
$\gamma_{10,0}(Ni)$	1729,471 (10)	0,065(14)					
$\gamma_{11,0}(Ni)$	1997,7 (9)	0,0037(13)	M1+6,8(15)%E2				
$\gamma_{12,0}(Ni)$	2124(1)	0,040 (6)	/				

3 Atomic Data

3.1 Ni

ω_K	:	$0,\!421$	(4)
$\bar{\omega}_L$:	0,0084	(4)
n_{KL}	:	$1,\!388$	(4)

3.1.1 X Radiations

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$		Relative probability
X _K	$\begin{array}{c} \mathrm{K}\alpha_2\\ \mathrm{K}\alpha_1\\ \mathrm{K}\beta_1 \end{array}$	7,46097 7,47824 8,26475	Ĵ	51,24 100 20.84
$\mathbf{X}_{\mathbf{L}}$	$\mathrm{K}eta_5''$ $\mathrm{L}\ell$	8,3287 0,7445	5	20,04
	$egin{array}{c} { m L}lpha \ { m L}eta \ { m L}eta \ { m L}\gamma \end{array}$	0,8532 - 0,8539 0,7622 0,86123 - 1,0083 0,87898 - 0,87898		

3.1.2 Auger Electrons

	Energy (keV)	Relative probability
Auger K KLL KLX KXY	6,262 - 6,567 7,196 - 7,475 8,109 - 8,326	$100 \\ 27,6 \\ 1,9$

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$		Electrons (per 100 disint.)
e _{AL}	(Ni)	0,632 - 1,010		51,2 (9)
e_{AK}	(Ni) KLL KLX KXY	6,262 - 6,567 7,196 - 7,475 8,109 - 8,326	}	20,0 (9)
$ec_{1,0}$ T $ec_{1,0}$ K $ec_{1,0}$ L $ec_{2,0}$ K	(Ni) (Ni) (Ni) (Ni)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$egin{array}{c} 0,55 & (8) \ 0,49 & (7) \ 0,050 & (8) \ 0,035 & (5) \end{array}$
$\beta^+_{0,0}$	max: avg:	$\begin{array}{rrr} 1215,5 & (10) \\ 523,8 & (5) \end{array}$	}	51,6 (25)
$\beta^+_{0,1}$	max: avg:	$\begin{array}{rrr} 1148,1 & (10) \\ 493,8 & (5) \end{array}$	}	2,1 (5)
$\beta^+_{0,2}$	max: avg:	$\begin{array}{rrr} 932,5 & (10) \\ 398,9 & (5) \end{array}$	}	5,4 (9)
$\beta^+_{0,3}$	max: avg:	$\begin{array}{ccc} 559,5 & (10) \\ 238,5 & (4) \end{array}$	}	2,52 (27)
$\beta^+_{0,4}$	max: avg:	$\begin{array}{rrr} 306,9 & (10) \\ 132,8 & (4) \end{array}$	}	0,0347 (40)
$\beta^+_{0,5}$	max: avg:	$\begin{array}{ccc} 200,7 & (10) \\ 88,7 & (4) \end{array}$	}	0,000032 (32)

4 Electron and Positron Emissions

5 Photon Emissions

5.	1	X-Ray	Emissions
----	---	-------	-----------

		Energy (keV)	Photons (per 100 disint.)		
$\begin{array}{c} {\rm XL} \\ {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \\ \\ {\rm XK}\beta_1 \\ {\rm XK}\beta_5^{\prime\prime} \end{array}$	(Ni) (Ni) (Ni) (Ni) (Ni)	0,7445 - 1,0083 7,46097 7,47824 8,26475 8,3287	$\left.\begin{array}{c} 0,437\ (14)\\ 4,33\ (20)\\ 8,4\ (4)\\ \end{array}\right\} 1,76\ (9)$	}	K $α$ K $'β_1$

	Energy (koV)	Photons (por 100 disint)
	$(\mathbf{Ke} \mathbf{v})$	(per 100 distite.)
$\gamma_{1 0}$ (Ni)	67.412(3)	4.0(6)
$\gamma_{7.5}(\text{Ni})$	117,5	0,010(6)
$\gamma_{2,1}(Ni)$	215,55(18)	0,013(7)
$\gamma_{2,0}(Ni)$	282,956(2)	12,0(17)
$\gamma_{3,2}(Ni)$	373,050 (5)	2,09(30)
γ^{\pm}	511	123(5)
$\gamma_{8,3}(Ni)$	529,169(22)	0,38 (5)
$\gamma_{10,8}(Ni)$	$544,\!8$	0,006~(4)
$\gamma_{3,1}(Ni)$	$588,\!605\ (9)$	$1,\!15\ (16)$
$\gamma_{4,2}(Ni)$	$625,\!605$ (24)	0,044~(7)
$\gamma_{3,0}(Ni)$	656,008 (4)	10,4~(15)
$\gamma_{9,4}(Ni)$	701,1 (3)	0,0108~(28)
$\gamma_{6,2}(Ni)$	$816,\!692\ (13)$	0,32~(5)
$\gamma_{10,4}(Ni)$	820, 89(17)	0,0216 (39)
$\gamma_{4,1}(Ni)$	841,211 (17)	0,224 (34)
$\gamma_{8,2}(Ni)$	902,294~(20)	0,084~(12)
$\gamma_{4,0}(\mathrm{Ni})$	$908,\!631$ (17)	1,12~(16)
$\gamma_{5,1}(Ni)$	947,4~(4)	0,0060 (19)
$\gamma_{5,0}(\mathrm{Ni})$	1014,8(4)	0,0103~(39)
$\gamma_{6,1}(Ni)$	1032,162 (10)	0,053~(10)
$\gamma_{7,1}(Ni)$	1064,896 (20)	0,052 (9)
$\gamma_{10,3}(Ni)$	$1073,465\ (25)$	0,042~(11)
$\gamma_{11,4}(Ni)$	1089, 11	0,00060 (8)
$\gamma_{6,0}(\mathrm{Ni})$	1099,560 (19)	$0,\!257~(39)$
$\gamma_{8,1}(Ni)$	1117,822 (43)	$0,\!039~(9)$
$\gamma_{7,0}(\mathrm{Ni})$	1132,35 (3)	0,092~(13)
$\gamma_{8,0}(\mathrm{Ni})$	$1185,234\ (15)$	$3,\! 6\ (5)$
$\gamma_{10,2}(Ni)$	1446,492 (19)	0,046~(7)
$\gamma_{9,1}(Ni)$	1542,204 (23)	0,029~(5)
$\gamma_{9,0}(\mathrm{Ni})$	1609,625 (48)	0,0236~(43)
$\gamma_{10,1}(Ni)$	1662,000 (19)	0,051~(8)
$\gamma_{10,0}(\mathrm{Ni})$	1729,473 (18)	0,065~(14)
$\gamma_{11,0}(Ni)$	1997,7 (9)	0,0037~(13)
$\gamma_{12.0}(Ni)$	2124(1)	0,040(6)

5.2 Gamma Emissions

6 Main Production Modes

$$\begin{split} \mathrm{Ni} &- 61(\mathrm{p,n})\mathrm{Cu} - 61\\ \mathrm{Zn} &- 64(\mathrm{p,\alpha})\mathrm{Cu} - 61\\ \mathrm{Cu} &- 63(\gamma, 2\mathrm{n})\mathrm{Cu} - 61 \end{split}$$

7 References

- A.I.BERMAN, K.L.BROWN. Phys. Rev. 96 (1954) 83 (Half-life)
- R.H.NUSSBAUM, A.H.WAPSTRA, W.A.BRUIL, M.J.STERK, G.J.NIJGH, N.GROBBEN. Phys. Rev. 101 (1956) 905 (Beta plus emission probabilities)

⁶¹₂₉ Cu ₃₂

- R.SCHONEBERG, A.FLAMMERSFELD. Z. Physik 200 (1967) 205 (Beta plus emission probabilities)
- H.H.BOLOTIN, H.J.FISCHBECK. Phys. Rev. 158 (1967) 1069 (Beta plus emission probabilities)
- R.Béraud, I.Berkes, J.Daniere, M.Levy, G.Marest, R.Rougny. Nucl. Phys. A99 (1967) 577 (Beta plus emission probabilities)
- J.C.RITTER, R.E.LARSON. Nucl. Phys. A127 (1969) 399 (Half-life)
- N.B.GOVE, M.J.MARTIN. Nucl. Data Tables 10 (1971) 205 (EC/positron ratios)
- G.H.Dulfer, B.O.TEN BRINK, T.J.KETEL, A.W.B.KALSHOVEN, H.VERHEUL. Z. Physik 251 (1972) 416 (Half-life)
- D.F.CRISLER, H.B.ELDRIDGE, R.KUNSELMAN, C.S.ZAIDINS. Phys. Rev. C5 (1972) 419 (Half-life)
- D.A.NEWTON, S.SARKAR, L.YAFFE, R.B.MOORE. J. Inorg. Nucl. Chem. 35 (1973) 361 (Half-life)
- R.WADSWORTH, A.KOGAN, P.R.G.LORNIE, M.R.NIXON, H.G.PRICE, P.J.TWIN. J. Phys. (London) G3 (1977) 35 (Gamma rays)
- R.A.MEYER, A.L.PRINDLE, W.A.MYERS, P.K.HOPKE, D.DIETERLY, J.E.KOOPS. Phys. Rev. C17 (1978) 1822 (Half-life, gamma-ray energies and emission intensities)
- A.GRUTTER. Int. J. Appl. Radiat. Isotop. 33 (1982) 533 (Half-life)
- M.N.MARTINS, E.WOLYNEC, M.C.A.CAMPOS. Phys. Rev. C26 (1982) 1936 (Half-life)
- G.SATYANARAYANA, N.VENKATESWARA RAO, G.S.SRI KRISHNA, M.V.S.CHANDRASEKHAR RAO, S.BHULOKA REDDY, D.L.SASTRY, S.N.CHINTALAPUDI, V.V.RAO. Nuovo Cim. 99A (1988) 309 (Gamma-ray emission intensities)
- E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic Data)
- E.SCHÖNFELD. Appl. Radiat. Isot. 49 (1998) 1353 (Fractional EC probabilities)
- M.R.BHAT. Nucl. Data Sheets 88 (1999) 3 (Spin and Parity, level energies)
- E.SCHÖNFELD, H.JANSSEN. Appl. Radiat. Isot. 52 (2000) 595 (P(X), P(Ae))
- T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)
- M.WANG, G.AUDI, A.H.WAPSTRA, F.G.KONDEV, M.MACCORMICK, X.XU, B.PFEIFFER. Chin. Phys. C36 (2012) 1603
 - (Q-value)

1 Decay Scheme

Zn-63 (half-life of 38.33 min) decays by 100% electron capture/beta plus to various excited levels and the ground state of Cu-63 (stable).

Le zinc 63 (38,33 min) se désintègre à 100 % par capture électronique/émission bêta plus vers plusieurs niveaux excités et le niveau fondamental du cuivre 63 (stable).

2 Nuclear Data

$T_{1/2}(^{63}\text{Zn})$:	$38,\!33$	(10)	min
$Q^+(^{63}\text{Zn})$:	3366,2	(15)	keV

2.1 Electron Capture Transitions

	Energy (keV)	Probability (%)	Nature	\lgft	P_K	P_L	P_{M+}
$\begin{array}{c} \epsilon_{0,22} \\ \epsilon_{0,21} \\ \epsilon_{0,20} \\ \epsilon_{0,19} \\ \epsilon_{0,18} \\ \epsilon_{0,17} \\ \epsilon_{0,16} \\ \epsilon_{0,15} \\ \epsilon_{0,14} \\ \epsilon_{0,13} \\ \epsilon_{0,12} \\ \epsilon_{0,11} \\ \epsilon_{0,9} \end{array}$	$\begin{array}{c} 264,8 \ (16) \\ 323,6 \ (15) \\ 477,3 \ (16) \\ 508,3 \ (15) \\ 558,1 \ (15) \\ 586,0 \ (15) \\ 649,7 \ (15) \\ 669,5 \ (15) \\ 830,4 \ (15) \\ 855,1 \ (15) \\ 869,0 \ (15) \\ 1029,7 \ (15) \\ 1284,9 \ (15) \end{array}$	$\begin{array}{c} (,0)\\ 0,0007\ (2)\\ 0,0048\ (8)\\ 0,0104\ (14)\\ 0,0069\ (12)\\ 0,0052\ (10)\\ 0,0052\ (10)\\ 0,0298\ (21)\\ 0,0298\ (21)\\ 0,022\ (7)\\ 0,122\ (6)\\ 0,261\ (14)\\ 0,011\ (2)\\ 0,0247\ (20)\\ 0,141\ (9)\\ 0,035\ (7) \end{array}$	allowed (allowed) allowed (allowed) allowed (allowed) (allowed) (allowed) (allowed) allowed (allowed)	$\begin{array}{c} 6,89\\ 6,24\\ 6,24\\ 6,48\\ 6,68\\ 5,97\\ 5,62\\ 5,47\\ 5,33\\ 6,73\\ 6,40\\ 5,79\\ 6,59\end{array}$	$\begin{array}{c} 0,8802 \ (16) \\ 0,8814 \ (16) \\ 0,8831 \ (16) \\ 0,8833 \ (16) \\ 0,8836 \ (16) \\ 0,8837 \ (16) \\ 0,8840 \ (16) \\ 0,8846 \ (16) \\ 0,8846 \ (16) \\ 0,8846 \ (16) \\ 0,8846 \ (16) \\ 0,8849 \ (16) \\ 0,8853 \ (16) \end{array}$	$\begin{array}{c} 0,1020 \ (13) \\ 0,1010 \ (13) \\ 0,0996 \ (13) \\ 0,0994 \ (13) \\ 0,0992 \ (13) \\ 0,0991 \ (13) \\ 0,0988 \ (13) \\ 0,0988 \ (13) \\ 0,0983 \ (13) \\ 0,0983 \ (13) \\ 0,0983 \ (13) \\ 0,0980 \ (13) \\ 0,0978 \ (13) \end{array}$	$\begin{array}{c} 0,0168 \ (5) \\ 0,0166 \ (5) \\ 0,0163 \ (5) \\ 0,0163 \ (5) \\ 0,0162 \ (5) \\ 0,0162 \ (5) \\ 0,0161 \ (5) \\ 0,0161 \ (5) \\ 0,0161 \ (5) \\ 0,0161 \ (5) \\ 0,0160 \ (5) \\ 0,0160 \ (5) \end{array}$
$\epsilon_{0,8}$ $\epsilon_{0,7}$ $\epsilon_{0,5}$ $\epsilon_{0,4}$	$\begin{array}{c} 1303,8 \ (15) \\ 1353,3 \ (15) \\ 1819,2 \ (15) \\ 1954,0 \ (15) \end{array}$	$\begin{array}{c} 0,153 \ (13) \\ 0,0130 \ (3) \\ 0,060 \ (7) \\ 0,42 \ (2) \end{array}$	(allowed) allowed allowed allowed	$5,96 \\ 7,06 \\ 6,65 \\ 5,87$	$\begin{array}{c} 0,8853 \ (16) \\ 0,8853 \ (16) \\ 0,8856 \ (16) \\ 0,8857 \ (16) \end{array}$	$\begin{array}{c} 0,0978 \ (13) \\ 0,0977 \ (13) \\ 0,0975 \ (13) \\ 0,0974 \ (13) \end{array}$	$\begin{array}{c} 0,0160\ (5)\\ 0,0160\ (5)\\ 0,0159\ (5)\\ 0,0159\ (5)\\ \end{array}$

	Energy (keV)	Probability (%)	Nature	\lgft	P_K	P_L	P_{M+}
$ \begin{array}{c} \epsilon_{0,2} \\ \epsilon_{0,1} \\ \epsilon_{0,0} \end{array} $	$\begin{array}{c} 2404,2 \ (15) \\ 2696,3 \ (15) \\ 3366,2 \ (15) \end{array}$	$\begin{array}{c} 1,19 \ (3) \\ 0,92 \ (1) \\ 3,75 \ (5) \end{array}$	allowed allowed allowed	$5,60 \\ 5,81 \\ 5,40$	$\begin{array}{c} 0,8858 \ (16) \\ 0,8859 \ (16) \\ 0,8860 \ (16) \end{array}$	$\begin{array}{c} 0,0973 \ (13) \\ 0,0972 \ (13) \\ 0,0971 \ (13) \end{array}$	$0,0159 (5) \\ 0,0159 (5) \\ 0,0158 (5)$

2.2 β^+ Transitions

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	$\lg ft$
$\beta_{0.9}^{+}$	262,9(15)	0,00043 (9)	(allowed)	$6,\!59$
$\beta_{0.8}^{+}$	281,8(15)	0,0025~(2)	(allowed)	$5,\!96$
$\beta_{0,7}^+$	$331,3\ (15)$	0,00039~(2)	allowed	7,06
$\beta_{0,5}^+$	797,2~(15)	0,042~(4)	allowed	$6,\!65$
$\beta_{0,4}^+$	$932,0\ (15)$	$0,\!49~(2)$	allowed	$5,\!87$
$\beta_{0,2}^+$	$1382,2\ (15)$	4,96(13)	allowed	$5,\!60$
$\beta_{0,1}^+$	$1674,3\ (15)$	7,00(2)	allowed	$5,\!81$
$\beta_{0,0}^{+}$	2344,2 (15)	80,3~(6)	allowed	$5,\!40$

2.3 Gamma Transitions and Internal Conversion Coefficients

	Energy (keV)	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	α_K	$lpha_L$	α_T
$\gamma_{17,14}(\mathrm{Cu})$	244,40 (22)	0,0054 (8)	(E2)	0,0190(3)	0,00198 (3)	0,0213 (3)
$\gamma_{3,2}(\mathrm{Cu})$	364,74(6)	0,0115(25)	M1+0,36%E2	0,00184(3)	0,000184(3)	0,00205 (3)
$\gamma_{14,10}(\mathrm{Cu})$	443,70(12)	0,013~(4)	(M1 + 50% E2)	0,00177(14)	0,000179(14)	0,00198(16)
$\gamma_{4,2}(\mathrm{Cu})$	450,14(5)	0,229(16)	M1+1,3%E2	0,00114(4)	0,000113(5)	0,00127 (5)
$\gamma_{11,6}(\mathrm{Cu})$	475,91 (13)	0,006(3)	M1+E2			
$\gamma_{8,5}(\mathrm{Cu})$	$515,\!45$ (9)	0,021 (8)	(M1+E2)			
$\gamma_{9,5}(\mathrm{Cu})$	534,32 (23)	0,005~(2)	(M1+E2)			
$\gamma_{5,2}(\mathrm{Cu})$	584,98~(6)	0,033~(4)	M1+E2			
$\gamma_{16,10}(\mathrm{Cu})$	624, 34 (13)	0,011~(4)	(E2)			
$\gamma_{1,0}(\mathrm{Cu})$	669,93 (4)	$^{8,19}(32)$	M1+1,2%E2	0,000466 (7)	0,0000462 (7)	0,000519 (8)
$\gamma_{14,6}(\mathrm{Cu})$	675,20 (9)	0,015~(3)	(M1+E2)			
$\gamma_{15,7}(\mathrm{Cu})$	683,74 (17)	0,004(2)	M1+E2			
$\gamma_{4,1}(\mathrm{Cu})$	742,23 (6)	0,067~(8)	E2	0,000512 (8)	0,0000511 (8)	0,000571 (8)
$\gamma_{9,3}(\mathrm{Cu})$	754,56 (23)	0,016~(6)	M1+E2			
$\gamma_{10,3}(\mathrm{Cu})$	765,37 (11)	0,007~(3)	M1+E2			
$\gamma_{5,1}(\mathrm{Cu})$	877,07~(6)	0,003~(2)	M1+E2			
$\gamma_{6,2}(\mathrm{Cu})$	$898,\!61$ (7)	0,009(3)	M1+E2			
$\gamma_{11,4}(\mathrm{Cu})$	924,38 (13)	0,0099~(20)	M1+E2			
$\gamma_{2,0}(\mathrm{Cu})$	962,02 (3)	6,50(16)	M1+18,7%E2	0,000226 (4)	0,0000223 (4)	0,000251 (4)
$\gamma_{14,5}(\mathrm{Cu})$	988,83~(9)	0,0038~(11)	(M1+E2)			
$\gamma_{7,2}(\mathrm{Cu})$	1050, 90 (11)	0,0044~(11)	M1+E2			
$\gamma_{14,4}(\mathrm{Cu})$	$1123,\!67$ (8)	0,112~(11)	M1 + 50% E2	0,000171 (4)	0,0000169 (4)	0,000192~(4)
$\gamma_{10,2}(\mathrm{Cu})$	1130, 11 (10)	0,013~(2)	M1+E2			
$\gamma_{15,5}(\mathrm{Cu})$	1149,66(14)	0,019~(2)	M1+E2			
$\gamma_{16,5}(\mathrm{Cu})$	1169,47(10)	0,0077~(16)	M1+E2			
$\gamma_{14,3}(\mathrm{Cu})$	1209,07 (9)	0,014 (3)	(M1+E2)			
$\gamma_{17,5}(\mathrm{Cu})$	1233,23 (22)	0,0025~(8)	M1+E2			

Surrey Univ. & Manipal Univ. / A.L. Nichols

	Energy (keV)	$\begin{array}{c} P_{\gamma+ce} \\ (\%) \end{array}$	Multipolarity	$lpha_K$	$lpha_L$	$lpha_T$
$\gamma_{3,0}(\mathrm{Cu})$	1326,76(5)	0,069(4)	E2	0,0001268 (18)	0,00001251 (18)	0,0001757 (25)
$\gamma_{7,1}(\mathrm{Cu})$	1342,99(12)	0,0025(8)	M1+E2	, , , ,	, , , ,	/ / /
$\gamma_{11,2}(\mathrm{Cu})$	1374,52(12)	0,034(2)	M1+E2			
$\gamma_{16,3}(\mathrm{Cu})$	1389,71(10)	0,043(6)	(E2)			
$\gamma_{8,1}(\mathrm{Cu})$	1392,52 (9)	0,10(1)	(M1 + 50% E2)	0,0001098(19)	0,00001080(19)	0,000167(4)
$\gamma_{4,0}(\mathrm{Cu})$	1412,16(4)	0,74(3)	M1+36,6%E2	0,0001055(16)	0,00001038(15)	0,000166(3)
$\gamma_{19,4}(\mathrm{Cu})$	1445,7(3)	0,0025(8)	(E2)		, , , ,	, , , ,
$\gamma_{18,3}(\mathrm{Cu})$	1481,34 (9)	0,0016(8)	E2			
$\gamma_{5,0}(\mathrm{Cu})$	1547,00(5)	0,124(5)	M1 + 13,2% E2	0,0000870(13)	0,00000854(13)	0,000181(3)
$\gamma_{14,2}(\mathrm{Cu})$	1573,81 (8)	0,016(2)	(M1+E2)			
$\gamma_{11,1}(\mathrm{Cu})$	1666, 61 (13)	0,0014(6)	E2			
$\gamma_{(-1,1)}(\mathrm{Cu})$	1696, 6 (10)	0,002(1)				
$\gamma_{16,2}(\mathrm{Cu})$	1754,45 (9)	0,0043(11)	M1+E2			
$\gamma_{12,1}(\mathrm{Cu})$	1827,26(10)	0,0042(11)	(M1+E2)			
$\gamma_{6,0}(\mathrm{Cu})$	1860, 63 (6)	0,011 (3)	E2	0,0000646 (9)	0,00000635 (9)	0,000316 (5)
$\gamma_{14,1}(\mathrm{Cu})$	1865,90 (8)	0,0200(21)	(E2)	0,0000643 (9)	0,00000631 (9)	0,000319(5)
$\gamma_{20,2}(\mathrm{Cu})$	1926,9 (4)	0,0053~(11)	(E2)			
$\gamma_{7,0}(\mathrm{Cu})$	2012,92 (11)	0,011~(2)	M1+E2			
$\gamma_{15,1}(\mathrm{Cu})$	2026,73(14)	0,060(4)	M1+E2			
$\gamma_{16,1}(\mathrm{Cu})$	2046,54 (10)	0,0035~(11)	M1+E2			
$\gamma_{8,0}(\mathrm{Cu})$	2062,45 (8)	0,034(3)	(M1+E2)			
$\gamma_{9,0}(\mathrm{Cu})$	2081, 32 (22)	0,015~(2)	(M1+E2)			
$\gamma_{10,0}(\mathrm{Cu})$	2092, 13 (10)	0,005~(3)	E2			
$\gamma_{17,1}(\mathrm{Cu})$	2110,30(21)	0,0065~(13)	M1+E2			
$\gamma_{(-1,2)}(\mathrm{Cu})$	2181,8(7)	0.0013(8)				
$\gamma_{19,1}(\mathrm{Cu})$	2188,0 (3)	0,0016~(8)	M1+E2			
$\gamma_{20,1}(\mathrm{Cu})$	2219,0 (4)	0,0029 (8)	M1+E2			
$\gamma_{11,0}(\mathrm{Cu})$	2336,54(12)	0,077~(5)	M1+E2			
$\gamma_{12,0}(\mathrm{Cu})$	2497, 19 (9)	0,020~(2)	(M1+E2)			
$\gamma_{13,0}(\mathrm{Cu})$	2511,06 (6)	0,011~(2)	[M1+E2]			
$\gamma_{14,0}(\mathrm{Cu})$	2535,83 (7)	0,067~(3)	(M1+E2)			
$\gamma_{15,0}(\mathrm{Cu})$	2696, 66 (13)	0,039~(3)	M1+E2			
$\gamma_{16,0}(\mathrm{Cu})$	2716,47 (9)	0,012~(1)	M1+E2			
$\gamma_{17,0}(\mathrm{Cu})$	2780,23 (21)	0,0154~(12)	M1+E2			
$\gamma_{18,0}(\mathrm{Cu})$	2808,10 (8)	0,0036~(6)	M1+E2			
$\gamma_{19,0}(\mathrm{Cu})$	2857,9 (3)	0,0028 (5)	M1+E2			
$\gamma_{20,0}(\mathrm{Cu})$	2888,9 (4)	0,0021 (2)	M1+E2			
$\gamma_{21,0}(\mathrm{Cu})$	3042,59 (8)	0,0048 (8)	M1+E2			
$\gamma_{22,0}(\mathrm{Cu})$	3101,4(4)	0,0007(2)	M1+E2			

3 Atomic Data

3.1 Cu

ω_K	:	$0,\!454$	(4)
$\bar{\omega}_L$:	0,0097	(4)
n_{KL}	:	$1,\!357$	(4)

		$\frac{\rm Energy}{\rm (keV)}$		Relative probability
Хк				
11	$K\alpha_2$	8,02792		$51,\!3$
	$K\alpha_1$	8,04787		100
	$K\beta_3$	8,90541)	
	$\mathrm{K}\beta_1$	8,90539	}	21,1
	${ m K}eta_5''$	8,9771	J	
$\mathbf{X}_{\mathbf{L}}$				
	$L\ell$	0,811		
	$L\alpha$	0,929 - 0,93		
	$\mathrm{L}\eta$	0,831		
	$L\beta$	0,949 - 1,022		
	$ m L\gamma$	0,952		

3.1.2 Auger Electrons

	Energy (keV)	Relative probability
Auger K		
KLL	6,731 - 7,059	100
KLX	7,746 - 8,064	$27,\!8$
KXY	8,739 - 8,982	$1,\!93$
Auger L	0,68 - 0,80	346

4 Electron Emissions

		$\frac{\rm Energy}{\rm (keV)}$	Electrons (per 100 disint.)
e_{AL}	(Cu)	0,68 - 0,80	$9,30 \ (9)$
e _{AK}	(Cu) KLL KLX KXY	6,731 - 7,059 7,746 - 8,064 8,739 - 8,982	3,50 (5)
$\beta_{0,0}^+$ $\beta_{0,1}^+$	max: avg: max: avg:	$\begin{array}{rrrr} 2344,2 & (15) \\ 1041,9 & (7) \\ 1674,3 & (15) \\ 732.0 & (7) \end{array}$	$ \left. \begin{array}{l} 80,3 \ (6) \\ 7,00 \ (2) \end{array} \right. \right\} $

		Ener (ke	rgy V)		Electrons (per 100 disint.)
$\beta^+_{0,2}$	max: avg:	$1382,2 \\ 599,5$	(15) (7)	}	4,96(13)
$\beta^+_{0,4}$	max: avg:	$932,0\\399,7$	(15) (7)	}	$0,\!49~(2)$
$\beta^+_{0,5}$	max: avg:	$797,2 \\ 341,0$	(15) (7)	}	0,042 (4)
$\beta^+_{0,7}$	max: avg:	$331,3 \\ 143,6$	(15) (6)	}	0,00039(2)
$\beta^+_{0,8}$	max: avg:	$281,8 \\ 123,0$	(15) (6)	}	0,0025~(2)
$\beta^+_{0,9}$	max: avg:	$262,9 \\ 115,1$	(15) (6)	}	0,00043 (9)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy (keV)		Photons (per 100 disint.)		
$\begin{array}{c} \text{XL} & (\\ \text{XK}\alpha_2 & (\\ \text{XK}\alpha_1 & (\\ \text{XK}\beta_3 & (\\ \text{XK}\beta_1 & (\\ \text{XK}\beta_5'' & (\\ \end{array}$	(Cu) ((Cu) (Cu) (Cu) (Cu) (Cu)	0,811 - 1,022 8,02792 8,04787 8,90541 8,90539 8,9771	}	0,0958 (16) 0,865 (12) 1,686 (22) 0,355 (6)	}	Kα K' $β_1$

5.2 Gamma Emissions

	Energy (keV)	Photons (per 100 disint.)
$\gamma_{17,14}(Cu)$	244,40 (22)	0,0053 (8)
$\gamma_{3,2}(\mathrm{Cu})$	364,74~(6)	$0,0115\ (25)$
$\gamma_{14,10}(Cu)$	443,70(12)	0,013 (4)
$\gamma_{4,2}(\mathrm{Cu})$	450,14(5)	0,229(16)
$\gamma_{11.6}(Cu)$	475,91 (13)	0,006 (3)
γ^{\pm}	511	185,6 (9)
$\gamma_{8,5}(\mathrm{Cu})$	515, 45 (9)	0,021 (8)
$\gamma_{9,5}(\mathrm{Cu})$	534,32(23)	0,005(2)
$\gamma_{5,2}(\mathrm{Cu})$	584,98(6)	0,033(4)
$\gamma_{16,10}(\mathrm{Cu})$	624, 34 (13)	0,011 (4)

	Energy	Photons
	(keV)	(per 100 disint.)
$\gamma_{1,0}(\mathrm{Cu})$	669,93(4)	8,19(32)
$\gamma_{14,6}(Cu)$	675,20 (9)	0,015 (3)
$\gamma_{15,7}(\mathrm{Cu})$	683,74(17)	0,004(2)
$\gamma_{4,1}(\mathrm{Cu})$	742,23~(6)	0,067~(8)
$\gamma_{9,3}(\mathrm{Cu})$	754,56(23)	0,016~(6)
$\gamma_{10,3}(\mathrm{Cu})$	765,37(11)	0,007 (3)
$\gamma_{5,1}(\mathrm{Cu})$	877,06(6)	0,003(2)
$\gamma_{6,2}(\mathrm{Cu})$	$898,\!60\ (7)$	0,009~(3)
$\gamma_{11,4}(\mathrm{Cu})$	924,37(13)	0,0099 (20)
$\gamma_{2,0}(\mathrm{Cu})$	962,01 (3)	$6,50\ (16)$
$\gamma_{14,5}(\mathrm{Cu})$	988,82~(9)	0,0038~(11)
$\gamma_{7,2}(\mathrm{Cu})$	1050, 89(11)	0,0044~(11)
$\gamma_{14,4}(\mathrm{Cu})$	$1123,\!66$ (8)	0,112~(11)
$\gamma_{10,2}(\mathrm{Cu})$	1130,10(10)	0,013~(2)
$\gamma_{15,5}(\mathrm{Cu})$	1149,65(14)	0,019~(2)
$\gamma_{16,5}(\mathrm{Cu})$	1169,46(10)	0,0077~(16)
$\gamma_{14,3}(\mathrm{Cu})$	1209,06 (9)	0,014~(3)
$\gamma_{17,5}(\mathrm{Cu})$	1233,22 (22)	0,0025~(8)
$\gamma_{3,0}(\mathrm{Cu})$	1326,75 (5)	0,069~(4)
$\gamma_{7,1}(\mathrm{Cu})$	1342,97(12)	0,0025 (8)
$\gamma_{11,2}(Cu)$	1374,50(12)	0,034(2)
$\gamma_{16,3}(\mathrm{Cu})$	1389,69(10)	0,043~(6)
$\gamma_{8,1}(\mathrm{Cu})$	1392,50 (9)	0,10(1)
$\gamma_{4,0}(\mathrm{Cu})$	1412,14(4)	0,74(3)
$\gamma_{19,4}(ext{Cu})$	1445,7(3)	0,0025 (8)
$\gamma_{18,3}(\mathrm{Cu})$	1481,32(9)	0,0016 (8)
$\gamma_{5,0}(\mathrm{Cu})$	1546,98(5)	0,124(5)
$\gamma_{14,2}(\mathrm{Cu})$	1573,79 (8)	0,016(2)
$\gamma_{11,1}(\mathrm{Cu})$	1666,59(13)	0,0014(6)
$\gamma_{(-1,1)}(\mathrm{Cu})$	1696,6(10)	0,002(1)
$\gamma_{16,2}(\mathrm{Cu})$	1754,42(9)	0,0043(11)
$\gamma_{12,1}(Cu)$	1827,23(10)	0,0042(11)
$\gamma_{6,0}(\mathrm{Cu})$	1860,60(6)	0,011 (3)
$\gamma_{14,1}(\mathrm{Cu})$	1865,87 (8)	0,0200(21)
$\gamma_{20,2}(Cu)$	1926,9(4)	0,0053(11)
$\gamma_{7,0}(\mathrm{Cu})$	2012,89(11)	0,011(2)
$\gamma_{15,1}(\mathrm{Cu})$	2026,70(14)	0,060(4)
$\gamma_{16,1}(Cu)$	2046,50(10)	0,0035(11)
$\gamma_{8,0}(Cu)$	2062,41(8)	0,034(3)
$\gamma_{9,0}(Cu)$	2081,28(22)	0,015(2)
$\gamma_{10,0}(Cu)$	2092,09(10)	0,005(3)
$\gamma_{17,1}(Cu)$	2110,26(21)	0,0005(13)
$\gamma_{(-1,2)}(Cu)$	2181,8(7)	0,0013(8)
$\gamma_{19,1}(Cu)$	2100, 0 (3)	0,0010(8)
$\gamma_{20,1}(Cu)$	2219,0(4)	0,0029(8)
$\gamma_{11,0}(Cu)$	2330,49(12)	0,077(5)
$\gamma_{12,0}(Cu)$	2497,14(9)	0,020(2)
$\gamma_{13,0}(\mathrm{Cu})$	2011,01 (0)	0,011(2)

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\begin{array}{c} \gamma_{14,0}(\mathrm{Cu}) \\ \gamma_{15,0}(\mathrm{Cu}) \\ \gamma_{16,0}(\mathrm{Cu}) \\ \gamma_{17,0}(\mathrm{Cu}) \\ \gamma_{18,0}(\mathrm{Cu}) \\ \gamma_{19,0}(\mathrm{Cu}) \\ \gamma_{20,0}(\mathrm{Cu}) \\ \gamma_{21,0}(\mathrm{Cu}) \\ \gamma_{22,0}(\mathrm{Cu}) \end{array}$	$\begin{array}{c} 2535,78 \ (7) \\ 2696,60 \ (13) \\ 2716,41 \ (9) \\ 2780,16 \ (21) \\ 2808,03 \ (8) \\ 2857,8 \ (3) \\ 2888,8 \ (4) \\ 3042,51 \ (8) \\ 3101,3 \ (4) \end{array}$	$\begin{array}{c} 0,067 \ (3) \\ 0,039 \ (3) \\ 0,012 \ (1) \\ 0,0154 \ (12) \\ 0,0036 \ (6) \\ 0,0028 \ (5) \\ 0,0021 \ (2) \\ 0,0048 \ (8) \\ 0,0007 \ (2) \end{array}$

6 Main Production Modes

 64 Zn(n,2n) 63 Zn 63 Cu(p,n) 63 Zn 63 Cu(d,2n) 63 Zn

 $^{64}\mathrm{Zn}(\gamma,\!\mathrm{n})^{63}\mathrm{Zn}$

7 References

- C.V. STRAIN. Phys. Rev. 54 (1938) 1021 (Half-life)
- W. BOTHE, W. GENTNER. Z. Phys. 112 (1939) 45 (Half-life)
- L.A. DELSASSO, L.N. RIDENOUR, R. SHERR, M.G. WHITE. Phys. Rev. 55 (1939) 113 (Half-life)
- O. HUBER, H. MEDICUS, P. PREISWERK, R. STEFFEN. Helv. Phys. Acta 20 (1947) 495 (Half-life)
- H. WÄFFLER, O. HIRZEL. Helv. Phys. Acta 21 (1948) 200 (Half-life)
- R.W. HAYWARD, E. FARRELLY-PESSOA, D.D. HOPPES. R. VAN LIESHOUT. Nuovo Cimento 11 (1959) 153 (Gamma-ray energies)
- R.A. RICCI, R.K. GIRGIS, R. VAN LIESHOUT. Nuovo Cimento 11 (1959) 156 (Half-life, Gamma-ray energies and emission probabilities)
- I.L. PREISS, R.W. FINK. Nucl. Phys. 15 (1960) 326 (Half-life)
- J.B. CUMMING, N.T. PORILE. Phys. Rev. 122 (1961) 1267 (Half-life, Gamma-ray energies and emission probabilities, EC emission probabilities)
- S.S. VASIL'EV, NO HSIENG CH'ANG, L.YA. SHAVTVALOV. Sov. Phys. JETP 13 (1961) 331 (Half-life, Gamma-ray emission probabilities, Positron energies and emission probabilities)
- L.A. RAYBURN. Phys. Rev. 122 (1961) 168 (Half-life)
- A. PAULSEN, H. LISKIEN. Nukleonik 7 (1965) 117 (Half-life)
- D. DE FRENNE, M. DORIKENS, L. DORIKENS-VANPRAET, J. DEMUYNCK. Nucl. Phys. A103 (1967) 203 (Gamma-ray energies and emission probabilities)
- J.D. Goss, F.L. RIFFLE, D.R. PARSIGNAULT, J.C. HARRIS. Nucl. Phys. A115 (1968) 113 (Half-life)
- M. BORMANN, B. LAMMERS. Nucl. Phys. A130 (1969) 195 (Half-life)
- I. BORCHERT. Z. Phys. 223 (1969) 473 (Half-life, Gamma-ray energies and emission probabilities)

-	A. KIURU, P. HOLMBERG. Z. Phys. 233 (1970) 146
	(Gamma-ray energies and emission probabilities) N.B. COVE, M.L. MARTIN, Nucl. Data Tables 10 (1071) 205
-	(EC/positron ratios)
-	G.C. GIESLER. PhD thesis, Michigan State University (1971)
	(Gamma-ray energies and emission probabilities, EC/positron ratio to ground state)
-	G.C. GIESLER, K.L. KOSANKE, R.A. WARNER, W.C. MCHARRIS. Nucl. Instrum. Methods 93 (1971) 211
	(Gamma-gamma coincidence)
-	R.L. ROBINSON, Z.W. GRABOWSKI. Nucl. Phys. A191 (1972) 225
	(Gamma-gamma angular correlation, Mixing ratios)
-	(Half-life)
_	A A C KLAASSE P F A GOUDSMIT Z Phys 266 (1974) 75
	(Gamma-ray energies and emission probabilities)
-	R. COLLÉ, R. KISHORE, J.B. CUMMING. Phys. Rev. C9 (1974) 1819
	(Half-life)
-	G.H. FULLER. J. Phys. Chem. Ref. Data 5 (1976) 835
	(Spin, Magnetic dipole moment, Electric quadrupole moment)
-	F.P. LARKINS. At. Data Nucl. Data Tables 20 (1977) 311
	(Auger-electron energies)
-	R.G. KULKARNI, D.P. NAVALKELE. Can. J. Phys. 58 (1980) 472 (Camma-gamma angular correlation. Mixing ratios)
_	A GRÜTTER Int. J. Appl. Badiat. Isot. 33 (1982) 533
	(Half-life)
-	E. SCHÖNFELD. PTB Report PTB-6.33-95-2 (1995)
	(Fractional EC probabilities)
-	E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527
	(Fluorescence yields, X-ray emission probability ratios, Auger-electron emission probability ratios)
-	E. SCHÖNFELD. Appl. Radiat. Isot. 49 (1998) 1353
	(Fractional EU probabilities)
-	L. SCHONFELD, G. RODLOFF. PID Report PID-0.11-98-1 (1998)
_	K.P. SINGH, D.C. TAYAL, H.S. HANS, Phys. Rev. C58 (1998) 1980
	(B(E2) values)
-	E. SCHÖNFELD, G. RODLOFF. PTB Report PTB-6.11-1999-1 (1999)
	(K-X rays)
-	E. SCHÖNFELD, H. JANSSEN. Appl. Radiat. Isot. 52 (2000) 595
	(P(X), P(Ae))
-	K.W.D. LEDINGHAM, I. SPENCER, T. MCCANNY, R.P. SINGHAL, M.I.K. SANTALA ET AL. Phys. Rev. Lett. 84 (2000) 800
	(2000) 899 (Half-life)
_	E. BAL HUO JUNDE, Nucl. Data Sheets 92 (2001) 147
	(Nuclear levels)
-	I.M. BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR JR., P.O. TIKKANEN, S. RAMAN. At. Data Nucl. Data Tables
	81 (2002) 1
	(Theoretical ICC)
-	S. RAMAN, C.W. NESTOR JR., A. ICHIHARA, M.B. TRZHASKOVSKAYA. Phys. Rev. C66 (2002) 044312
	(Theoretical ICC) T. KIRÉDI, T.W. RUDDOWG, M.R. TRZULGKONGKANA, R.M. DANIDGON, C.W. NEGTOD, I. Nucl. Instrum. Methods
-	Phys. Res. A589 (2008) 202
	(Theoretical ICC)
-	N.J. STONE. IAEA Report INDC(NDS)-0594 (2011)
	(Spin, Magnetic dipole moment, Electric quadrupole moment)
-	M. WANG, G. AUDI, A.H. WAPSTRA, F.G. KONDEV, M. MACCORMICK, X. XU, B. PFEIFFER. Chin. Phys. C36
	(2012) 1603
	(Q-value)

 $Q^+ = 3366,2 \text{ keV}$ % $\beta^+ + \% \epsilon = 100$

Surrey Univ. & Manipal Univ. / A.L. Nichols

41

 γ Emission intensities per 100 disintegrations

Surrey Univ. & Manipal Univ. / A.L. Nichols

Surrey Univ. & Manipal Univ. / A.L. Nichols

1 Decay Scheme

Se-73 (half-life of 7.10 h) decays by 100% electron capture/beta plus to various excited levels of As-73 that populate the ground state of As-73 (half-life of 80.30 d).

Le selenium 73 (7,10 h) se désintègre à 100% par capture électronique et transitions bêta plus vers plusieurs niveaux excités de l'arsenic 73.

2 Nuclear Data

$T_{1/2}(^{73}\text{Se})$:	$7,\!10$	(9)	h
$T_{1/2}(^{73}\text{As})$:	$80,\!30$	(6)	d
$Q^{+}(^{73}Se)$:	2725	(7)	keV

2.1 Electron Capture Transitions

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	$\lg ft$	P_K	P_L	P_M
£0.20	141(7)	0.0155(20)	(non-unique 1st forbidden)	6.2	0.8646(19)	0.1136(16)	0.0199(5)
$\epsilon_{0,20}$	242(7)	0.0087(20)	(allowed)	7	0.8723(16)	0.1072(13)	0.0186(4)
€0,19	249(7)	0.0029(10)	(allowed)	7.5	0.8726(16)	0.1070(13)	0.0186(4)
$\epsilon_{0.17}$	291(7)	0,0048(19)	(non-unique 2nd forbidden)	7,4	0.8740(16)	0,1058(13)	0,0184(4)
$\epsilon_{0.16}$	413(7)	0,157(6)	(allowed)	6,2	0,8764(16)	0,1038(13)	0,0180(4)
$\epsilon_{0,15}$	544(7)	0,030(8)	(allowed)	$7,\!1$	0,8778(15)	0,1027 (13)	0,0178(4)
$\epsilon_{0,14}$	750(7)	0,094(3)	(allowed)	6,9	0,8789(15)	0,1018 (13)	0,0176(4)
$\epsilon_{0,13}$	763(7)	0,017(5)	(allowed)	7,7	0,8790(15)	0,1017 (13)	0,0176(4)
$\epsilon_{0,12}$	815(7)	0,060(7)	(allowed)	7,2	0,8792 (15)	0,1016 (13)	0,0175~(4)
$\epsilon_{0,11}$	874(7)	0,433~(11)	(allowed)	6,4	$0,8794\ (15)$	$0,1014\ (12)$	0,0175~(4)
$\epsilon_{0,10}$	$1396\ (7)$	0,129(3)	(allowed)	7,3	0,8804~(15)	0,1006~(12)	0,0173~(4)
$\epsilon_{0,8}$	1432~(7)	0,435~(19)	(allowed)	6,8	0,8804~(15)	0,1006~(12)	0,0173~(4)
$\epsilon_{0,7}$	1450(7)	0,0057~(19)	(allowed)	8,7	0,8804~(15)	0,1006~(12)	0,0173~(4)
$\epsilon_{0,6}$	1547(7)	0,178~(2)	(non-unique 1st forbidden)	7,3	0,8805~(15)	0,1005~(12)	0,0173~(4)
$\epsilon_{0,2}$	2297(7)	$33,\!3~(5)$	allowed	$5,\!36$	0,8810 (15)	$0,1001 \ (12)$	0,0172~(4)
$\epsilon_{0,1}$	2658(7)	0,51~(9)	unique 1st forbidden	8,7	0,8811 (15)	0,1000(12)	0,0172~(4)

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	$\lg ft$
$\beta_{0.10}^+$	374(7)	0,0034(2)	(allowed)	7,3
$\beta_{0.8}^+$	410(7)	0,017~(2)	(allowed)	6,8
$\beta_{0.7}^+$	428(7)	0,0003(1)	(allowed)	8,7
$\beta_{0.6}^{+}$	525(7)	0,017~(1)	(non-unique 1st forbidden)	7,3
$\beta_{0.2}^{+}$	1275(7)	$63,\!9~(5)$	allowed	$5,\!36$
$\beta_{0,1}^+$	1636~(7)	$0,\!69\ (11)$	unique 1st forbidden	8,7

2.2 β^+ Transitions

2.3 Gamma Transitions and Internal Conversion Coefficients

	Energy (keV)	$\stackrel{\mathrm{P}_{\gamma+\mathrm{ce}}}{(\%)}$	Multipolarity	$ \overset{\alpha_K}{(10^{-5})} $	$ \overset{\alpha_L}{(10^{-6})} $	$ \overset{\alpha_M}{(10^{-6})} $	$ \begin{array}{c} \alpha_T \\ (10^{-4}) \end{array} $	$ \overset{\alpha_{\pi}}{(10^{-5})} $
$\gamma_{1,0}(As)$	67.039(8)	90 (9)	100%M1	24100 (400)	26400 (400)	4040 (60)	2720(40)	
$\gamma_{2,1}(As)$	360.867(23)	98.18 (20)	M2+0.12%E3	1165(17)	1286 (18)	197(3)	131.5(19)	
$\gamma_{2,0}(As)$	427.906(21)	0.079(14)	E3	1195(17)	1397(20)	213(3)	135.7(19)	
$\gamma_{3,1}(As)$	443,016 (19)	0.050(3)	(E1)	92.6(13)	95.5(14)	14.54(21)	10.37(15)	
$\gamma_{3,0}(As)$	510.055(17)	0.26(3)	(E1)	65.0(10)	67.0(10)	10.20(15)	7.28(11)	
$\gamma_{11.8}(As)$	557,50(11)	0,052(2)	(M1+E2)	, , , ,	, , ,	, , ,	, , ,	
$\gamma_{11,7}(As)$	575,45(9)	0,146(7)	(M1+E2)					
$\gamma_{(-1,1)}(As)$	600,3(3)	0,020(3)						
$\gamma_{5,2}(As)$	609,22(4)	0,049(4)	(E2)	125,8(18)	132,7(19)	20,2(3)	14,12(20)	
$\gamma_{14,9}(As)$	682,04(11)	0,019(2)	(E1)	33,0(5)	33,8(5)	5,15(8)	3,69(6)	
$\gamma_{14,7}(As)$	700,27(13)	0,044(2)	(M1+E2)					
$\gamma_{7,3}(As)$	765,09(7)	0,127(2)	(M1+E2)					
$\gamma_{9,3}(As)$	783,32 (4)	0,058(2)	(M1+E2)					
$\gamma_{(-1,2)}(As)$	793,0(5)	0,064(2)						
$\gamma_{11,5}(As)$	813,46~(6)	0,009(1)	(E2)	57,3(8)	59,7~(9)	9,10(13)	6,42(9)	
$\gamma_{10,3}(As)$	818,84(5)	0,036(2)	(M1+E2)					
$\gamma_{7,2}(As)$	847,23(7)	0,078~(6)	(M1+E2)					
$\gamma_{11,4}(As)$	856, 82 (5)	0,023~(6)	(E1)	20,3(3)	20,7(3)	3,16(5)	2,27(4)	
$\gamma_{8,2}(As)$	865,18(10)	0,50(2)	(M1+E2)					
$\gamma_{9,2}(As)$	865, 46(3)	0,02(1)	(M1+E2)					
$\gamma_{12,5}(As)$	873,00(12)	0,038~(7)	(E2)	47,9(7)	49,9(7)	7,60(11)	$5,\!37~(8)$	
$\gamma_{15,9}(As)$	887,29(10)	0,011 (8)	(M1+E2)					
$\gamma_{10,2}(As)$	900,98~(5)	0,135~(2)	(M1+E2)					
$\gamma_{4,1}(\mathrm{As})$	926,727(14)	0,004(1)	(M1+E2)					
$\gamma_{(-1,3)}(As)$	$930,09\ (15)$	0,005~(1)						
$\gamma_{13,4}(\mathrm{As})$	968,0(2)	0,012~(5)						
$\gamma_{16,10}({ m As})$	982,74 (8)	0,034(1)	(M1+E2)					
$\gamma_{4,0}(\mathrm{As})$	993,766 (12)	0,005~(1)	(E2)	35,0~(5)	36,3(5)	5,52~(8)	3,92~(6)	
$\gamma_{15,6}({ m As})$	1002, 61 (10)	0,004(1)	(E1)	14,84(21)	15,17(22)	2,31 (4)	1,660(24)	
$\gamma_{16,9}(\mathrm{As})$	1018,26 (7)	0,053~(2)	(M1+E2)					
$\gamma_{16,7}(\mathrm{As})$	1036, 49 (9)	0,015~(1)	(M1+E2)					
$\gamma_{6,1}(\mathrm{As})$	1111,013 (23)	0,201~(2)	(M1+E2)					
$\gamma_{19,10}({ m As})$	1153,98(24)	0,005~(1)	(M1+E2)					
$\gamma_{17,7}(As)$	1159,0 (4)	0,003~(1)						
$\gamma_{7,1}(As)$	1208,10(7)	0,004(1)	(E1)	10,50 (15)	10,72~(15)	1,632~(23)	1,700(24)	5,25~(8)
$\gamma_{(-1,4)}(As)$	1215,4 (8)	0,063(10)	<i>i</i> i					
$\gamma_{9,1}(As)$	1226,33 (3)	0,003(2)	(E1)	$10,23\ (15)$	$10,\!43\ (15)$	1,589(23)	1,79(3)	6,43~(9)
$\gamma_{(-1,5)}(As)$	1249,9(2)	0,004(1)	<i>.</i> .					
$\gamma_{7,0}(As)$	1275,14(7)	0,007(1)	(M2)	39,4(6)	40,8(6)	6,23 (9)	4,46(7)	0,416~(6)
$\gamma_{20,7}(As)$	1308,95(13)	0,004(1)	(E1)	9,12~(13)	9,30(13)	1,417(20)	2,22 (4)	$12,03\ (17)$

LNE – LNHB/CEA Table de Radionucléides

	Energy (keV)	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}}\\ (\%) \end{array}$	Multipolarity	$\binom{lpha_K}{(10^{-5})}$	$ \overset{\alpha_L}{(10^{-6})} $	$lpha_M (10^{-6})$	$ \overset{\alpha_T}{(10^{-4})} $	$lpha_{\pi}$ (10^{-5})
$\gamma_{16,4}(As)$	1317,86(6)	0,006(1)	(E1)	9,02 (13)	9,19(13)	1,40(2)	2,27(4)	12,61 (18)
$\gamma_{(-1,6)}(As)$	1323,81 (20)	0,007(1)						
$\gamma_{11,3}(As)$	1340,54(5)	0,069~(2)	(E2)	18,0(3)	18,5(3)	2,82(4)	2,39(4)	3,76~(6)
$\gamma_{20,6}(As)$	1406,04(11)	0,002(1)	(M1+E2)					
$\gamma_{11,2}(As)$	1422,68 (6)	0,135~(5)	(M1+E2)					
$\gamma_{18,5}(As)$	1439,0(2)	0,002~(1)						
$\gamma_{13,3}({ m As})$	1451,7(2)	0,006~(2)						
$\gamma_{12,2}(As)$	1482,22 (6)	0,022~(1)	(M1+E2)					
$\gamma_{14,2}(As)$	1547,50(11)	0,031~(1)	(M1+E2)					
$\gamma_{15,3}(\mathrm{As})$	$1670,\!61$ (10)	0,005~(1)	(M1+E2)					
$\gamma_{(-1,7)}(As)$	1738,4(5)	0,002(1)						
$\gamma_{15,2}(\mathrm{As})$	1752,75(10)	0,011(1)	(M1+E2)					
$\gamma_{16,3}(\mathrm{As})$	1801,58(6)	0,019~(5)	(M1+E2)					
$\gamma_{(-1,8)}(As)$	1847,8(3)	0,008(1)						
$\gamma_{16,2}(\mathrm{As})$	1883,72~(6)	0,030(2)	(M1+E2)					
$\gamma_{(-1,9)}(As)$	1889,57(20)	0,003~(1)						
$\gamma_{19,3}(\mathrm{As})$	1972,82 (23)	0,001(1)	(M1+E2)					
$\gamma_{17,2}({ m As})$	2006,2~(4)	0,002(1)						
$\gamma_{(-1,10)}(As)$	2023,9 (3)	0,002(1)						
$\gamma_{18,2}({ m As})$	2048,2(2)	0,001(1)						
$\gamma_{19,2}(\mathrm{As})$	2054,96 (23)	0,003~(1)	(M1+E2)					
$\gamma_{20,2}(As)$	2156, 18(11)	0,005~(1)	(E1)	4,13~(6)	4,19(6)	$0,\!638~(9)$	7,85(11)	73,9(11)
$\gamma_{(-1,11)}(As)$	2170,5(3)	0,002(1)						
$\gamma_{20,1}(As)$	2517,05(11)	0,005~(1)	(M1+E2)					

3 Atomic Data

3.1 As

ω_K	:	$0,\!575$	(4)
$\bar{\omega}_L$:	$0,\!0155$	(5)
n_{KL}	:	1,232	(4)

3.1.1 X Radiations

		$\frac{\rm Energy}{\rm (keV)}$		Relative probability
X _K	Kα ₂	10.50814		51.2
	$K\alpha_1$	$10,\!5438$		100
	$egin{array}{c} { m K}eta_3 \ { m K}eta_1 \ { m K}eta_5^{\prime\prime} \end{array}$	$11,7204 \\ 11,7263 \\ 11,821$	}	22,8
	$K\beta_2$	11,8643		0,86
$\mathbf{X}_{\mathbf{L}}$				
	$L\ell$	$1,\!12$		
	$L\alpha$	1,282		
	$\mathrm{L}\eta$	1,155		
	$\mathrm{L}eta$	1,317 - 1,388		
	$L\gamma$	1,524		

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K KLL KLX KXY	8,746 - 9,149 10,114 - 10,541 11,460 - 11,862	$100 \\ 31,3 \\ 2,45$
Auger L	0,90 - 1,23	416

4 Electron and Positron Emissions

		Energy (keV)		Electrons (per 100 disint.)
e_{AL}	(As)	0,90 - 1,23		65,3~(15)
e _{AK}	(As) KLL KLX KXY	8,746 - 9,149 10,114 - 10,541 11,460 - 11,862	}	21,0 (8)
ес _{1,0 Т} ес _{1,0 К} ес _{1,0 L} ес _{1,0 М+}	$\begin{array}{c} (\mathrm{As}) \\ (\mathrm{As}) \\ (\mathrm{As}) \\ (\mathrm{As}) \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$19 (11) \\ 17 (10) \\ 1,8 (10) \\ 0,32 (18)$
$ec_{2,1 T} ec_{2,1 K} ec_{2,1 L} ec_{2,1 M+}$	(As) (As) (As) (As)	$\begin{array}{r} 349,00 - 360,86 \\ 349,00 & (3) \\ 359,34 - 359,54 \\ 360,66 - 360,86 \end{array}$		$\begin{array}{c} 1,27 \ (30) \\ 1,13 \ (25) \\ 0,12 \ (3) \\ 0,021 \ (5) \end{array}$
$\beta^+_{0,1}$	max: avg:	$\begin{array}{ccc} 1636 & (7) \\ 745 & (3) \end{array}$	}	0,69~(11)
$\beta^+_{0,2}$	max: avg:	$\begin{array}{ccc} 1275 & (7) \\ 555 & (3) \end{array}$	}	63,9~(5)
$\beta^+_{0,6}$	max: avg:	$\begin{array}{ccc} 525 & (7) \\ 228 & (3) \end{array}$	}	0,017~(1)
$\beta^+_{0,7}$	max: avg:	$\begin{array}{ccc} 428 & (7) \\ 187 & (3) \end{array}$	}	0,0003~(1)
$\beta^+_{0,8}$	max: avg:	$\begin{array}{ccc} 410 & (7) \\ 179 & (3) \end{array}$	}	0,017~(2)
$\beta^+_{0,10}$	max: avg:	$\begin{array}{ccc} 374 & (7) \\ 164 & (3) \end{array}$	}	0,0034 (2)

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)		
$egin{array}{c} { m XL} \\ { m XK}lpha_2 \\ { m XK}lpha_1 \end{array}$	(As) (As) (As)	1,12 - 1,524 10,50814 10,5438	1,05 (3) 8,3 (3) 16,2 (6)	}	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	$\begin{array}{c} (\mathrm{As}) \\ (\mathrm{As}) \\ (\mathrm{As}) \end{array}$	$11,7204 \\ 11,7263 \\ 11,821$	} 3,70 (14)		$K' \beta_1$
$\mathrm{XK}\beta_2$	(As)	11,8643	$0,\!140~(7)$		$K'\beta_2$

5.2 Gamma Emissions

	$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$	Photons (per 100 disint.)
$\gamma_{10}(As)$	67.039(8)	70.7 (70)
$\gamma_{2,1}(As)$	360.866(23)	96.91(20)
$\gamma_{2,1}(As)$	427,905 (21)	0.078(14)
$\gamma_{3,1}(As)$	443,015 (19)	0,050(3)
$\gamma_{3,0}(As)$	510,053(17)	0,26(3)
γ^{\pm}	511	129 (8)
$\gamma_{11.8}(As)$	557,50(11)	0,052(2)
$\gamma_{11,7}(As)$	575,45(9)	0,146(7)
$\gamma_{(-1,1)}(As)$	600,3 (3)	0,020 (3)
$\gamma_{5,2}(As)$	609,22 (4)	0,049~(4)
$\gamma_{14,9}(As)$	682,04 (11)	0,019~(2)
$\gamma_{14,7}(As)$	700,27 (13)	0,044~(2)
$\gamma_{7,3}(As)$	765,09 (7)	0,127~(2)
$\gamma_{9,3}(As)$	783,32 (4)	0,058~(2)
$\gamma_{(-1,2)}(As)$	793,0 (5)	0,064~(2)
$\gamma_{11,5}(As)$	$813,\!46\ (6)$	0,009~(1)
$\gamma_{10,3}(As)$	818, 84 (5)	0,036~(2)
$\gamma_{7,2}(As)$	847,22 (7)	0,078~(6)
$\gamma_{11,4}(As)$	856, 81 (5)	0,023~(6)
$\gamma_{8,2}(As)$	865,17(10)	0,50(2)
$\gamma_{9,2}(As)$	865,45(3)	0,02~(1)
$\gamma_{12,5}(As)$	872,99(12)	0,038~(7)
$\gamma_{15,9}(\mathrm{As})$	887,28 (10)	0,011 (8)
$\gamma_{10,2}(As)$	900,97(5)	0,135(2)
$\gamma_{4,1}(As)$	926,721(14)	0,004(1)
$\gamma_{(-1,3)}(As)$	930,09 (15)	0,005(1)
$\gamma_{13,4}(As)$	968,0(2)	0,012 (5)

	$\frac{\text{Energy}}{(\text{keV})}$	Photons (per 100 disint.)
	()	(F == =================================
$\gamma_{16,10}(As)$	982,73 (8)	0,034(1)
$\gamma_{4,0}(As)$	993,759(12)	0,005(1)
$\gamma_{15,6}(As)$	$1002,\!60$ (10)	0,004(1)
$\gamma_{16,9}(As)$	1018,25(7)	0,053~(2)
$\gamma_{16,7}(As)$	$1036,\!48$ (9)	0,015~(1)
$\gamma_{6,1}(As)$	1111,004 (23)	0,201~(2)
$\gamma_{19,10}(As)$	1153,97(24)	0,005~(1)
$\gamma_{17,7}(As)$	1159,0 (4)	0,003~(1)
$\gamma_{7,1}(As)$	1208,09(7)	0,004(1)
$\gamma_{(-1,4)}(As)$	1215,4 (8)	0,063~(10)
$\gamma_{9,1}(As)$	1226,32 (3)	0,003~(2)
$\gamma_{(-1,5)}(As)$	1249,9(2)	0,004(1)
$\gamma_{7,0}(As)$	1275, 13(7)	0,007~(1)
$\gamma_{20,7}(As)$	$1308,94\ (13)$	0,004(1)
$\gamma_{16,4}(As)$	1317,85~(6)	0,006~(1)
$\gamma_{(-1,6)}(As)$	$1323,\!81$ (20)	0,007~(1)
$\gamma_{11,3}(As)$	1340,53 (5)	0,069~(2)
$\gamma_{20,6}(As)$	$1406,03\ (11)$	0,002~(1)
$\gamma_{11,2}(As)$	$1422,\!67$ (6)	$0,\!135~(5)$
$\gamma_{18,5}(As)$	1439,0 (2)	0,002~(1)
$\gamma_{13,3}(As)$	1451,7(2)	0,006~(2)
$\gamma_{12,2}(As)$	1482,20 (6)	0,022~(1)
$\gamma_{14,2}(As)$	1547, 48(11)	0,031~(1)
$\gamma_{15,3}(As)$	1670, 59(10)	0,005~(1)
$\gamma_{(-1,7)}(As)$	1738,4(5)	0,002~(1)
$\gamma_{15,2}(As)$	1752,73 (10)	0,011~(1)
$\gamma_{16,3}(As)$	$1801,56\ (6)$	0,019~(5)
$\gamma_{(-1,8)}(As)$	1847,8(3)	0,008(1)
$\gamma_{16,2}(As)$	$1883,\!69\ (6)$	0,030~(2)
$\gamma_{(-1,9)}(As)$	1889,57 (20)	0,003~(1)
$\gamma_{19,3}(As)$	1972,79(23)	0,001(1)
$\gamma_{17,2}(As)$	2006,2~(4)	0,002(1)
$\gamma_{(-1,10)}(As)$	2023,9(3)	0,002(1)
$\gamma_{18,2}(As)$	2048,2(2)	0,001(1)
$\gamma_{19,2}(As)$	2054,93 (23)	0,003(1)
$\gamma_{20,2}(As)$	2156, 15(11)	0,005(1)
$\gamma_{(-1,11)}(As)$	2170,5(3)	0,002(1)
$\gamma_{20,1}(As)$	2517,00 (11)	0,005~(1)

6 Main Production Modes

Surrey Univ. / A.L. Nichols

 $\left\{ \begin{array}{l} As - 75(p,3n)Se - 73 \\ Possible impurities : As - 74, Se - 73m \\ \left\{ \begin{array}{l} Ge - 72(He - 3,d)Se - 73 \\ Possible impurities : Se - 73m \\ \left\{ \begin{array}{l} Ni - 60(O - 16,p2n)Se - 73 \\ Possible impurities : Se - 73m \end{array} \right. \end{array} \right.$

7 References

- W.S. COWART, M.L. POOL, D.A. MCCOWN, L.L. WOODWARD. Phys. Rev. 73 (1948) 1454 (Half-life)
- F.R. SCOTT. Phys. Rev. 84 (1951) 659 (Positron energies and emission probabilities, Gamma-ray energies and emission probabilities, Conversion-electron energies and emission probabilities, Auger-electron energies and emission probabilities)
- R.W. HAYWARD, D.D. HOPPES. Phys. Rev. 98 (1955) 1172, MA2
- (Positron energies, Log ft)
 R.W. HAYWARD, D.D. HOPPES. Phys. Rev. 101 (1956) 93
 (Positron energies and emission probabilities, Gamma-ray energies and emission probabilities, Conversion-electron energies and emission probabilities, Half-lives (67- and 428-keV nuclear levels))
- J. BEYDON, R. CHAMINADE, M. CRUT, H. FARAGGI, J. OLKOWSKY, A PAPINEAU. Nucl. Phys. 2 (1957) 593 (Half-life, Gamma-ray energies)
- M.IA. KUZNETSOVA, V.N. MEKHEDOV. Izv. Akad. Nauk SSSR, Ser. Fiz. 21 (1957) 1020 (K capture)
- R.A. RICCI, R. VAN LIESHOUT, H.J. VAN DEN BOLD. Physica 26 (1960) 1014 (Half-life, Gamma-ray energies and emission probabilities)
- T. KUROYANAGI. J. Phys. Soc. Japan 15 (1960) 2179 (Positron decay)
- E. BODENSTEDT, G. STRUBE, W. ENGELS, H. BLUMBERG, R.-M. LIEDER, E. GERDAU. Phys. Lett. 6 (1963) 290 (Half-life (67-keV nuclear level), Mixing ratio)
- H.H. BOLOTIN. Phys. Rev. 131 (1963) 774 (Half-life (67- and 428-keV nuclear levels))
- B. OLSEN, L. BOSTRÖM. Nucl. Instrum. Methods 44 (1966) 65 (Half-life (67-keV nuclear level))
- P.V. RAO, R.W. FINK. Phys. Rev. 154 (1967) 1028 (Half-life, Gamma-ray energies and emission probabilities, ICC(total))
- A.H.W. ATEN JR., J.C. KAPTEYN. Radiochim. Acta 9 (1968) 48 (67- and 361-keV gamma rays, Se-73m)
- M.P. AKHMED, K.A. BASKOVA, S.S. VASIL'EV, L.YA. SHAVTVALOV. Yad. Fiz. 8 (1968) 240 (Positron energies and emission probabilities, Log ft, Gamma-ray emission probabilities)
- E.A. IVANOV, A. IORDĂCHESCU, G. PASCOVICI. Rev. Roum. Phys. 13 (1968) 879 (Half-life (428-keV nuclear level))
- E.A. IVANOV, A. IORDĂCHESCU, G. PASCOVICI. Rev. Roum. Phys. 14 (1969) 317 (Half-life (428-keV nuclear level))
- K.W. MARLOW, A. FAAS. Nucl. Phys. A132 (1969) 339 (Half-life, Gamma-ray energies and emission probabilities, Half-life (428-keV nuclear level))
- R.D. MEEKER, A.B. TUCKER. Nucl. Phys. A157 (1970) 337 (Gamma-ray energies and emission probabilities)
- R.D. MEEKER. PhD thesis, Iowa State University (1970) (Gamma-ray energies and emission probabilities)
- D. QUITMANN, J.M. JAKLEVIC. Z. Naturforsch. 25a (1970) 975 (Multipolarity)
- N.B. GOVE, M.J. MARTIN. Nucl. Data Tables 10 (1971) 205 (EC/positron ratios)
- E. RECKNAGEL. Hahn-Meitner Institute report HMI-B-115 (1972) (Half-life (428-keV nuclear level))
- R.R. Betts, S. Mordechai, D.J. Pullen, B. Rosner, W. Scholz. Nucl. Phys. A230 (1974) 235 (As-73 nuclear levels)

 $^{73}_{34}$ Se $_{39}$

- P. VAN DER MERWE, E. BARNARD, J.A.M. DE VILLIERS, J.G. MALAN. Nucl. Phys. A240 (1975) 273 (As-73 nuclear levels from Ge-73(p,n) and (p,ngamma) reactions)
- M. SCHRADER, H. REISS, G. ROSNER, H.V. KLAPDOR. Nucl. Phys. A263 (1976) 193 (As-73 nuclear levels)
- M. BORMANN, H.-K. FEDDERSEN, H.-H. HÖLSCHER, W. SCOBEL, H. WAGENER. Z. Phys. A277 (1976) 203 (Half-life)
- F.P. LARKINS. At. Data Nucl. Data Tables 20 (1977) 311 (Auger-electron energies)
- T.J. KETEL. PhD thesis, Vrije Universiteit, Amsterdam (1977) (Half-life (428-keV nuclear level))
- B.O. TEN BRINK. PhD thesis, Vrije Universiteit, Amsterdam (1978) (Gamma-ray energies and emission probabilities)
- B.O. TEN BRINK, P. VAN NES, C. HOETMER, H. VERHEUL. Nucl. Phys. A338 (1980) 24 (Gamma-ray energies and emission probabilities)
- I. BERKES, R. HASSANI, M. MASSAQ. Phys. Rev. C38 (1988) 2329 (Ground state spin, Magnetic moment, Mixing ratio)
- TH. SCHAEFER, E. LOHMANN, R. VIANDEN. Z. Phys. Hadrons and Nuclei A343 (1992) 279 (Quadrupole moment (67-keV nuclear level))
- E. SCHÖNFELD. PTB report PTB-6.33-95-2 (1995)
 (P(K), P(L), P(M), P(N), P(O))
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Fluorescence yields, X-ray emission probability ratios, Auger-electron emission probability ratios)
- D. SOHLER, ZS. PODOLYÁK, J. GULYÁS, T. FÉNYES, A. ALGORA, ZS. DOMBRÁDI, S. BRANT, V. PAAR. Nucl. Phys. A618 (1997) 35
- (Gamma branches, As-73 nuclear levels from Ge-73(p,ngamma) reaction)
- E. SCHÖNFELD. Appl. Rad. Isot. 49 (1998) 1353 (Fractional EC probabilities)
- E. SCHÖNFELD, G. RODLOFF. PTB report PTB-6.11-98-1 (1998) (Auger electrons)
- E. SCHÖNFELD, G. RODLOFF. PTB report PTB-6.11-1999-1 (1999) (X(K))
- E. SCHÖNFELD, H. JANSSEN. Appl. Rad. Isot. 52 (2000) 595 (P(X), P(Ae))
- I.M. BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR JR., P.O. TIKKANEN, S. RAMAN. At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC)
- S. RAMAN, C.W. NESTOR JR., A. ICHIHARA, M.B. TRZHASKOVSKAYA. Phys. Rev. C66 (2002) 044312 (Theoretical ICC)
- BALRAJ SINGH. Nucl. Data Sheets 101 (2004) 193 (Nuclear levels)
- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)
- M. WANG, G. AUDI, A.H. WAPSTRA, F.G. KONDEV, M. MACCORMICK, X. XU, B. PFEIFFER. Chin. Phys. C36 (2012) 1603 (Q-value)

Surrey Univ. / A.L. Nichols

 γ Emission intensities per 100 disintegrations

1 Decay Scheme

Le rubidium 82 se désintègre par capture électronique vers des niveaux excités et le niveau fondamental du krypton 82.

Rb-82 decays by electron capture to excited levels and to the ground state of Kr-82.

2 Nuclear Data

 $\begin{array}{rrrr} T_{1/2}(^{82}{\rm Rb}\) &:& 1,2652 & (45) & \min \\ Q^+(^{82}{\rm Rb}\) &:& 4403 & (3) & {\rm keV} \end{array}$

2.1 Electron Capture Transitions

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	$\lg ft$	P_K	P_L	P_M
$\epsilon_{0,24}$	446,9 (30)	0,00009(2)		7,1	0,8722 (15)	0,1061(12)	0,0192 (4)
$\epsilon_{0,23}$	491,9(30)	0,00010 (2)		7,1			
$\epsilon_{0,22}$	521,9(30)	0,00024 (5)		6,8			
$\epsilon_{0,21}$	567,2(30)	0,00089(5)		6,3			
$\epsilon_{0,20}$	587,9(30)	0,0019 (8)		5,6			
$\epsilon_{0,19}$	661(3)	0,0036~(6)		5,9			
$\epsilon_{0,18}$	686,2 (30)	0,008~(3)		5,8			
$\epsilon_{0,17}$	838,4(30)	0,0034 (31)		6			
$\epsilon_{0,16}$	945,5(30)	0,000111 (23)		7,7			
$\epsilon_{0,15}$	1047,7(30)	$0,00134\ (13)$		6,7			
$\epsilon_{0,14}$	1216,2(30)	$0,0265\ (15)$		5,5	0,8763~(15)	0,1028~(12)	0,0185~(4)
$\epsilon_{0,13}$	1458,9(30)	0,0500 (19)		5,4	$0,8766\ (15)$	0,1025~(12)	0,0185~(4)
$\epsilon_{0,12}$	1747,2(30)	0,0142~(17)		6,1	0,8770(14)	0,1022~(12)	0,0184~(4)
$\epsilon_{0,11}$	1841,3(30)	0,0011~(6)		7,3			
$\epsilon_{0,10}$	1846,7(30)	0,00023~(11)		10			
$\epsilon_{0,9}$	1894(3)	0,0011~(6)		7,4			
$\epsilon_{0,8}$	1923,3 (30)	0,0682~(14)		5,5	0,8771(14)	0,1021 (12)	0,0184~(4)
$\epsilon_{0,7}$	1952,9 (30)	0,0105~(8)		6,3	0,8771(14)	0,1021 (12)	0,0184~(4)
$\epsilon_{0,6}$	2231,3 (30)	0,283~(5)	Allowed	5	0,8773(14)	0,1019(12)	0,0184~(4)
$\epsilon_{0,5}$	2446,2(30)	0,0047~(8)		6,7			
$\epsilon_{0,4}$	2582,4 (30)	0,00003 (3)	Unique 2nd Forbidden	$11,\!5$			
$\epsilon_{0,3}$	2915,4 (30)	0,0096 (9)	Allowed	6,7			

	Energy (keV)	Probability (%)	Nature	\lgft	P_K	P_L	P_M
$ \begin{array}{c} \epsilon_{0,2} \\ \epsilon_{0,1} \\ \epsilon_{0,0} \end{array} $	$2928,1 (30) \\3626,5 (30) \\4403 (3)$	$\begin{array}{c} 0,0284 \ (14) \\ 1,06 \ (2) \\ 3,01 \ (3) \end{array}$	Allowed Allowed Allowed	$6,3 \\ 4,8 \\ 4,6$	$\begin{array}{c} 0,8776 \ (14) \\ 0,8778 \ (14) \\ 0,8779 \ (14) \end{array}$	$\begin{array}{c} 0,1017 \ (12) \\ 0,1016 \ (12) \\ 0,1014 \ (12) \end{array}$	$\begin{array}{c} 0,0183 \ (4) \\ 0,0183 \ (4) \\ 0,0183 \ (4) \end{array}$

2.2 β^+ Transitions

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	\lgft
$\beta_{0.12}^+$	725,2 (30)	0,00284 (34)		6,1
$\beta_{0.11}^{+}$	819,3(30)	0,00033 (19)		7,3
$\beta_{0.10}^{+}$	824,7(30)	0,00007 (4)		10
$\beta^+_{0.9}$	872(3)	0,00041 (25)		7,4
$\beta_{0.8}^+$	901,3(30)	0,0288 (7)		5,5
$\beta_{0,7}^+$	$930,\!9$ (30)	0,0050 (4)		6,3
$\beta_{0,6}^+$	1209,3(30)	0,317~(6)	Allowed	5
$\beta_{0.5}^+$	1424,2(30)	0,00890 (14)		6,7
$\beta_{0.4}^+$	1560,4 (30)	0,00007~(7)	Unique 2nd Forbidden	$11,\!5$
$\beta_{0,3}^+$	1893,4 (30)	0,0444 (41)	Allowed	6,7
$\beta_{0,2}^+$	1906,1 (30)	0,135~(7)	Allowed	6,3
$\beta_{0,1}^+$	2604,5(30)	13,10(19)	Allowed	4,8
$\beta_{0,0}^+$	3381(3)	$81,\!81$ (24)	Allowed	4,6

2.3 Gamma Transitions and Internal Conversion Coefficients

	Energy (keV)	$\stackrel{\mathrm{P}_{\gamma+\mathrm{ce}}}{(\%)}$	Multipolarity	$ \begin{array}{c} \alpha_K \\ (10^{-4}) \end{array} $	$_{(10^{-5})}^{\alpha_L}$	$\begin{pmatrix} \alpha_M \\ (10^{-6}) \end{pmatrix}$	$ \substack{\alpha_T\\(10^{-4})} $
$\gamma_{8,5}({ m Kr})$	522,923 (36)	0,0045 (15)					
$\gamma_{6,2}(\mathrm{Kr})$	696,786 (32)	0,071~(6)					
$\gamma_{2,1}({ m Kr})$	698,372 (14)	0,159(11)					
$\gamma_{3,1}({ m Kr})$	711,10(7)	0,060(4)					
$\gamma_{1,0}({ m Kr})$	776,522 (10)	15,03~(19)	E2	8,19(12)	8,84(13)	14,3(2)	9,23~(13)
$\gamma_{20,13}({ m Kr})$	871(1)	0,0014 (8)					
$\gamma_{7,2}({ m Kr})$	975,20 (9)	0,0084~(11)					
$\gamma_{8,3}({ m Kr})$	992,10 (8)	0,0018 (8)					
$\gamma_{9,3}({ m Kr})$	1021,4(5)	0,0015~(9)					
$\gamma_{4,1}({ m Kr})$	1044,08 (40)	0,0009~(6)					
$\gamma_{10,2}({ m Kr})$	1081,4 (7)	0,00030 (15)					
$\gamma_{11,2}({ m Kr})$	1086, 8(5)	0,0014 (8)					
$\gamma_{13,4}({ m Kr})$	1123,54 (40)	0,0008~(6)					
$\gamma_{12,3}({ m Kr})$	1168,20 (12)	0,0014~(6)					
$\gamma_{5,1}({ m Kr})$	1180,275 (22)	$0,0165\ (15)$					
$\gamma_{12,2}({ m Kr})$	1180,93 (10)	0,0030 (15)					
$\gamma_{6,1}({ m Kr})$	1395,158 (32)	0,529 (8)	$\mathrm{E2}$	2,12(3)	2,24~(4)	$3,\!63\ (5)$	2,90(4)
$\gamma_{2,0}({ m Kr})$	1474,894 (10)	0,0904 (24)	${ m E2}$	1,90(3)	2,00(3)	3,24~(5)	2,89(4)
$\gamma_{17,5}({ m Kr})$	1607,8(3)	0,00225 (30)					
$\gamma_{7,1}(\mathrm{Kr})$	1673,57 (9)	0,0071(5)					
$\gamma_{14,3}({ m Kr})$	1699,20 (9)	0,0015(8)					
$\gamma_{8,1}({ m Kr})$	1703,198 (32)	0,0505(11)					

	$\frac{\rm Energy}{\rm (keV)}$	$\begin{array}{c} \mathrm{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	$\begin{array}{c} \alpha_K \\ (10^{-4}) \end{array}$	$ \substack{\alpha_L \\ (10^{-5})} $	$ \overset{\alpha_M}{(10^{-6})} $	$ \begin{array}{c} \alpha_T \\ (10^{-4}) \end{array} $
$\gamma_{14,2}(\mathrm{Kr})$	1711,93(5)	0,00165(30)					
$\gamma_{19,5}({ m Kr})$	1785, 16(8)	0,0030 (6)					
$\gamma_{12,1}(\mathrm{Kr})$	1879,3(1)	0,0101(6)					
$\gamma_{5,0}({ m Kr})$	1956,797(20)	0,0068(6)					
$\gamma_{13,1}(\mathrm{Kr})$	2167,618 (41)	0,0431(6)					
$\gamma_{18,2}(\mathrm{Kr})$	2241,94(15)	0,0009(8)					
$\gamma_{14,1}(\mathrm{Kr})$	2410,30(5)	0,0233(12)					
$\gamma_{8,0}(\mathrm{Kr})$	2479,72(3)	0,0401(16)					
$\gamma_{15,1}(\mathrm{Kr})$	2578,80 (19)	0,00105(11)					
$\gamma_{12,0}(\mathrm{Kr})$	2655,82 (10)	0,0026 (6)					
$\gamma_{17,1}(\mathrm{Kr})$	2788,08(30)	0,00114(8)					
$\gamma_{18,1}(\mathrm{Kr})$	2940,31 (15)	0,0071 (29)					
$\gamma_{13,0}(\mathrm{Kr})$	2944, 14(4)	0,0075(15)					
$\gamma_{19,1}(\mathrm{Kr})$	2965,44 (8)	0,00060(5)					
$\gamma_{21,1}(\mathrm{Kr})$	3059,3(5)	0,00068(5)					
$\gamma_{22,1}(\mathrm{Kr})$	3104,6(5)	0,00015(5)					
$\gamma_{15,0}(\mathrm{Kr})$	3355, 32(19)	0,000285(30)					
$\gamma_{16,0}(\mathrm{Kr})$	3457,5(7)	0,000111 (23)					
$\gamma_{20,0}(\mathrm{Kr})$	3815,1(10)	0,000451(31)					
$\gamma_{21.0}(\mathrm{Kr})$	3835,8(5)	0,000219(23)					
$\gamma_{22.0}(\mathrm{Kr})$	3881,1(5)	0,000087(21)					
$\gamma_{23,0}(\mathrm{Kr})$	3911,1(10)	0,000105(15)					
$\gamma_{24,0}({ m Kr})$	3956,1(10)	0,000090(15)					
	· · · /						

3 Atomic Data

3.1 Kr

ω_K	:	$0,\!652$	(4)
$\bar{\omega}_L$:	0,0215	(6)
n_{KL}	:	1,149	(4)

3.1.1 X Radiations

		$\frac{\rm Energy}{\rm (keV)}$		Relative probability
X _K				
	$\begin{array}{l} \mathbf{K}\alpha_2\\ \mathbf{K}\alpha_1 \end{array}$	$12,599 \\ 12,65$		$51,\!86\\100$
	$egin{array}{c} \mathrm{K}eta_3\ \mathrm{K}eta_1\ \mathrm{K}eta_5^{\prime\prime} \end{array}$	$14,105 \\ 14,113 \\ 14,238$	}	23,96
	$\begin{array}{c} \mathbf{K}\beta_2\\ \mathbf{K}\beta_4 \end{array}$	14,315 14,328	}	$2,\!42$
$\mathbf{X}_{\mathbf{L}}$				
	$egin{array}{c} { m L}\ell \ { m L}lpha \ { m L}\eta \ { m L}eta \ { m L}\gamma \end{array}$	1,387 1,585 - 1,586 1,439 1,637 - 1,831 1,706 - 1,911		

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K KLL KLX KXY	10,398 - 10,885 12,077 - 12,637 13,741 - 14,298	$100 \\ 34,7 \\ 3,02$
Auger L	1,09 - 1,91	

4 Electron and Positron Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Electrons (per 100 disint.)
\mathbf{e}_{AL}	(Kr)	1,09 - 1,91		4,961~(25)
e _{AK}	(Kr) KLL KLX KXY	10,398 - 10,885 12,077 - 12,637 13,741 - 14,298	<pre>}</pre>	1,394 (20)
$\beta^+_{0,0}$	max: avg:	$\begin{array}{rrr} 3381 & (3) \\ 1535,6 & (15) \end{array}$	}	81,81 (24)
$\beta^+_{0,1}$	max: avg:	$\begin{array}{ccc} 2604,5 & (30) \\ 1168,5 & (15) \end{array}$	}	13,10(19)
$\beta^+_{0,2}$	max: avg:	$\begin{array}{rrr} 1906,1 & (30) \\ 844,1 & (14) \end{array}$	}	$0,\!135~(7)$
$\beta^+_{0,3}$	max: avg:	$\begin{array}{rrr} 1893,4 & (30) \\ 838,3 & (14) \end{array}$	}	0,0444 (41)
$\beta^+_{0,4}$	max: avg:	$\begin{array}{rrr} 1560,4 & (30) \\ 735,6 & (15) \end{array}$	}	0,00007 (7)
$\beta^+_{0,5}$	max: avg:	$\begin{array}{ccc} 1424,2 & (30) \\ 624,8 & (14) \end{array}$	}	0,00890 (14)
$\beta^+_{0,6}$	max: avg:	$\begin{array}{ccc} 1209,3 & (30) \\ 528,6 & (14) \end{array}$	}	0,317~(6)
$\beta^+_{0,7}$	max: avg:	$\begin{array}{ccc} 930,9 & (30) \\ 405,7 & (14) \end{array}$	}	0,0050 (4)
$\beta^+_{0,8}$	max: avg:	901,3 (30) 392,7 (14)	}	0,0288 (7)
$\beta^+_{0,9}$	max: avg:	$\begin{array}{ccc} 872 & (3) \\ 380,0 & (14) \end{array}$	}	0,00041 (25)
$\beta^+_{0,10}$	max: avg:	$\begin{array}{ccc} 824,7 & (30) \\ 359,4 & (14) \end{array}$	}	0,00007 (4)
$\beta^+_{0,11}$	max: avg:	$\begin{array}{ccc} 819,3 & (30) \\ 357,0 & (14) \end{array}$	}	0,00033 (19)

 $\rm CEA/LNE-LNHB$ / M.M. Bé

		$\frac{\rm Energy}{\rm (keV)}$		Electrons (per 100 disint.)
$\beta_{0,12}^{+}$	max: avg:	$\begin{array}{ccc} 725,2 & (30) \\ 316,2 & (13) \end{array}$	}	0,00284 (34)

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Photons (per 100 disint.)		
$\begin{array}{c} \mathrm{XL} \\ \mathrm{XK}\alpha_2 \\ \mathrm{XK}\alpha_1 \end{array}$	(Kr) (Kr) (Kr)	1,387 - 1,911 12,599 12,65		0,1066 (18) 0,760 (9) 1,466 (16)	}	Kα
$egin{array}{c} { m XK}eta_3\ { m XK}eta_1\ { m XK}eta_5^{\prime\prime} \end{array}$	(Kr) (Kr) (Kr)	$14,105 \\ 14,113 \\ 14,238$	<pre>}</pre>	0,351 (5)		$\mathrm{K}'eta_1$
$\begin{array}{l} {\rm XK}\beta_2 \\ {\rm XK}\beta_4 \end{array}$	(Kr) (Kr)	14,315 14,328	}	0,0354 (12)		$K' \beta_2$

5.2 Gamma Emissions

	Energy	Photons
	(keV)	(per 100 disint.)
γ^{\pm}	511	190,9~(6)
$\gamma_{8,5}(\mathrm{Kr})$	522,8(5)	0,0045 (15)
$\gamma_{6,2}(\mathrm{Kr})$	696, 86 (15)	0,071~(6)
$\gamma_{2,1}(\mathrm{Kr})$	$698,\!37$ (5)	$0,\!159\ (11)$
$\gamma_{3,1}(\mathrm{Kr})$	711,2(1)	0,060~(4)
$\gamma_{1,0}(\mathrm{Kr})$	776,52(1)	15,02 (19)
$\gamma_{20,13}({ m Kr})$	869,3~(4)	0,0014 (8)
$\gamma_{7,2}(\mathrm{Kr})$	975,2~(1)	0,0084~(11)
$\gamma_{8,3}({ m Kr})$	992,2~(1)	0,0018 (8)
$\gamma_{9,3}({ m Kr})$	1021,4(5)	0,0015~(9)
$\gamma_{4,1}(\mathrm{Kr})$	1044,1 (5)	0,0009~(6)
$\gamma_{10,2}(\mathrm{Kr})$	1081,4 (7)	0,00030 (15)
$\gamma_{11,2}(Kr)$	1086, 8 (5)	0,0014 (8)
$\gamma_{13,4}({ m Kr})$	$1123,6\ (7)$	0,0008~(6)
$\gamma_{12,3}({ m Kr})$	1168,2~(2)	0,0014~(6)
$\gamma_{5,1}(\mathrm{Kr})$	1180,27(2)	$0,0165\ (15)$
$\gamma_{12,2}(\mathrm{Kr})$	1181,3	0,0030 (15)
$\gamma_{6,1}(\mathrm{Kr})$	$1395,\!14\ (3)$	0,529~(8)
$\gamma_{2,0}({ m Kr})$	1474,88(1)	0,0904~(24)

	Energy	Photons		
	(keV)	(per 100 disint.)		
$\gamma_{17,5}({ m Kr})$	1607,7(3)	0,00225 (30)		
$\gamma_{7,1}(\mathrm{Kr})$	$1673,\!55\ (9)$	0,0071 (5)		
$\gamma_{14,3}({ m Kr})$	1698,7(3)	0,0015~(8)		
$\gamma_{8,1}({ m Kr})$	1703, 19 (4)	0,0505~(11)		
$\gamma_{14,2}({ m Kr})$	1711,9 (4)	$0,00165\ (30)$		
$\gamma_{19,5}({ m Kr})$	1785, 13(7)	0,0030~(6)		
$\gamma_{12,1}(\mathrm{Kr})$	$1879, 18 \ (15)$	0,0101~(6)		
$\gamma_{5,0}(\mathrm{Kr})$	1956,75 (4)	0,0068~(6)		
$\gamma_{13,1}(\mathrm{Kr})$	2167, 59 (4)	0,0431~(6)		
$\gamma_{18,2}({ m Kr})$	2241,98(17)	0,0009 (8)		
$\gamma_{14,1}(\mathrm{Kr})$	2410,26 (5)	0,0233~(12)		
$\gamma_{8,0}({ m Kr})$	$2479,\!65$ (4)	$0,0401 \ (16)$		
$\gamma_{15,1}({ m Kr})$	2578,7(2)	$0,00105\ (11)$		
$\gamma_{12,0}(\mathrm{Kr})$	2655,85 (15)	0,0026~(6)		
$\gamma_{17,1}(\mathrm{Kr})$	2788,4(5)	0,00114 (8)		
$\gamma_{18,1}({ m Kr})$	2940,0 (3)	0,0071 (29)		
$\gamma_{13,0}({ m Kr})$	2944,0 (2)	$0,0075\ (15)$		
$\gamma_{19,1}({ m Kr})$	2966, 3 (7)	0,00060 (5)		
$\gamma_{21,1}(\mathrm{Kr})$	3059,2~(5)	0,00068~(5)		
$\gamma_{22,1}(\mathrm{Kr})$	3104,5(5)	0,00015 (5)		
$\gamma_{15,0}({ m Kr})$	$3355,\!6\ (5)$	0,000285 (30)		
$\gamma_{16,0}(\mathrm{Kr})$	3457,4(7)	0,000111 (23)		
$\gamma_{20,0}(\mathrm{Kr})$	3815(1)	0,000451 (31)		
$\gamma_{21,0}(\mathrm{Kr})$	3836(1)	0,000219 (23)		
$\gamma_{22,0}({ m Kr})$	3881(1)	0,000087~(21)		
$\gamma_{23,0}({ m Kr})$	3911(1)	$0,000105\ (15)$		
$\gamma_{24,0}({ m Kr})$	3956~(1)	0,000090 (15)		

6 Main Production Modes

 $\begin{cases} Rb - nat(p,xn)Sr - 82 \\ Possible impurities: Sr - 85 \end{cases}$

 $\left\{ \begin{array}{l} Rb-85(p,\!4n)Sr-82\\ Possible \ impurities: \ Sr-85 \end{array} \right.$

Sr - 82(E.C.)Rb - 82

7 References

- L.M.LITZ, S.A.RING, W.R.BALKWELL. Phys. Rev. 92 (1953) 288 (Half-life)
- P.Kruger, N.Sugarman. Phys. Rev. 90 (1953) 158 (Half-life)
- M.SAKAI, H.IKEGAMI, T.YAMAZAKI. J. Phys. Soc. Japan 17 (1962) 1087 (Gamma-ray emission intensities)
- J.VRZAL, B.S.DZHELEPOV, A.G.DMITRIEV, N.N.ZHUKOVSKII, J.LIPTAK, L.N.MOSKVIN, J.URBANETS, L.G.TSARITSYNA. Bull. Acad. Sci. USSR, Phys. Ser. 31 (1968) 1701 (Gamma-ray emission intensities)
- S.RAMAN, J.J.PINAJIAN. Nucl. Phys. A125 (1969) 129

(Gamma-ray emission intensities)

- G.GRAEFFE, S.VAISALA, J.HEINONEN. Nucl. Phys. A140 (1970) 161 (Gamma-ray emission intensities)
- A.Z.HRYNKIEWICZ, J.STYCZEN, W.WALUS, R.BRODA. Acta Phys. Polonica A38 (1970) 501 (Gamma-ray emission intensities)
- P.M.GRANT, B.R.ERDAL, R.E.WHIPPLE, R.J.DANIELS, H.A.O'BRIEN JR. Phys. Rev. C18 (1978) 2799 (Half-life)
- R.A.MEYER, J.F.WILD, K.ESKOLA, M.E.LEINO, S.VAISALA, K.FORSSTEN, U.KAUP, A.GELBERG. Phys. Rev. C27 (1983) 2217
 (Gamma-ray emission intensities)
- A.ZEMEL, T.HAGEMAN, J.J.HAMILL, J.VAN KLINKEN. Phys. Rev. C31 (1985) 1483 (Gamma transitions)
- S.M.JUDGE, M.J.WOODS, S.L.WATERS, K.R.BUTLER. Appl. Radiat. Isotopes 38 (1987) 185 (Gamma-ray emission intensities)
- M.J.WOODS, S.M.JUDGE, S.E.M.LUCAS. Appl. Radiat. Isotopes 38 (1987) 191 (Gamma-ray emission intensities)
- D.D.HOPPES, B.M.COURSEY, F.J.SCHIMA, D.YANG. Appl. Radiat. Isotopes 38 (1987) 195 (Half-life)
- E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic Data)
- E.SCHÖNFELD. Appl. Radiat. Isotopes 49 (1998) 1353 (Atomic Data)
- E.SCHÖNFELD, H.JANSSEN. Appl. Radiat. Isotopes 52 (2000) 595 (Atomic Data)
- I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN. At. Data. Nucl. Data Tables 81 (2002) 1
 - (Theoretical ICC)
- T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)
- C.J.GROSS, K.P.RYKACZEWSKI, D.W.STRACENER, M.WOLINSKA-CICHOCKA, R.L.VARNER, D.MILLER, C.U.JOST, M.KARNY, A.KORGUL, S.LIU, M.MADURGA. Phys. Rev. C85 (2012) 024319 (Gamma-ray emission intensities)
- M.WANG, G.AUDI, A.H.WAPSTRA, F.G.KONDEV, M.MACCORMICK, X.XU, B.PFEIFFER. Chin. Phys. C36 (2012) 1603

 (\mathbf{Q})

1 Decay Scheme

Sr-82 decays by electron capture to the ground state of Rb-82 ($T_{1/2} = 1,2652$ (45) min). There is no decay to the excited level of Rb-82m ($T_{1/2} = 6,47$ h).

Le strontium 82 se désintègre par capture électronique vers le niveau fondamental du rubidium 82 $(T_{1/2}=1,2652 \ (45) \ min)$, le niveau excité de période 6,47 h n'est pas atteint.

2 Nuclear Data

 $\begin{array}{rcl} T_{1/2}(^{82}{\rm Sr}) & : & 25{,}347 & (17) & {\rm d} \\ T_{1/2}(^{82}{\rm Rb}) & : & 1{,}2652 & (45) & \min \\ Q^+(^{82}{\rm Sr}) & : & 178 & (7) & {\rm keV} \end{array}$

2.1 Electron Capture Transitions

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	\lgft	P_K	P_L	P_M
$\epsilon_{0,0}$	178 (7)	100	Allowed	4,7	0,859~(2)	0,116 (2)	0,022~(1)

3 Atomic Data

3.1 Rb

ω_K	:	$0,\!674$	(4)
$\bar{\omega}_L$:	0,0237	(6)
n_{KL}	:	$1,\!125$	(4)

3.1.1 X Radiations

		Energy (keV)		Relative probability
X _K				
	$K\alpha_2$	$13,\!3359$		$51,\!95$
	$K\alpha_1$	13,3955		100
	$K\beta_3$	14,9519)	
	$K\beta_1$	14,9614	Ş	$24,\!34$
	$\mathrm{K}\beta_5''$	$15,\!085$	J	
	${\rm K}\beta_2$	$15,\!1856$	٦	າຈາ
	$\mathrm{K}\beta_4$	$15,\!205$	Ĵ	2,82
X_{L}				
	$\mathrm{L}\ell$	1,484		
	$L\alpha$	1,693 - 1,695		
	$L\eta$	$1,\!543$		
	$\mathrm{L}eta$	1,752 - 1,954		
	$ m L\gamma$	1,831 - 2,051		

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K KLL KLX KXX	10,987 - 11,503 12,782 - 13,381 14,556 - 15,172	$100 \\ 35,8 \\ 3.2$
Auger L	1,16 - 2,05	5,2

4 Electron Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Electrons (per 100 disint.)
e_{AL}	(Rb)	1,16 - 2,05		105,7(5)
e_{AK}	(Rb) KLL KLX KXY	10,987 - 11,503 12,782 - 13,381 14,556 - 15,172	<pre>}</pre>	28,0 (4)

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)		
$\begin{array}{c} {\rm XL} \\ {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Rb) (Rb) (Rb)	1,484 - 2,051 13,3359 13,3955	$\begin{array}{c} 2,52 \ (5) \\ 16,79 \ (14) \\ 32,32 \ (22) \end{array}$	}	$K\alpha$
$egin{array}{c} { m XK}eta_3\ { m XK}eta_1\ { m XK}eta_5^{\prime\prime} \end{array}$	(Rb) (Rb) (Rb)	$\begin{array}{c} 14,9519 \\ 14,9614 \\ 15,085 \end{array}$	7,87 (9)		$\mathrm{K}'eta_1$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4 \end{array}$	(Rb) (Rb)	$15,\!1856$ $15,\!205$	$\Big\}$ 0,91 (4)		$\mathbf{K}'eta_2$

6 Main Production Modes

Rb - nat(p,xn)Sr - 82Possible impurities: Sr - 85

 $\begin{cases} Rb - 85(p,4n)Sr - 82\\ Possible impurities: Sr - 85 \end{cases}$

7 References

- L.M.Litz, S.A.Ring, W.R.Balkwell. Phys. Rev. 92 (1953) 288 (Half-life)
- P.KRUGER, N.SUGARMAN. Phys. Rev. 90 (1953) 158 (Half-life)
- V.SANGIUST. Nuovo Cim. 9 (1958) 446 (Half-life)
- P.M.GRANT, B.R.ERDAL, R.E.WHIPPLE, R.J.DANIELS, H.A.O'BRIEN JR. Phys. Rev. C18 (1978) 2799 (Half-life)
- S.M.JUDGE, A.M.PRIVITERA, M.J.WOODS. Appl. Radiat. Isotopes 38 (1987) 193 (Half-life)
- D.D.HOPPES, B.M.COURSEY, F.J.SCHIMA, D.YANG. Appl. Radiat. Isotopes 38 (1987) 195 (Half-life)
- E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic Data)
- E.SCHÖNFELD. Appl. Radiat. Isotopes 49 (1998) 1353 (Atomic Data)
- E.SCHÖNFELD, H.JANSSEN. Appl. Radiat. Isotopes 52 (2000) 595 (Atomic Data)
- L.PIBIDA, R.FITZGERALD, M.UNTERWEGER, M.M.HAMMOND, D.GOLAS. Appl. Radiat. Isotopes 67 (2009) 636 (Half-life)
- M.WANG, G.AUDI, A.H.WAPSTRA, F.G.KONDEV, M.MACCORMICK, X.XU, B.PFEIFFER. Chin. Phys. C36 (2012) 1603
 - (\mathbf{Q})

1 Decay Scheme

L'yttrium 88 se désintègre par capture électronique et émission bêta plus vers les niveaux excités du strontium 88. Aucune transition (EC/β^+) vers le niveau fondamental du strontium 88 n'a été mise en évidence.

Y-88 decays by electron capture and β^+ emission to excited levels of Sr-88. No (EC/β^+) transition to the ground state of Sr-88 was found.

2 Nuclear Data

$T_{1/2}(^{88}\mathrm{Y})$:	$106,\!63$	(5)	d
$Q^{+}(^{88}Y)$:	$3622,\!6$	(15)	keV

2.1 Electron Capture Transitions

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	\lgft	P_K	P_L	P_M
$\epsilon_{0,4}$	37,8(15)	0,048 (18)	Allowed	7	0,721(12)	0,225(10)	0,0542 (25)
$\epsilon_{0,3}$	404,1 (15)	0,023 (4)	Unique 1st Forbidden	9,5	0,8521 (2)	0,1209(1)	0,02701 (3)
$\epsilon_{0,2}$	888,5(15)	94,3(3)	Allowed	6,9	0,8726 (15)	0,1046(14)	0,0229 (6)
$\epsilon_{0,1}$	$1786,5\ (15)$	5,7~(3)	Unique 1st Forbidden	$_{9,8}$	0,8393 (3)	0,100085 (4)	0,02206 (8)

2.2 β^+ Transitions

	Energy (keV)	Probability (%)	Nature	$\lg ft$
$\beta_{0,1}^+$	764,5(15)	0,21~(1)	Unique 1st Forbidden	9,8

2.3 Gamma Transitions and Internal Conversion Coefficients

	Energy (keV)	$\stackrel{\mathrm{P}_{\gamma+\mathrm{ce}}}{(\%)}$	Multipolarity	$_{(10^{-3})}^{\alpha_K}$	$_{(10^{-4})}^{\alpha_L}$	$\stackrel{\alpha_M}{(10^{-5})}$	$\stackrel{\alpha_N}{(10^{-6})}$	$ \substack{\alpha_T \\ (10^{-3})} $	$_{(10^{-4})}^{\alpha_{\pi}}$
$\begin{array}{c} \gamma_{3,2}({\rm Sr}) \\ \gamma_{4,2}({\rm Sr}) \\ \gamma_{2,1}({\rm Sr}) \\ \gamma_{3,1}({\rm Sr}) \\ \gamma_{1,0}({\rm Sr}) \\ \gamma_{2,0}({\rm Sr}) \\ \gamma_{3,0}({\rm Sr}) \end{array}$	$\begin{array}{c} 484,352 \ (23) \\ 850,647 \ (21) \\ 898,047 \ (11) \\ 1382,399 \ (23) \\ 1836,090 \ (8) \\ 2734,137 \ (8) \\ 3218,489 \ (22) \end{array}$	$\begin{array}{c} 0,0009 \ (9) \\ 0,048 \ (18) \\ 93,7 \ (3) \\ 0,016 \ (3) \\ 99,385 \ (25) \\ 0,608 \ (25) \\ 0,0071 \ (20) \end{array}$		$\begin{array}{c} 1,079 \ (16) \\ 0,754 \ (11) \\ 0,273 \ (4) \\ 0,255 \ (4) \\ 0,1449 \ (21) \\ 0,1098 \ (16) \\ 0,0545 \ (8) \end{array}$	$\begin{array}{c} 1,165 \ (17) \\ 0,828 \ (12) \\ 0,292 \ (4) \\ 0,273 \ (4) \\ 0,1550 \ (22) \\ 0,1176 \ (17) \\ 0,0577 \ (8) \end{array}$	$\begin{array}{c} 1,95 \ (3) \\ 1,39 \ (2) \\ 0,489 \ (7) \\ 0,458 \ (7) \\ 0,260 \ (4) \\ 0,197 \ (3) \\ 0,0967 \ (14) \end{array}$	$\begin{array}{c} 2,45 \ (4) \\ 1,739 \ (25) \\ 0,614 \ (9) \\ 0,577 \ (8) \\ 0,327 \ (5) \\ 0,248 \ (4) \\ 0,1219 \ (17) \end{array}$	$\begin{array}{c} 1,217\ (17)\\ 0,853\ (12)\\ 0,307\ (5)\\ 0,288\ (4)\\ 0,163\ (2)\\ 0,124\ (2)\\ 0,0613\ (8) \end{array}$	0,378 (6) 2,30 (4) 4,40 (7) 8,69 (13)

3 Atomic Data

3.1 Sr

ω_K	:	$0,\!696$	(4)
$\bar{\omega}_L$:	0,0262	(7)
n_{KL}	:	1,102	(4)

3.1.1 X Radiations

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$		Relative probability
X _K				
	$K\alpha_2$	14,098		$52,\!05$
	$K\alpha_1$	$14,\!1652$		100
	$K\beta_3$	15,8252)	
	$K\beta_1$	$15,\!8359$	Ş	$24,\!69131$
	$\mathrm{K}\beta_5''$	$15,\!969$	J	
	$\mathrm{K}\beta_2$	$16,\!0847$	٦	2 200.27
	$K\beta_4$	$16,\!104$	Ĵ	3,20987
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	$1,\!5833$		
	$L\alpha$	1,8054 - 1,8071		
	$L\eta$	$1,\!6501$		
	$L\beta$	1,8722 - 1,9466		
	$L\gamma$	1,9707 - 2,1971		

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K KLL KLX KXY	11,587 - 12,134 13,498 - 14,145 15,390 - 16,065	$100 \\ 36,7 \\ 3,37$
Auger L	1,2246 - 2,1944	

4 Electron Emissions

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$		Electrons (per 100 disint.)
e_{AL}	(Sr)	1,2246 - 2,1944		103,8(5)
e_{AK}	(Sr) KLL KLX KXY	11,587 - 12,134 13,498 - 14,145 15,390 - 16,065	<pre>}</pre>	26,5(4)
$ec_{1,0}^{\pm}$ $ec_{2,1}$ T $ec_{2,0}^{\pm}$ $ec_{1,0}$ T	(Sr) (Sr) (Sr) (Sr)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$\begin{array}{c} 0,02285 \ (40) \\ 0,02877 \ (48) \\ 0,000268 \ (12) \\ 0,0162 \ (2) \end{array}$
$\beta^+_{0,1}$	max: avg:	$\begin{array}{rrr} 764,5 & (15) \\ 359,5 & (7) \end{array}$	}	0,21~(1)

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Photons (per 100 disint.)		
XL	(Sr)	1,5833 - 2,1971		2,76(5)		
$\begin{array}{l} \mathrm{XK}\alpha_2\\ \mathrm{XK}\alpha_1 \end{array}$	(Sr) (Sr)	$14,098 \\ 14,1652$		$\begin{array}{c} 17,55 \ (16) \\ 33,71 \ (26) \end{array}$	}	$K\alpha$
$egin{array}{c} { m XK}eta_3\ { m XK}eta_1\ { m XK}eta_5^{\prime\prime} \end{array}$	(Sr) (Sr) (Sr)	$\begin{array}{c} 15,8252 \\ 15,8359 \\ 15,969 \end{array}$	<pre>}</pre>	8,32 (10)		$\mathrm{K}'eta_1$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \end{array}$	(Sr) (Sr)	16,0847 16,104	}	1,08 (4)		$K' \beta_2$

5.2 Gamma Emissions

	Energy (keV)	Photons (per 100 disint.)
$\begin{array}{c} \gamma_{3,2}({\rm Sr}) \\ \gamma^{\pm} \\ \gamma_{4,2}({\rm Sr}) \\ \gamma_{2,1}({\rm Sr}) \\ \gamma_{3,1}({\rm Sr}) \\ \gamma_{1,0}({\rm Sr}) \\ \gamma_{2,0}({\rm Sr}) \\ \gamma_{3,0}({\rm Sr}) \end{array}$	$\begin{array}{r} 484,352\ (23)\\511\\850,643\ (21)\\898,042\ (11)\\1382,387\ (23)\\1836,070\ (8)\\2734,092\ (8)\\3218,426\ (22)\end{array}$	$\begin{array}{c} 0,0009 \ (9) \\ 0,46 \ (3) \\ 0,048 \ (18) \\ 93,7 \ (3) \\ 0,016 \ (3) \\ 99,346 \ (25) \\ 0,608 \ (25) \\ 0,0071 \ (20) \end{array}$

6 Main Production Modes

 $\begin{cases} Sr - 88(p,n)Y - 88 \\ Possible impurities: Y - 84, Y - 85, Y - 86, Y - 87, Rb - 83, Rb - 84, Rb - 86 \\ Sr - 88(d,2n)Y - 88 \\ Possible impurities: Y - 84, Y - 87, Sr - 89 \end{cases}$

7 References

- L.A.DUBRIDGE, J.MARSHALL. Phys. Rev. 58 (1940) 7 (Half-life)
- W.C.PEACOCK, J.W.JONES. Report AECD, 1812 (1948) (Half-life, Beta plus emission probabilities)
- F.R.METZGER, H.C.AMACHER. Phys. Rev. 88 (1952) 147 (ICC)
- M.K.RAMASWAMY, P.S.JASTRAM. Nucl. Phys. 19 (1960) 243 (Half-life)
- R.W.PEELLE. report ORNL 3016 (1960) 110 (Gamma-ray emission probabilities)
- E. I.WYATT, S.A.REYNOLDS, T.H.HANDLEY, W.S.LYON, H.A.PARKER. Nucl. Sci. Eng. 11 (1961) 74 (Half-life)
- S.SHASTRY, R.BHATTACHARYYA. Nucl. Phys. 55 (1964) 397 (Gamma-ray emission probabilities)
- S.C.ANSPACH, L.M.CAVALLO, S.B.GARFINKEL, J.M.R.HUTCHINSON, C.N.SMITH. report NP-15663 (1965) (Half-life)
- J.H.HAMILTON, S.R.AMTEY, B.VAN NOOIJEN, A.V.RAMAYYA, J.J.PINAJIAN. Phys. Lett. 19 (1966) 682 (ICC)
- M.SAKAI, T.YAMAZAKI, J.M.HOLLANDER. Nucl. Phys. 84 (1966) 302 (Elec. Capt. Probabilities, Gamma-ray emission probabilities)
- H.H.GROTHEER, J.W.HAMMER, K.W.HOFFMANN. Z. Physik 225 (1969) 293 (Beta plus emission probabilities)
- N.B.GOVE, M.J.MARTIN. Nuclear Data Tables 10 (1971) 205 (Pec/Pb+ ratio)
- L.J.JARDINE. Nucl. Instrum. Methods 96 (1971) 259 (Gamma-ray emission probabilities)
- C.J.ALLAN. Nucl. Instrum. Methods 91 (1971) 117 (Internal-pair formation coefficient)
- U.SCHÖTZIG, K.DEBERTIN, H.M.WEISS. PTB Mitt. 83 (1973) 307 (Gamma-ray emission probabilities)

- A.V.BARKOW, W.M.WINOGRADOW, A.W.SOLOTAWIN, W.M.MAKAROW, T.M.USYPKO. Programm and abstracts of 24. Conference on nuclear spectroscopy and nuclear structure, Kharkov, 29 Jan. -1 Febr.1974, AN SSSR, Moscow (1974) 58
- (Beta plus emission probabilities, Internal-pair formation coefficient)
- R.L.HEATH. Gamma-ray Spectrum Catalogue. USAEL, Rep. ANCR 1000-2 (1974) (Gamma ray energies, Gamma-ray emission probabilities)
- G.Ardisson, S.Laribi, C.Marsol. Nucl. Phys. A223 (1974) 616
- (Gamma-ray emission probabilities)
- F.LAGOUTINE, J.LEGRAND, C.BAC. Int. J. Appl. Radiat. Isotop. 26 (1975) 131 (Half-life)
- M.Bormann, H.-K.Feddersen, H.-H.Hölscher, W.Scobel, H.Wagner. Z. Physik A277 (1976) 203 (Half-life)
- A.A.KONSTANTINOV, T.E.SAZONOWA, S.W.SEPMAN. Conference: 27. Annual conference on nuclear spectroscopy and nuclear structure, Tashkent, USSR, 22-25 Mar (1977) (Half-life)
- N.M.ANTONEVA, V.M.VINOGRADOV, E.P.GRIGOREV, P.P.DMITRIEV, A.V.ZOLOTAVIN, G.S.KATYKHIN, N.KRASNOV, V.N.MAKAROV. Bull. Ac. Sci.USSR, Phys. Ser. 43 (1979) 155
- (Beta plus emission probabilities, Internal-pair formation coefficient, Gamma-ray emission probabilities)
- H.HOUTERMANS, O.MILOSEVIC, F.REICHEL. Int. J. Appl. Radiat. Isotop. 31 (1980) 153 (Half-life)
- Y.YOSHIZAWA, Y.IWATA, T.KAKU, T.KATOH, J.RUAN, T.KOJIMA, Y.KAWADA. Nucl. Instrum. Methods 174 (1980) 109
- (Gamma-ray emission probabilities)
- D.D.HOPPES, J.M.R.HUTCHINSON, F.J.SCHIMA, M.P.UNTERWEGER. NBS-SP 626 (1982) 85 (Half-life, Gamma-ray emission probabilities)
- K.DEBERTIN, U.SCHÖTZIG, K.F.WALZ. NBS-SP 626 (1982) 101 (Half-life, Gamma-ray emission probabilities)
- K.F.WALZ, K.DEBERTI, H.SCHRADER. Int. J. Appl. Radiat. Isotop. 34 (1983) 1191 (Half-life)
- H.-W.MULLER. Nucl. Data Sheets 54 (1988) 1
- (Gamma-ray multipolarities and mixing ratios) - U.SCHÖTZIG. Nucl. Instrum. Methods A286 (1990) 523
- (Gamma-ray emission probabilities)
- M.P.UNTERWEGER, D.D.HOPPES, F.J.SCHIMA. Nucl. Instrum. Methods Phys. Res. A312 (1992) 349 (Half-life)
- A.A.KONSTANTINOV, T.E.SAZONOVA, S.V.SEPMAN, A.V.ZANEVSKY, N.I.KARMALITSYN. Nucl. Instrum. Methods Phys. Res. A339 (1994) 200
- (K X-ray emission probabilities)
- R.H.MARTIN, K.I.W.BURNS, J.G.V.TAYLOR. Nucl. Instrum. Methods A390 (1997) 267 (Half-life)
- E.SCHÖNFELD, H.JANSSEN. Appl. Rad. Isotopes 52 (2000) 595 (X-ray and Auger electron emission probabilities)
- I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN. At. Data Nucl. Data Tables 81 (2002) 1
 - (Theoretical ICC)
- M.P.UNTERWEGER. Appl. Rad. Isotopes 56 (2002) 125 (Half-life)
- M.-M.Bé, V.CHISTÉ, C.DULIEU, E.BROWNE, V.CHECHEV, N.KUZMENKO, R.HELMER, A.NICHOLS, E.SCHÖNFELD AND R.DERSCH. Table of Radionuclides (Vol. 1 A =1 to 150). Bureau International des Poids et Mesures (2004) 153
 - (Y-88 decay data evaluation)
- M.-N.Amiot, J.Bouchard, M.-M.Bé, J.-B.Adamo. Appl. Rad. Isotopes 62 (2005) 11 (Half-life)
- T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202
- (BrIcc computer program)
 M.WANG, G.AUDI, A.H.WAPSTRA, F.G.KONDEV, M.MACCORMICK, X.XU, B.PFEIFFER. Chin. Phys. C36 (2012) 1603
 - (\mathbf{Q})
- R.FITZGERALD. J. Res. Natl. Inst. Stand. Technol. 117 (2012) 80 (Half-life)

- E.A.MCCUTCHAN, A.A.SONZOGNI. Nucl. Data Sheets 115 (2014) 135 (Decay Scheme, Sr-88 adopted levels and gammas)
- M.P.UNTERWEGER, R.FITZGERALD. Appl. Rad. Isotopes (2014) (Half-life)

1 Decay Scheme

Zr-89 (half-life of 78.42 h) undergoes 100% EC/positron decay (Q_{EC} of 2832.8(28) keV) to various nuclear levels, including the metastable and ground states of Y-89.

Le zirconium 89 se désintègre par capture électronique et/ou transitions bêta plus vers plusieurs niveaux de l'yttrium 89, y compris le niveau isomérique et le niveau fondamental.

2 Nuclear Data

$T_{1/2}(^{89}\text{Zr})$:	$78,\!42$	(13)	h
$T_{1/2}^{(89\mathrm{mY})}$:	$15,\!84$	(18)	\mathbf{S}
$Q^{+}(^{89}\text{Zr})$:	$2832,\!8$	(28)	keV

2.1 Electron Capture Transitions

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	\lgft	P_K	P_L	P_M
$\epsilon_{0,5} \\ \epsilon_{0,4} \\ \epsilon_{0,3} \\ \epsilon_{0,2} \\ \epsilon_{0,1}$	$\begin{array}{c} 211 \ (3) \\ 266 \ (3) \\ 303 \ (3) \\ 1088 \ (3) \\ 1924 \ (3) \end{array}$	$\begin{array}{c} 0,745 \ (10) \\ 0,106 \ (5) \\ 0,074 \ (5) \\ 0,123 \ (4) \\ 76,2 \ (3) \end{array}$	allowed allowed allowed unique 1st forbidden allowed	6,18 7,25 7,52 9,09 6,152	$\begin{array}{c} 0,8575 \ (17) \\ 0,8615 \ (16) \\ 0,8632 \ (16) \\ 0,8677 \ (15) \\ 0,8731 \ (15) \end{array}$	$\begin{array}{c} 0,1165 \ (13) \\ 0,1134 \ (13) \\ 0,1120 \ (13) \\ 0,1082 \ (12) \\ 0,1041 \ (12) \end{array}$	$\begin{array}{c} 0,0223 \ (5) \\ 0,0216 \ (5) \\ 0,0213 \ (4) \\ 0,0208 \ (4) \\ 0,0196 \ (4) \end{array}$

2.2 β^+ Transitions

	Energy (keV)	Probability (%)	Nature	$\lg ft$
$\beta_{0,1}^+$	902(3)	22,8 (3)	allowed	6,152

	Energy (keV)	$\begin{array}{c} \mathrm{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	$\binom{\alpha_K}{(10^{-3})}$	$ \begin{array}{c} \alpha_L \\ (10^{-4}) \end{array} $	$lpha_M$ (10^{-4})	$ \overset{\alpha_T}{(10^{-3})} $	$ \overset{\alpha_{\pi}}{(10^{-4})} $
	908,97 (3) 1620,83 (20) 1657,58 (15) 1713,1 (3)	$\begin{array}{c} 99,873 \ (23) \\ 0,074 \ (5) \\ 0,106 \ (5) \\ 0,745 \ (10) \end{array}$	M4 M1+E2 M1+E2 M1+E2	7,43 (11)	9,06 (13)	1,561 (22)	8,51 (12)	
$\gamma_{2,0}(\mathrm{Y})$	1744,74 (18)	0,1231 (40)	E2	0,1722 (25)	0,186~(3)	0,0317~(5)	0,382~(6)	1,88(3)

2.3 Gamma Transitions and Internal Conversion Coefficients

3 Atomic Data

3.1 Y

ω_K	:	0,716	(4)
$\bar{\omega}_L$:	0,0289	(7)
n_{KL}	:	1,081	(4)

3.1.1 X Radiations

		$\frac{\rm Energy}{\rm (keV)}$		Relative probability
X _K				
	$K\alpha_2$	14,8829		52,1
	$K\alpha_1$	14,9585		100
	$K\beta_3$	16,7259)	
	$K\beta_1$	16,7381	Ş	25.1
	$\mathrm{K}\beta_5^{''}$	16,88	J	,
	$K\beta_2$	17,0156	ſ	3 /8
	$K\beta_4$	17,0362	ſ	5,40
\mathbf{X}_{L}				
	$\mathrm{L}\ell$	$1,\!686$		
	$L\alpha$	1,92 - 1,923		
	$\mathrm{L}\eta$	1,762		
	$L\beta$	1,996 - 2,078		
	$L\gamma$	2,153 - 2,347		
	Energy (keV)	Relative probability		
------------------------------	---	-------------------------		
Auger K KLL KLX KXY	12,205 - 12,784 14,238 - 14,956 16,251 - 17,034	$100 \\ 37,6 \\ 3,53$		
Auger L	1,27 - 1,89	579		

4 Electron and Positron Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Electrons (per 100 disint.)
e_{AL}	(\mathbf{Y})	1,27 - 1,89		79,5~(7)
e _{AK}	(Y) KLL KLX KXY	12,205 - 12,784 14,238 - 14,956 16,251 - 17,034	}	19,4 (3)
$ec_{1,0} T ec_{1,0} K ec_{1,0} L ec_{1,0} M+$	(Y) (Y) (Y) (Y)	891,93 - 908,97 891,93 (3) 906,60 - 906,89 908,58 - 908,97		$egin{array}{c} 0,84\ (3)\ 0,73\ (3)\ 0,089\ (3)\ 0,017\ (1) \end{array}$
$\beta^+_{0,1}$	max: avg:	902 (3) 395,7 (14)	}	$22,\!8$ (3)

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Photons (per 100 disint.)		
XL	(\mathbf{Y})	1,686 - 2,347		2,36(5)		
$\begin{array}{l} \mathrm{XK}\alpha_2\\ \mathrm{XK}\alpha_1 \end{array}$	(Y) (Y)	$14,\!8829 \\ 14,\!9585$		$\begin{array}{c} 14,\!08 \ (13) \\ 27,\!01 \ (20) \end{array}$	}	$K\alpha$
$egin{array}{c} { m XK}eta_3\ { m XK}eta_1\ { m XK}eta_5^{\prime\prime} \end{array}$	(Y) (Y) (Y)	$16,7259 \\ 16,7381 \\ 16,88$	<pre>}</pre>	6,78 (8)		$\mathrm{K}'eta_1$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \end{array}$	(Y) (Y)	17,0156 17,0362	}	0,94 (4)		$\mathrm{K}'eta_2$

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$ \frac{\gamma^{\pm}}{\gamma_{1,0}(Y)} \\ \gamma_{3,1}(Y) \\ \gamma_{4,1}(Y) \\ \gamma_{5,1}(Y) \\ \gamma_{2,0}(Y) $	511908,97 (3)1620,81 (20)1657,56 (15)1713,1 (3)1744,72 (18)	$\begin{array}{c} 45,6 \ (6) \\ 99,03 \ (2) \\ 0,074 \ (5) \\ 0,106 \ (5) \\ 0,745 \ (10) \\ 0,123 \ (4) \end{array}$

5.2 Gamma Emissions

6 Main Production Modes

 $\begin{cases} Y - 89(p,n)Zr - 89 \\ Possible impurities: Zr - 88(EC)Y - 88, Zr - 89m \\ Y - 89(d,2n)Zr - 89 \\ Y - 89(\alpha,p3n)Zr - 89 \\ Zr - 90(n,2n)Zr - 89 \\ Possible impurities: Zr - 89m \\ Zr - 90(p,2n)Nb - 89(EC)Zr - 89 \\ Zr - 90(p,pn)Zr - 89 \\ Zr - 90(p,pn)Zr - 89 \end{cases}$

7 References

- R. SAGANE, S. KOJIMA, G. MIYAMOTO, M. IKAWA. Phys. Rev. 54 (1938) 542 (Half-life)
- L.A. DUBRIDGE, J. MARSHALL. Phys. Rev. 58 (1940) 7 (Zr-89 and Zr-89m half-lives)
- R. SAGANE, S. KOJIMA, G. MIYAMOTO, M. IKAWA. Phys. Rev. 57 (1940) 1179 (Half-life)
- M. GOLDHABER, E. DER MATEOSIAN, G. SCHARFF-GOLDHABER, A.W. SUNYAR, M. DEUTSCH, N.S. WALL. Phys. Rev. 83 (1951) 985 (Half-life, EC decay)
- E.K. HYDE, G.D. O'KELLEY. Phys. Rev. 82 (1951) 944 (Half-life, Gamma-ray emission probabilities)
- K. SHURE, M. DEUTSCH. Phys. Rev. 82 (1951) 122 (Half-life)
- F.J. SHORE, W.L. BENDEL, R.A. BECKER. Phys. Rev. 83 (1951) 688 (Zr-89m half-life)
- L. KATZ, R.G. BAKER, R. MONTALBETTI. Can. J. Phys. 31 (1953) 250 (Zr-89 and Zr-89m half-lives)
- F.J. SHORE, W.L. BENDEL, H.N. BROWN, R.A. BECKER. Phys. Rev. 91 (1953) 1203 (Zr-89 and Zr-89m half-lives, P(909-keV gamma ray)/P(positron) ratio)
- C.P. SWANN, F.R. METZGER. Phys. Rev. 100 (1955) 1329 (Half-life)
- M.I. KUZNETSOVA, V.N. MEKHEDOV. Izv. Akad. Nauk SSSR, Ser. Fiz. 21 (1957) 1020 (K-capture)
- J.H. HAMILTON, L.M. LANGER, W.G. SMITH. Phys. Rev. 119 (1960) 772 (Half-life)

- S. MONARO, G.B. VINGIANI, R. VAN LIESHOUT. Physica 27 (1961) 985 (Half-life, Gamma-ray energies and emission probabilities, EC/positron ratio)
- L.A. RAYBURN. Phys. Rev. 122 (1961) 168 (Half-life)
- D.A. HOWE, L.M. LANGER, D. WORTMAN. Nucl. Phys. 37 (1962) 476 (Gamma-ray emissions feeding 909-keV level)
- E.T. BRAMLITT, R.W. FINK. J. Inorg. Nucl. Chem. 24 (1962) 1321 (Y-89m half-life)
- Y. AWAYA, Y. TENDOW. J. Phys. Soc. Japan 19 (1964) 606 (1700(100)-keV gamma ray)
- D.M. VAN PATTER, S.M. SHAFROTH. Nucl. Phys. 50 (1964) 113 (Zr-89 and Zr-89m half-lives, Gamma-ray energies and emission probabilities, EC energies and transition probabilities, EC/positron ratio)
- S.A. DURRANI, W. KÖHLER. Trans. Am. Nucl. Soc. 9 (1966) 479 (Y-89m half-life)
- H.P. YULE. Nucl. Phys. A94 (1967) 442 (Y-89m half-life)
- P. BORNEMISZA-PAUSPERTL, P. HILLE. Osterr. Akad. Wiss. Math-Naturw. Kl. Sitzber. Abt. II 176 (1968) 227 (Y-89m half-life)
- J.E. DRAPER, J.A. MCCRAY. Nucl. Phys. A120 (1968) 234 (Zr-89 and Zr-89m half-lives, Gamma-ray energies and emission probabilities)
- P.F. HINRICHSEN, S.M. SHAFROTH, D.M. VAN PATTER. Phys. Rev. 172 (1968) 1134
- (Y-89 nuclear levels)
- P.F. HINRICHSEN. Nucl. Phys. A118 (1968) 538 (Gamma-ray energies and emission probabilities, EC transition probabilities, Positron emission probability, P(909-keV gamma ray)/P(511-keV gamma ray) ratio)
- R. GUNNINK, J.B. NIDAY, R.P. ANDERSON, R.A. MEYER. Lawrence Radiation Laboratory report UCID-15439 (1969)
- (Gamma-ray energies and emission probabilities)
- E.L. ROBINSON, R.C. HAGENAUER, E. EICHLER. Nucl. Phys. A123 (1969) 471 (Zr-89 and Zr-89m half-lives, Gamma-ray energies and emission probabilities)
- St. GAGNEUX, P. HUBER, H. LEUENBERGER, P. NYIKOS. Helv. Phys. Acta 43 (1970) 39 (Zr-89 half-life variation)
- N.B. GOVE, M.J. MARTIN. Nucl. Data Tables 10 (1971) 205 (EC/positron ratios)
- R. ARLT, N.G. ZAITSEVA, B. KRACIK, M.G. LOSHCHILOV, G. MUSIOL, CHAN THANH MINH, H. STRUSNY. Bull. Acad. Sci. USSR, Phys. Ser. 35 (1972) 52
 - $({\rm Gamma-ray\ energies\ and\ emission\ probabilities,\ EC\ transition\ probabilities,\ Positron\ emission\ probability})$
- H. LEUENBERGER. Physica 64 (1973) 621 (Theoretical modelling of variation in Zr-89 half-life)
- W. BEENS. PhD thesis, Vrije Universiteit, Amsterdam (1973) (Half-lives of Y-89 nuclear levels)
- R.L. HEATH. updated 1998, ANCR-1000-2 (1974) (Half-life, Gamma-ray energies and emission probabilities)
- F.P. LARKINS. At. Data Nucl. Data Tables 20 (1977) 311 (Auger-electron energies)
- W. BAMBYNEK, H. BEHRENS, M.H. CHEN, B. CRASEMANN, M.L. FITZPATRICK, K.W.D. LEDINGHAM, H. GENZ, M. MUTTERER, R.L. INTEMANN. Rev. Mod. Phys. 49 (1977) 77 (EC/positron ratio)
- W. BAMBYNEK, H. BEHRENS, M.H. CHEN, B. CRASEMANN, M.L. FITZPATRICK, K.W.D. LEDINGHAM, H. GENZ, M. MUTTERER, R.L. INTEMANN. Erratum: Rev. Mod. Phys. 49 (1977) 961 (EC/positron ratio)
- A.D. BAILLIE, K.W.D. LEDINGHAM, J.G. LYNCH, M. CAMPBELL. J. Phys. G: Nucl. Phys 5 (1979) 1433 (P(EC)/P(positron), P(KX)/P(909-keV gamma ray) and P(K)/P(positron) ratios, Gamma-ray energies and emission probabilities)
- J.J. HAMILL, A. ZEMEL. KVI 1983 Annual Report (1984) 18 ((M1+E2) multipolarity of 1713-keV gamma ray)
- R.T. Skelton, R.W. Kavanagh. Nucl. Phys. A414 (1984) 234 (Half-life, EC transition probabilities)

- J. HAMILL, A.J. HOEVEN, J. VAN KLINKEN, V.A. WICHERS, A. ZEMEL. KVI 1984 Annual Report (1985) 18 ((M1+E2) multipolarity of 1713-keV gamma ray)
- L. FUNKE, G. WINTER, J. DÖRING, L. KÄUBLER, H. PRADE, R. SCHWENGNER, E. WILL, CH. PROTOCHRISTOV, W. ANDREJTSCHEFF, L.G. KOSTOVA, P.O. LIPAS, R. WIROWSKI. Nucl. Phys. A541 (1992) 241 (Gamma-ray energies and emission probabilities, Half-lives of Y-89 nuclear levels)
- К. КАWADE, Н. YAMAMOTO, A. TANAKA, A. HOSOYA, T. KATOH, T. IIDA. JAERI report JAERI-M-92-027 (1992) 364
- (Zr-89m half-life)
- E. SCHÖNFELD. PTB Report PTB-6.33-95-2 (1995)
- (P(K), P(L), P(M), P(N), P(O))
- S. ITOH, M. YASUDA, H. YAMAMOTO, T. IIDA, A. TAKAHASHI, K. KAWADE. JAERI Report JAERI-Conf-95-008 (1995) 185
- (Y-89m half-life)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Fluorescence yields, X-ray emission probability ratios, Auger-electron emission probability ratios)
- S. LAHIRI, B. MUKHOPADHYAY, N.R. DAS. Appl. Rad. Isot. 48 (1997) 883 (Y-89(alpha,p3n)Zr-89 mode of production)
- E. SCHÖNFELD, G. RODLOFF. PTB Report PTB-6.11-98-1 (1998) (Auger electrons)
- E. SCHÖNFELD. Appl. Rad. Isot. 49 (1998) 1353 (P(K), P(L), P(M), P(N), P(O))
- E. SCHÖNFELD, G. RODLOFF. PTB Report PTB-6.11-1999-1 (1999) (X(K))
- E. SCHÖNFELD, H. JANSSEN. Appl. Rad. Isot. 52 (2000) 595 (P(X), P(Ae))
- I.M. BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR JR., P.O. TIKKANEN, S. RAMAN. At. Data Nucl. Data Tables 81 (2002) 1 (77)
 - (Theoretical ICC)
- S. RAMAN, C.W. NESTOR JR., A. ICHIHARA, M.B. TRZHASKOVSKAYA. Phys. Rev. C66 (2002) 044312 (Theoretical ICC)
- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theometical ICC and IDE coefficients)
- (Theoretical ICC and IPF coefficients)
- M. WANG, G. AUDI, A.H. WAPSTRA, F.G. KONDEV, M. MACCORMICK, X. XU, B. PFEIFFER. Chin. Phys. C36 (2012) 1603
- (Q-value)
- B. SINGH. Nucl. Data Sheets 114 (2013) 1 (Nuclear levels)

$$^{_{40}}_{_{40}} \mathrm{Zr}_{_{53}}$$

Zr-93 decays via two beta minus transitions, 73(5)% to Nb-93m and 27(5)% to Nb-93. Le zirconium-93 se désintègre 100 % par émission bêta vers le niveau isomerique (73 (5) %) et le niveau fondamental (27 (5) %) du niobium 93.

2 Nuclear Data

2.1 β^- Transitions

	Energy (keV)	Probability (%)	Nature	\lgft
$\begin{array}{c} \beta_{0,1}^{-} \\ \beta_{0,0}^{-} \end{array}$	59,5 (15) 90,3 (15)	$\begin{array}{c} 73 (5) \\ 27 (5) \end{array}$	Unique 1st Forbidden 2nd Forbidden	$10,16 \\ 12,09$

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy (keV)	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	$\begin{array}{c} \alpha_K \\ (10^5) \end{array}$	$lpha_L \ (10^5)$	$lpha_M$ (10^5)	$lpha_T$ (10^5)
$\gamma_{1,0}(Nb)$	30,77~(2)	73 (5)	M4	0,260 (4)	1,151 (17)	0,249~(4)	1,693~(25)

3 Atomic Data

3.1 Nb

ω_K	:	0,751	(4)
$\bar{\omega}_L$:	$0,\!0347$	(9)
n_{KL}	:	1,045	(4)

3.1.1 X Radiations

		Energy (keV)		Relative probability
X _K	$\begin{array}{c} \mathrm{K}\alpha_2\\ \mathrm{K}\alpha_1 \end{array}$	16,5213 16,6152		52,36 100
	$egin{array}{c} \mathrm{K}eta_3\ \mathrm{K}eta_1\ \mathrm{K}eta_5^{\prime\prime} \end{array}$	$18,\!607 \\ 18,\!623 \\ 18,\!78$	}	25,87
	$\begin{array}{c} \mathrm{K}\beta_2\\ \mathrm{K}\beta_4 \end{array}$	18,953 18,981	}	3,88
X_{L}	$egin{array}{c} { m L}\ell \ { m L}lpha \ { m L}\eta \ { m L}eta \ { m L}\gamma \end{array}$	1,92,16 - 2,1722,26 - 2,492,41 - 2,67		

3.1.2 Auger Electrons

	Energy (keV)	Relative probability
Auger K KLL KLX KXY	13,49 - 14,14 15,78 - 16,61 18,05 - 18,98	$100 \\ 39,1 \\ 3,81$
Auger L	1,4 - 2,7	

4 Electron Emissions

		Energy (keV)		Electrons (per 100 disint.)
e_{AL}	(Nb)	1,4 - 2,7		59,1~(4)
e_{AK}	(Nb) KLL KLX KXY	13,49 - 14,14 15,78 - 16,61 18,05 - 18,98	<pre>}</pre>	2,78 (21)
$\begin{array}{c} ec_{1,0} \ T \\ ec_{1,0} \ K \\ ec_{1,0} \ L \\ ec_{1,0} \ M \\ ec_{1,0} \ N \end{array}$	(Nb) (Nb) (Nb) (Nb) (Nb)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$\begin{array}{c} 73 \ (5) \\ 11,2 \ (8) \\ 49,5 \ (35) \\ 10,7 \ (8) \\ 1,39 \ (10) \end{array}$
$eta_{0,1}^{-}$ $eta_{0,0}^{-}$	max: avg: max: avg:	$\begin{array}{ccc} 59,5 & (15) \\ 18,75 & (54) \\ 90,3 & (15) \\ 23,64 & (42) \end{array}$	} }	73 (5) 27 (5)

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Photons (per 100 disint.)		
XL XK α_2 XK α_1	(Nb) (Nb) (Nb)	1,9 - 2,67 16,5213 16,6152		$2,1 (1) \\2,41 (18) \\4,6 (4)$	}	Kα
$egin{array}{c} { m XK}eta_3\ { m XK}eta_1\ { m XK}eta_5\ { m XK}eta_5^{\prime\prime} \end{array}$	$\begin{array}{c} (\mathrm{Nb}) \\ (\mathrm{Nb}) \\ (\mathrm{Nb}) \end{array}$	$18,\!607 \\ 18,\!623 \\ 18,\!78$	<pre>}</pre>	1,19 (9)		$\mathrm{K}'eta_1$
$egin{array}{c} XKeta_2 \ XKeta_4 \end{array}$	(Nb) (Nb)	18,953 18,981	}	0,179~(15)		$\mathrm{K}'eta_2$

5.2 Gamma Emissions

	Energy (keV)	Photons (per 100 disint.)
$\gamma_{1,0}(Nb)$	30,77(2)	0,00043 (3)

6 Main Production Modes

 $\left\{ \begin{array}{l} U-235(n,f)Zr-93\\ Possible impurities: Fe-55, Mo-93, Nb-93m\\ Zr-92(n,\gamma)Zr-93\\ Possible impurities: Nb-93m \end{array} \right.$

7 References

- E.P.STEINBERG, L.E.GLENDENIN. Phys.Rev. 78 (1950) 624 (Half-life; Beta branching; Beta emission energies)
- L.E.GLENDENIN, E.P.STEINBERG. ANL-4833 (1952) 89 (Half-life; Beta branching; Beta emission energies; Nb-93m half-life; Conversion electrons; X-rays)
- L.E.GLENDENIN, E.P.STEINBERG. ANL-5000 (1953) 55 (Half-life; Beta branching; Conversion electrons; X-rays)
- K.F.FLYNN. Priv. Comm. (1972) (Half-life; Beta branching; Conversion electrons; X-rays)
- M.M.Bé, V.CHISTÉ, C.DULIEU, E.BROWNE, V.CHECHEV, N.KUZMENKO, R.HELMER, A.NICHOLS, E.SCHÖNFELD, R.DERSCH. Monographie BIPM-5 (2004) (Nb-93 levels; Nb-93m half-life, IT emission)
- C.DULIEU, M.M.BÉ, V.CHISTÉ. Proc. Int. Conf. on Nuclear Data for Science and Technology, 22-27 April 2007, Nice, France (2008) 97 (SAISINUC software)
- P.CASSETTE, F.CHARTIER, H.ISNARD, C.FRECHOU, I.LASZAK, J.P.DEGROS, M.M.BÉ, M.C.LÉPY, I.TARTES. Appl.Radiat.Isot. 68 (2010) 122 (Half-life, Beta branching)
- J.YANG, S.ZHANG, Y.DING, F.SHU, J.ZHANG. Radiochim. Acta 98 (2010) 59 (Half-life)
- M.WANG, G.AUDI, A.H.WAPSTRA, F.G.KONDEV, M.MACCORMICK, X.XU, B.PFEIFFER. Chin. Phys. C36 (2012) 1603

 (\mathbf{Q})

Nb-93m disintegrates by 100% gamma transition to the ground state of the stable nuclide Nb-93. Le niobium 93m se désexcite à 100 % par transition gamma vers le noyau stable de niobium 93.

2 Nuclear Data

$T_{1/2}(^{93m}Nb)$:	$16,\!12$	(15)	a
$Q^{IT}(^{93\mathrm{m}}\mathrm{Nb})$:	30,77	(2)	keV

2.1 Gamma Transitions and Internal Conversion Coefficients

	Energy (keV)	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	$\binom{lpha_K}{(10^5)}$	$lpha_L$ (10^5)	$lpha_M \ (10^5)$	$\left(10^5 \right)$
$\gamma_{1,0}(\mathrm{Nb})$	30,77~(2)	100	M4	0,260 (4)	1,151 (17)	0,249~(4)	1,693~(25)

3 Atomic Data

3.1 Nb

ω_K	:	0,751	(4)
$\bar{\omega}_L$:	$0,\!0347$	(9)
n_{KL}	:	$1,\!045$	(4)

3.1.1 X Radiations

		Energy (keV)		Relative probability
X _K	$f Klpha_2 \ Klpha_1$	16,5213 16,6152		$52,\!36$ 100
	$egin{array}{c} \mathrm{K}eta_3 \ \mathrm{K}eta_1 \ \mathrm{K}eta_5^{\prime\prime} \end{array}$	$18,607 \\ 18,623 \\ 18,78$	}	25,8
	$\begin{array}{c} \mathrm{K}\beta_2\\ \mathrm{K}\beta_4 \end{array}$	18,952 18,982	}	3,86
$\mathbf{X}_{\mathbf{L}}$	$egin{array}{c} { m L}\ell \ { m L}lpha \ { m L}\eta \ { m L}eta \ { m L}\gamma \end{array}$	1,92,16 - 2,1722,26 - 2,372,41 - 2,67		

3.1.2 Auger Electrons

	Energy (keV)	Relative probability
Auger K KLL	13,49 - 14,14	100
KLX	15,79 - 16,58	39,1
KXY	18,02 - 18,91	$3,\!81$
Auger L	1,4 - 2,6	

4 Electron Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Electrons (per 100 disint.)
e_{AL}	(Nb)	1,4 - 2,6		$81,\!25\ (28)$
e _{AK}	(Nb) KLL KLX KXY	13,49 - 14,14 15,79 - 16,58 18,02 - 18,91	<pre>}</pre>	3,83 (11)
$ec_{1,0}$ T $ec_{1,0}$ K $ec_{1,0}$ L $ec_{1,0}$ M	(Nb) (Nb) (Nb) (Nb) (Nb)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$\begin{array}{c} 99,999409 \ (9) \\ 15,37 \ (33) \\ 68,0 \ (14) \\ 14,72 \ (33) \\ 1 \ 91 \ (4) \end{array}$

5 Photon Emissions

5.1 X-Ray Emissions

		Energy (keV)		Photons (per 100 disint.)		
XL	(Nb)	1,9 - 2,67		2,88~(6)	`	
$\begin{array}{l} \text{XK}\alpha_2\\ \text{XK}\alpha_1 \end{array}$	(Nb) (Nb)	$16,5213 \\ 16,6152$		$3,32 \ (8) \\ 6,34 \ (15)$	}	$K\alpha$
$\begin{array}{l} {\rm XK}\beta_3 \\ {\rm XK}\beta_1 \\ {\rm XK}\beta_5^{\prime\prime} \end{array}$	$\begin{array}{l}{\rm (Nb)}\\{\rm (Nb)}\\{\rm (Nb)}\end{array}$	$18,607 \\ 18,623 \\ 18,78$	<pre>}</pre>	1,64 (4)		$\mathrm{K}'eta_1$
$\begin{array}{l} {\rm XK}\beta_2 \\ {\rm XK}\beta_4 \end{array}$	$\begin{array}{c} (\mathrm{Nb}) \\ (\mathrm{Nb}) \end{array}$	18,952 18,982	}	0,246 (11)		$\mathrm{K}'eta_2$

5.2 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\gamma_{1,0}(Nb)$	30,77~(2)	0,000591 (9)

Main Production Modes

6

Nb - 93(n,n')Nb - 93mPossible impurities : Nb - 92m, Nb - 94, Nb - 95 $Mo - 92(n,\gamma)Mo - 93$ Separation from Zr - 93 + Nb - 93m (Fission products) Possible impurities : Nb - 94Mo - 93(EC)Nb - 93m7 References - R.P.SCHUMAN. Phys. Rev. 96 (1954) 121 (Half-life) - K.HOHMUTH, G.MULLER, J.SCHINTHMEISTER. Nucl. Phys. 52 (1964) 590 (ICC subshell ratios) - K.F.FLYNN, L.E.GLENDENIN, E.P.STEINBERG. Nucl. Sci. Eng. 22 (1965) 416 (Half-life) - J.A.BEARDEN. Rev. Mod. Phys. 39 (1967) 78 (X-ray energies) - K.F.FLYNN. Priv. Comm. (1972) (Gamma-ray energies) - D.C.KOCHER. Nucl. Data Sheets 8 (1972) 527 (Multipolarity) - F.HEGEDUES. Report EUR 5667E 1 (1976) 757 (Half-life) - M.JURCEVIC, A.LJUBICIC, D.RENDIC. Fizika 8 (1976) 81 (K ICC) - F.P.LARKINS. At. Data Nucl. Data. Tables 20 (1977) 313 (Auger electron energies) - R.L.LLORET. Radiochem. Radioanal. Letters 29 (1977) 165 (Half-life) - J.MOREL, J.-P.PEROLAT, N.COURSOL. Comp. Rend. Acad. Sci. (Paris) B284 (1977) 223 (X-ray and gamma-ray energies and emission probabilities, K ICC) - W.BAMBYNEK, D.REHER, R.VANINBROUKX. Proc. Int. Conf., Harwell, September 1978, OECD Nuclear Energy Agency, Paris (1978) 778 (KX-ray emission probabilities) - R.VANINBROUKX. Liquid Scintillation Counting, Academic Press, New York 1 (1980) 43 (KX-ray emission probability) - R.LLORET. Radiochem. Radioanal. Letters 50 (1981) 113 (Half-life) - D.REHER. Int. J. Appl. Radiat. Isotop. 33 (1982) 537 (ICC subshell ratios, multipolarity) - W.G.Alberts, R.Hollnagel, K.Knauf, W.Pessara. NUREG/CP-0029, Gaithensburg 1 (1982) 433 (KX-ray emission probabilities) - R.VANINBROUKX. Int. J. Appl. Radiat. Isotop. 34 (1983) 1211 (Half-life, KX-ray emission probability) R.J.GEHRKE, J.W.ROGERS, J.D.BAKER. Proc. 5th ASTM-EURATOM Symp. on React.Dos.,Geesthacht, FRG, 24-28 September 1984, Dordrecht 1 (1985) 319 (KX-ray emission probability) - F.LAGOUTINE, N.COURSOL, J.LEGRAND. Table de Radionucleides, ISBN-2-7272-0078-1. LMRI, 1982-1987 (1987) (ICC, multipolarity) - B.M.COURSEY. Nucl. Instrum. Methods Phys. Res. A290 (1990) 537 (KX-ray emission probability) - W.BAMBYNEK, T.BARTA, R.JEDLOVSZKY, P.CHRISTMAS, N.COURSOL, K.DEBERTIN, R.G.HELMER, A.L.NICHOLS, F.J.SCHIMA, Y.YOSHIZAWA. Report TECDOC-619, IAEA (1991) (KX-ray emission probabilities)

- E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data)

- E.BAGLIN. Nucl. Data Sheets 80 (1997) 1 (Decay scheme)
- E.SCHÖNFELD, G.RODLOFF. Report PTB-6 11-1999-1 (1999) (Atomic data)
- V.A.ZHELTONOZHSKY, A.G.ZELINSKY, YU.M.SHEVCHENKO, E.G.SHEMCHUK. Proc. 49th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Dubna (1999) 100
- (Electron, X-ray and gamma-ray emission probabilities, K ICC)E.SCHÖNFELD, H.JANSSEN. Appl. Radiat. Isot. 52 (2000) 595
- (X-ray and Auger Electron emission probabilities)
- T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICCs)

Tc-94m (half-life of 51.9 (10) min) undergoes 100% EC/positron decay (Q(EC) of 4332(5) keV) to various excited nuclear levels and the ground state of Mo-94.

Le technétium 94 métastable se désintègre à 100 % par capture électronique et bêta plus vers des niveaux excités et le niveau fondamental du molybdène 94.

2 Nuclear Data

 $T_{1/2}(^{94\mathrm{m}}\mathrm{Tc})$: 51,9 (10) min $Q^+(^{94\mathrm{m}}\mathrm{Tc})$: 4332 (5) keV

2.1 Electron Capture Transitions

	Energy (keV)	Probability (%)	Nature	\lgft	P_K	P_L	P_M
6	440 (5)	0.212 (12)	(allowed)	5.6	0.8620 (15)	0 1191 (19)	0.0220 (4)
e _{0,27}	440(5)	0,212(13) 0.160(20)	(allowed)	5,0	0,8020(15)	0,1121(12) 0,1106(11)	0,0220 (4) 0.0216 (4)
$\epsilon_{0,26}$	539 (5)	0,109(20)	(allowed)	5,9	0,8039(15)	0,1100(11)	0,0210(4)
$\epsilon_{0,25}$	798(5)	0,106(3)	(allowed)	$6,\!4$	0,8664~(15)	0,1086(11)	0,0212 (4)
$\epsilon_{0,24}$	820(5)	0,121(10)	(allowed)	6,4	0,8666~(15)	0,1085(11)	0,0212~(4)
$\epsilon_{0,23}$	884(5)	0,118(19)	(allowed)	6,4	0,8669(14)	0,1082(11)	0,0211 (4)
$\epsilon_{0,22}$	931(5)	0,36(4)	(allowed)	6	0,8672(14)	0,1080(11)	0,0211 (4)
$\epsilon_{0,20}$	1000(5)	0,234 (20)	(allowed)	6,3	0,8675(14)	0,1078(11)	0,0210 (4)
$\epsilon_{0,18}$	1169(5)	0,058~(17)	(allowed)	7	0,8681 (14)	0,1073~(11)	0,0209~(4)
$\epsilon_{0,17}$	1203~(5)	$1,\!63~(9)$	(allowed)	5,57	0,8682(14)	0,1072(11)	0,0209~(4)
$\epsilon_{0,16}$	1367(5)	0,093~(14)	(allowed)	6,9	0,8686(14)	0,1069(11)	0,0208~(4)
$\epsilon_{0,13}$	1462(5)	0,15(3)	(allowed)	6,8	0,8688 (14)	0,1067(11)	0,0208~(4)
$\epsilon_{0,11}$	1592(5)	10,1~(4)	(allowed)	5,03	0,8690(14)	0,1066(11)	0,0207~(4)
$\epsilon_{0,7}$	1939(5)	4,0(2)	(allowed)	5,6	0,8694~(14)	0,1062~(11)	0,0207~(4)
$\epsilon_{0,5}$	2265(5)	0,34~(5)	(allowed)	6,8	0,8697~(14)	0,1060(11)	0,0206~(4)
$\epsilon_{0,4}$	2468(5)	0,39 (9)	(allowed)	6,82	0,8699(14)	0,1059(11)	0,0206 (4)
$\epsilon_{0,1}$	3461(5)	12,8(1)	(allowed)	5,61	0,8704(14)	$0,1055\ (11)$	0,0205~(4)

2.2 β^+ Transitions

	Energy (keV)	Probability (%)	Nature	$\lg ft$
$\beta_{0.16}^{+}$	345~(5)	0,00058 (9)	(allowed)	6,9
$\beta_{0,13}^+$	440(5)	0,0024 (5)	(allowed)	6,8
$\beta_{0,11}^{+}$	570(5)	0,427~(21)	(allowed)	$5,\!03$
$\beta_{0,7}^{+}$	917~(5)	0,91~(6)	(allowed)	5,6
$\beta_{0,5}^+$	1243~(5)	0,22~(3)	(allowed)	6,8
$\beta_{0,4}^+$	1446~(5)	0,41~(10)	(allowed)	$6,\!82$
$\beta_{0,1}^+$	2439(5)	67,2~(4)	(allowed)	$5,\!61$

2.3 Gamma Transitions and Internal Conversion Coefficients

	Energy (keV)	$\begin{array}{c} P_{\gamma+ce} \\ (\%) \end{array}$	Multipolarity	$ \begin{array}{c} \alpha_K \\ (10^{-2}) \end{array} $	$ \substack{\alpha_L \\ (10^{-3})} $	$\begin{array}{c} \alpha_M \\ (10^{-4}) \end{array}$	$ \begin{pmatrix} \alpha_T \\ (10^{-2}) \end{pmatrix} $	$ \overset{\alpha_{\pi}}{(10^{-6})} $
$\gamma_{7,5}(Mo)$	325,67(9)	0,027(2)	M1 + 50% E2	1,28(8)	1,56(11)	2,80(19)	1,47(9)	
$\gamma_{18,12}(Mo)$	358,3(3)	0,0084(7)	M1+10,9%E2	0,80(4)	0,93(5)	1,67(8)	0,92(4)	
$\gamma_{7,4}(Mo)$	528,71(8)	0,032(2)	M1 + 50% E2	0,325(8)	0,378(11)	0,676(19)	0,371 (9)	
$\gamma_{11,5}(Mo)$	672,56 (9)	0,17(3)	M1 + 50% E2	0,176(3)	0,201(4)	0,359(7)	0,200(3)	
$\gamma_{2,1}(Mo)$	702,66(4)	0,18(2)	E2	0,1608(23)	0,187(3)	0,334(5)	0,183(3)	
$\gamma_{13,5}(Mo)$	802,55(10)	0,0246(14)	M1+50%E2	0,1146(16)	0,1301(19)	0,232 (4)	0,1303(19)	
$\gamma_{3,1}(Mo)$	870,55(22)	0,26(3)	E2	0,0940(14)	0,1075(15)	0,192(3)	0,1070(15)	
$\gamma_{1,0}(Mo)$	871,098 (16)	94,04 (21)	E2	0,0939(14)	0,1073 (15)	0,192(3)	0,1068(15)	
$\gamma_{11,4}(Mo)$	$875,\!60$ (9)	1,0(3)	M1+1,0%E2	0,0945~(14)	$0,1056\ (15)$	0,189(3)	0,1072~(15)	
$\gamma_{16,5}(Mo)$	898,06 (9)	0,0098~(5)	M1+80%E2	0,0877~(13)	0,0996~(14)	0,1778~(25)	0,0997~(15)	
$\gamma_{4,1}({ m Mo})$	993,21 (5)	2,21 (18)	M1+80%E2	0,0696~(13)	$0,0786\ (13)$	0,1403~(22)	0,0791~(15)	
$\gamma_{11,3}(\mathrm{Mo})$	998,26 (17)	0,24(2)	M1	0,071~(1)	0,0792~(11)	0,1413 (20)	0,0806~(12)	
$\gamma_{13,4}(Mo)$	1005,59 (9)	0,09(3)	M1+0,25%E2	0,0699 (10)	0,0779(11)	0,139(2)	0,0793~(12)	
$\gamma_{17,5}(Mo)$	1061, 31 (9)	0,016~(2)	M1+24,5%E2	0,0616(10)	0,0688 (10)	0,1227 (18)	0,0699(11)	
$\gamma_{16,4}({ m Mo})$	1101,10(8)	0,042~(14)	M1+0,80%E2	0,0576~(8)	0,0640 (9)	0,1142~(16)	0,0653~(10)	0,492~(8)
$\gamma_{5,1}({ m Mo})$	1196,25~(6)	0,71~(7)	M1+2,20%E2	0,0483~(7)	0,0536 (8)	0,0957~(14)	0,0553~(8)	5,77(9)
$\gamma_{17,4}(Mo)$	1264,35 (9)	0,22~(2)	M1+0,64%E2	0,0431~(6)	0,0478~(7)	0,0852~(12)	0,0503~(7)	15,16(22)
$\gamma_{16,2}(Mo)$	$1391,\!65(7)$	0,0267~(10)	M1+0,64%E2	0,0353~(5)	0,0391~(6)	0,0698~(10)	0,0441~(7)	40,4(6)
$\gamma_{26,7}(Mo)$	1399,85(16)	0,041 (3)	M1+E2					
$\gamma_{20,4}({ m Mo})$	$1467,\!43\ (18)$	0,072~(5)	M1+8,3%E2	$0,0316\ (15)$	$0,0350\ (15)$	0,062 (3)	0,0419 (9)	61(10)
$\gamma_{27,7}({ m Mo})$	1499, 14 (9)	0,067~(11)	M1+E2					
$\gamma_{7,1}(\mathrm{Mo})$	1521,92 (6)	4,48(28)	M1+1,42%E2	0,0295~(5)	0,0326~(5)	0,0581 (9)	0,0411~(6)	77,6(11)
$\gamma_{22,4}(Mo)$	1536,52 (18)	0,014(3)						
$\gamma_{25,4}({ m Mo})$	1670,01 (10)	0,037~(2)	M1+2,20%E2	0,0245~(4)	0,0270 (4)	0,0481~(7)	0,0410~(6)	132(3)
$\gamma_{20,2}({ m Mo})$	1757,98(17)	0,15~(2)	M1+1,0%E2	0,0221 (3)	0,0244~(4)	0,0435~(6)	0,0418~(6)	167,7(24)
$\gamma_{24,3}(Mo)$	1770,21 (21)	0,025~(6)	(M1+E2)					
$\gamma_{27,5}(Mo)$	1824,81 (9)	0,023(1)	(M1+E2)					
$\gamma_{4,0}({ m Mo})$	1864,31(5)	0,23 (3)	E2	0,0189(3)	0,0209 (3)	0,0372~(6)	0,0455~(7)	241 (4)
$\gamma_{11,1}(\mathrm{Mo})$	1868, 81(7)	5,49(28)	M1+1,42%E2	0,0196~(3)	0,0216 (3)	0,0385~(6)	0,0438~(7)	215(3)
$\gamma_{26,4}(Mo)$	1928,56(16)	0,075 (19)	M1+E2					
$\gamma_{13,1}(Mo)$	1998,80(8)	0,0123 (6)	M1+62,8%E2	0,0168 (3)	0,0186(3)	0,0331 (6)	0,0484 (10)	293(9)
$\gamma_{27,4}(Mo)$	2027,85(9)	0,021 (4)	(M1+E2)					
$\gamma_{5,0}({ m Mo})$	2067, 35(6)	0,11(1)	E2	0,01562 (22)	0,01722 (25)	0,0307 (5)	0,0515(8)	338(5)
$\gamma_{16,1}(Mo)$	2094,31(6)	0,0156(6)	M1 + 54,8% E2	0,0155(3)	0,0171(4)	0,0304 (6)	0,0512(14)	336(15)
$\gamma_{17,1}(Mo)$	2257,56(7)	0,057(5)	M1 + 35,4% E2	0,01356(20)	0,01491 (22)	0,0266(4)	0,0561 (9)	407 (8)
$\gamma_{18,1}(Mo)$	2292,19 (19)	0,050(17)	M1+2,8%E2	0,01330(19)	0,01461 (21)	0,0260(4)	0,0562 (8)	411 (6)
$\gamma_{7,0}(Mo)$	2393,02(6)	0,50(4)	E2	0,01203 (17)	0,01322 (19)	0,0235 (4)	0,0633 (9)	496(7)
$\gamma_{20,1}(Mo)$	2460,64 (17)	0,011(2)	(M1+E2)					
$\gamma_{22,1}(Mo)$	2529,73 (17)	0,34(4)						

	Energy (keV)	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}}\\ (\%) \end{array}$	Multipolarity	$\binom{\alpha_K}{(10^{-2})}$	$ \overset{\alpha_L}{(10^{-3})} $	$lpha_M \ (10^{-4})$	$\stackrel{\alpha_T}{(10^{-2})}$	$lpha_{\pi}$ (10^{-6})
$\gamma_{23,1}(Mo)$ $\gamma_{24,1}(Mo)$	2576,5(4) 2640,76(14)	0,11 (2) 0,033 (4)	M1+78,3%E2 (M1+E2)	0,01061 (15)	0,01164 (17)	0,0207 (3)	0,0694 (12)	574 (11)
$\gamma_{25,1}(Mo)$	2663,22(9)	0,066(2)	M1+8,3%E2	0,01009(15)	0,01106(16)	0,0197(3)	0,0699(11)	585(10)
$\gamma_{11,0}(Mo)$	2739,91(7)	3,53(20)	M1	0,00959(14)	0,01051(15)	0,0187(3)	0,0725(11)	616 (9)
$\gamma_{13,0}(Mo)$	2869,90 (8)	0,016(2)	E2	0,00881 (13)	0,00964(14)	0,01717(24)	0,0816(12)	717 (10)
$\gamma_{27,1}(Mo)$	3021,06(7)	0,087(14)	(M1+E2)					
$\gamma_{17,0}({ m Mo})$	3128,66(7)	1,34(9)	M1	0,00758 (11)	0,00829(12)	$0,01476\ (21)$	0,0871 (13)	785(11)
$\gamma_{22,0}({ m Mo})$	3400, 83(17)	0,005~(2)						
$\gamma_{23,0}(Mo)$	3447,6(4)	0,006(1)						
$\gamma_{24,0}(Mo)$	3511,86(14)	0,063~(7)	(M1+E2)					
$\gamma_{25,0}(Mo)$	3534,32 (9)	0,0034~(4)	E2	0,00625 (9)	0,00682(10)	0,01215 (17)	0,1065~(15)	994(14)
$\gamma_{26,0}({ m Mo})$	3792,87(15)	0,052~(5)	E2	0,00559 (8)	0,00609 (9)	0,01084 (16)	0,1149(16)	1086 (16)
$\gamma_{27,0}({ m Mo})$	3892,16(7)	0,014(2)						

3 Atomic Data

3.1 Mo

ω_K	:	0,767	(4)
$\bar{\omega}_L$:	0,0381	(9)
n_{KL}	:	1,029	(4)

3.1.1 X Radiations

		Energy (keV)		Relative probability
X _K				
	$K\alpha_2$	$17,\!3745$		52,4
	$K\alpha_1$	17,47954		100
	$K\beta_3$	19,5904)	
	$K\beta_1$	19,6085	Ş	26.3
	$\mathrm{K} \beta_5^{''}$	19,774	J	,
	$K\beta_2$	19,9653	١	4.04
	$K\beta_4$	$19,\!998$	Ĵ	4,04
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	2,016		
	$L\alpha$	2,29 - 2,293		
	$L\eta$	$2,\!12$		
	$\mathrm{L}eta$	2,395 - 2,518		
	$L\gamma$	2,623 - 2,831		

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K KLL KLX KXY	14,172 - 14,855 16,592 - 17,478 18,990 - 19,996	$100 \\ 39,8 \\ 3,94$
Auger L	1,48 - 2,25	682

4 Electron and Positron Emissions

		Ene (ke	ergy V)		Electrons (per 100 disint.)
\mathbf{e}_{AL}	(Mo)	1,48 -	2,25		29,8~(4)
e _{AK}	(Mo) KLL KLX KXY	14,172 - 16,592 - 18,990 -		}	6,28 (15)
$\beta^+_{0,1}$	max: avg:	$2439 \\1094,4$	(5) (24)	}	67,2~(4)
$\beta^+_{0,4}$	max: avg:	$\begin{array}{c} 1446 \\ 639,6 \end{array}$	(5) (23)	}	0,41 (10)
$\beta^+_{0,5}$	max: avg:	$1243 \\ 548,7$	(5) (23)	}	0,22 (3)
$\beta^+_{0,7}$	max: avg:	$917 \\ 404,8$	(5) (22)	}	0,91~(6)
$\beta^+_{0,11}$	max: avg:	$570\\254{,}3$	(5) (22)	}	0,427~(21)
$\beta^+_{0,13}$	max: avg:	$440 \\ 198,5$	(5) (22)	}	0,0024 (5)
$\beta_{0,16}^{+}$	max: avg:	$345 \\ 157,5$	(5) (22)	}	0,00058 (9)

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Photons (per 100 disint.)		
XL	(Mo)	2,016 - 2,831		$1,\!198~(22)$		
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Mo) (Mo)	17,3745 17,47954		5,93 (11) 11,31 (19)	}	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Mo) (Mo) (Mo)	$19,5904 \\ 19,6085 \\ 19,774$	}	2,97 (6)		$\mathrm{K}'eta_1$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \end{array}$	(Mo) (Mo)	$19,9653 \\ 19,998$	}	0,457 (18)		$K'\beta_2$

5.2 Gamma Emissions

	Energy	Photons
	(keV)	(per 100 disint.)
$\gamma_{7,5}(\mathrm{Mo})$	$325,\!67$ (9)	0,027~(2)
$\gamma_{18,12}(Mo)$	358,3(3)	0,0084~(7)
γ^{\pm}	511	138(1)
$\gamma_{7,4}(Mo)$	528,71 (8)	0,032~(2)
$\gamma_{11,5}(Mo)$	672,56 (9)	$0,\!17~(3)$
$\gamma_{2,1}(Mo)$	702,66 (4)	0,18~(2)
$\gamma_{13,5}(Mo)$	802,55(10)	$0,0246\ (14)$
$\gamma_{3,1}(Mo)$	870,55~(22)	$0,\!26~(3)$
$\gamma_{1,0}(Mo)$	$871,094\ (16)$	94,04~(21)
$\gamma_{11,4}(Mo)$	$875,\!60$ (9)	1,0~(3)
$\gamma_{16,5}(Mo)$	898,06~(9)	0,0098~(5)
$\gamma_{4,1}(Mo)$	$993,\!20$ (5)	2,21 (18)
$\gamma_{11,3}(Mo)$	$998,25\ (17)$	0,24~(2)
$\gamma_{13,4}(Mo)$	$1005,\!58\ (9)$	0,09~(3)
$\gamma_{(-1,-2)}(Mo)$	1022	0,027~(14)
$\gamma_{(-1,1)}(Mo)$	1037,2~(3)	0,044~(14)
$\gamma_{17,5}(Mo)$	$1061,\!30$ (9)	0,016~(2)
$\gamma_{16,4}(Mo)$	1101,09 (8)	0,042~(14)
$\gamma_{5,1}(Mo)$	1196,24~(6)	0,71~(7)
$\gamma_{17,4}(Mo)$	1264,34 (9)	0,22~(2)
$\gamma_{(-1,2)}(Mo)$	$1357,4\ (15)$	0,19~(8)
$\gamma_{16,2}(Mo)$	$1391,\!64\ (7)$	0,0267~(10)
$\gamma_{26,7}(Mo)$	$1399,84\ (16)$	0,041~(3)
$\gamma_{20,4}(Mo)$	1467, 42(18)	0,072~(5)
$\gamma_{27,7}(Mo)$	$1499, 13 \ (9)$	0,067~(11)
$\gamma_{7,1}(\mathrm{Mo})$	1521,91 (6)	4,48~(28)

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\gamma_{22.4}(Mo)$	1536,51 (18)	0,014(3)
$\gamma_{25,4}(Mo)$	1669,99(10)	0,037(2)
$\gamma_{20,2}(Mo)$	1757,96 (17)	0,15(2)
$\gamma_{24,3}(Mo)$	1770, 19(21)	0,025 (6)
$\gamma_{27,5}(Mo)$	1824,79(9)	0,023(1)
$\gamma_{4,0}(Mo)$	1864,29(5)	0,23 (3)
$\gamma_{11,1}$ (Mo)	1868,79(7)	5,49(28)
$\gamma_{26,4}(Mo)$	1928,54(16)	0,075 (19)
$\gamma_{13,1}(Mo)$	1998,78 (8)	0,0123 (6)
$\gamma_{27,4}(Mo)$	2027, 83 (9)	0,021 (4)
$\gamma_{5,0}(Mo)$	2067,33(6)	0,11(1)
$\gamma_{16,1}(Mo)$	2094,28(6)	0,0156 (6)
$\gamma_{17,1}(Mo)$	2257,53(7)	0,057 (5)
$\gamma_{18,1}$ (Mo)	2292,16(19)	0,050 (17)
$\gamma_{7,0}(Mo)$	2392,99(6)	0,50(4)
$\gamma_{20,1}(Mo)$	2460, 61(17)	0,011(2)
$\gamma_{22,1}(Mo)$	2529,69(17)	0,34(4)
$\gamma_{23,1}(Mo)$	2576,5(4)	0,11(2)
$\gamma_{24,1}(Mo)$	2640,72(14)	0,033 (4)
$\gamma_{25,1}(Mo)$	2663, 18 (9)	0,066~(2)
$\gamma_{11,0}(Mo)$	2739,87(7)	3,53~(20)
$\gamma_{13,0}(Mo)$	$2869,\!85\ (8)$	0,016~(2)
$\gamma_{27,1}(Mo)$	3021,01(7)	0,087~(14)
$\gamma_{(-1,3)}(Mo)$	$3065,\! 6\ (3)$	0,011~(4)
$\gamma_{(-1,4)}(Mo)$	$3085,\!8\;(3)$	0,016~(4)
$\gamma_{17,0}(Mo)$	$3128,\!60(7)$	1,34~(9)
$\gamma_{22,0}(Mo)$	3400,76(17)	0,005~(2)
$\gamma_{23,0}(Mo)$	3447,5~(4)	0,006~(1)
$\gamma_{24,0}(Mo)$	3511,79(14)	0,063~(7)
$\gamma_{25,0}(Mo)$	3534,25 (9)	0,0034~(4)
$\gamma_{(-1,5)}(Mo)$	3640, 6 (3)	0,007~(2)
$\gamma_{26,0}(Mo)$	3792,79(15)	0,052~(5)
$\gamma_{27,0}(Mo)$	3892,07(7)	0,014~(2)
$\gamma_{(-1,6)}(Mo)$	4136,2 (3)	0,007~(1)

6 Main Production Modes

 $\begin{cases} {\rm Mo} - 94({\rm p,n}){\rm Tc} - 94{\rm m} \\ {\rm Possible \ impurities: \ Tc} - 94 \ {\rm ground \ state.} \\ \\ \begin{cases} {\rm Mo} - 94({\rm d},2{\rm n}){\rm Tc} - 94{\rm m} \\ {\rm Possible \ impurities: \ Tc} - 94 \ {\rm ground \ state.} \\ \\ {\rm Mo} - 92(\alpha,2{\rm n}){\rm Ru} - 94({\rm EC}){\rm Tc} - 94{\rm m} \end{cases} \end{cases}$

7 References

- E.E. MOTTA, G.E. BOYD. Phys. Rev. 74 (1948) 220 (Half-life)
- H. MEDICUS, P. PREISWERK, P. SCHERRER. Helv. Phys. Acta 23 (1950) 299 (Half-life, Positron energies and emission proabilities, EC transition probabilities)
- S. MONARO, G.B. VINGIANI, R.A. RICCI, R. VAN LIESHOUT. Physica 28 (1962) 63 (Half-lives (Tc-94, Tc-94m), Gamma-ray energies and emission probabilities, Positron energies and emission probabilities, EC transition probabilities)
- J.M. MATUSZEK JR., T.T. SUGIHARA. Nucl. Phys. 42 (1963) 582 (Half-life of Tc-94 ground state)
- J.H. HAMILTON, K.E.G. LÖBNER, A.R. SATTLER, R. VAN LIESHOUT. Physica 30 (1964) 1802 (Gamma-ray energies and emission probabilities, Positron emission energies, Conversion-electron emission probabilities, ICC)
- K.A. BASKOVA, S.S. VASIL'EV, M.A. KHAMO-LEILA, L.YA. SHAVTVALOV. Bull. Acad. Sci. USSR, Phys. Ser. 29 (1966) 2094
- (Half-life of Tc-94 ground state, Gamma-ray emission probabilities)
- E. EICHLER, G. CHILOSI, N.R. JOHNSON. Phys. Lett. 24B (1967) 140 (Tc-94 nuclear levels, Tc-94m decay mode, Ru-94 half-life)
- G.G.J. BOSWELL, T. MCGEE. J. Inorg. Nucl. Chem. 30 (1968) 1139 (Ru-94 half-life)
- N.K. ARAS, E. EICHLER, G.G. CHILOSI. Nucl. Phys. A112 (1968) 609 (Gamma-ray energies and emission probabilities)
- J. BARRETTE, A. BOUTARD, S. MONARO. Can. J. Phys. 47 (1969) 995 (Gamma-ray energies and emission probabilities)
- G.S. KATYKHIN, M.K. NIKITIN, YU.N. PODKOPAEV, J. VRZAL, J. LIPTAK. Bull. Acad. Sci. USSR, Phys. Ser. 32 (1969) 739
 - (Gamma-ray energies)
- N.B. GOVE, M.J. MARTIN. Nucl. Data Tables 10 (1971) 205 (EC/positron ratios)
- Y. SUGIYAMA, S. KIKUCHI. Nucl. Phys. A264 (1976) 179 (Nuclear levels, Gamma-ray energies)
- F.P. LARKINS. At. Data Nucl. Data Tables 20 (1977) 311 (Auger-electron energies)
- V.A. AGEEV, V.S. BELYAVENKO, I.N. VISHNEVSKY, V.A. ZHELTONOZHSKY. Program and Theses 36th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov (1986) 77 (Gamma-ray energies and emission probabilities)
- E. SCHÖNFELD. PTB report PTB-6.33-95-2 (1995)
 (P(K), P(L), P(M), P(N), P(O))
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527
- (Fluorescence yields, X-ray emission probability ratios, Auger-electron emission probability ratios)
- E. SCHÖNFELD, G. RODLOFF. PTB report PTB-6.11-98-1 (1998) (Auger electrons)
- E. SCHÖNFELD. Appl. Radiat. Isot. 49 (1998) 1353
 (P(K), P(L), P(M), P(N), P(O))
- E. SCHÖNFELD, G. RODLOFF. PTB report PTB-6.11-1999-1 (1999) (X(K))
- E. SCHÖNFELD, H. JANSSEN. Appl. Radiat. Isot. 52 (2000) 595 (P(X), P(Ae))
- I.M. BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR JR., P.O. TIKKANEN, S. RAMAN. At. Data Nucl. Data Tables 81 (2002) 1
- (Theoretical ICC)
- S. RAMAN, C.W. NESTOR JR., A. ICHIHARA, M.B. TRZHASKOVSKAYA. Phys. Rev. C66 (2002) 044312 (Theoretical ICC)
- C. FRANSEN, N. PIETRALLA, Z. AMMAR, D. BANDYOPADHYAY, N. BOUKHAROUBA, P. VON BRENTANO, A. DE-WALD, J. GABLESKE, A. GADE, J. JOLIE, U. KNEISSL, S.R. LESHER, A.F. LISETSKIY, M.T. MCELLISTREM, M. MERRICK, ET AL. Phys. Rev. C67 (2003) 024307 (Nuclear levels, Comparison of device and emission productivity).
- (Nuclear levels, Gamma-ray energies and emission probabilities, Mixing ratios)
- D. Abriola, A.A. Sonzogni. Nucl. Data Sheets 107 (2006) 2423 (Nuclear levels)

- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)
- M. WANG, G. AUDI, A.H. WAPSTRA, F.G. KONDEV, M. MACCORMICK, X. XU, B. PFEIFFER. Chin. Phys. C36 (2012) 1603 (Q-value)

(2)⁺; 0 51,9 (10) min

Surrey Univ. & Manipal Univ. / A.L. Nichols

Surrey Univ. & Manipal Univ. / A.L. Nichols

109

Ru-106 desintegrates by beta minus emission to the ground state of Rh-106. Le ruthénium 106 se désintègre 100% par émission bêta vers le niveau fondamental du rhodium 106.

2 Nuclear Data

$T_{1/2}(^{106}\mathrm{Ru})$:	$371,\!5$	(21)	d
$T_{1/2}(^{106}\text{Rh})$:	$_{30,1}$	(3)	\mathbf{s}
$Q^{-}(^{106}{ m Ru})$:	$39,\!40$	(21)	keV

2.1 β^- Transitions

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	$\lg ft$
$\beta_{0,0}^-$	39,40 (21)	100	Allowed	4,31

3 Atomic Data

3.1 Rh

ω_K	:	0,809	(4)
$\bar{\omega}_L$:	0,0494	(12)
n_{KL}	:	0,987	(4)

4 Electron Emissions

		Energy (keV)		Electrons (per 100 disint.)
$\beta_{0,0}^-$	max: avg:	$\begin{array}{ccc} 39,40 & (21) \\ 10,03 & (6) \end{array}$	}	100

5 Main Production Modes

 235 U(n,f) 106 Ru

6 References

- H.M.AGNEW. Phys. Rev. 77 (1950) 650 (Beta emission energies)
- R.P.SCHUMAN, M.E.JONES, A.C.MCWHERTER. J. Inorg. Nucl. Chem. 3 (1956) 160 (Half-life)
- W.F.MERRITT, P.J.CAMPION, R.C.HAWKINGS. Can. J. Phys. 35 (1957) 16 (Half-life)
- H.T.EASTERDAY, R.L.SMITH. Nucl. Phys. 20 (1960) 155 (Half-life)
- E.I.WAYTT, S.A.REYNOLDS, T.H.HANDLEY, W.S.LYON, H.A.PARKER. Nucl. Sci. Eng. 11 (1961) 74 (Half-life)
- K.F.FLYNN, L.E.GLENDENIN, E.P.STEINBERG. Nucl. Sci. Eng. 22 (1965) 416 (Half-life)
- H.HOUTERMANS, O.MILOSEVIC, F.REICHEL. Int. J. Appl. Radiat. Isotop. 31 (1980) 153 (Half-life)
- K.F.WALZ, K.DEBERTIN, H.SCHRADER. Int. J. Appl. Radiat. Isotop. 34 (1983) 1191 (Half-life)
- H.SCHRADER. Appl. Radiat. Isot. 60 (2004) 317 (Half-life)
- M.WANG, G.AUDI, A.H.WAPSTRA, F.G.KONDEV, M.MACCORMICK, X.XU, B.PFEIFFER. Chin. Phys. C36 (2012) 1603

(Q value)

Rh-106 disintegrates by beta minus emission to the ground state and excited levels of Pd-106. Le rhodium 106 se désintègre par émission bêta principalement vers le niveau fondamental et les niveaux excités du palladium 106.

2 Nuclear Data

 $\begin{array}{rrrr} T_{1/2}(^{106}{\rm Rh}\) & : & 30,1 & (3) & {\rm s} \\ Q^-(^{106}{\rm Rh}\) & : & 3546 & (5) & {\rm keV} \end{array}$

2.1 β^- Transitions

	Energy (keV)	Probability (%)	Nature	$\lg ft$
$\beta_{0.37}^{-}$	144(5)	0,0000125 (19)		
$\beta_{0.36}^{}$	169(5)	0,000025 (9)		
$\beta_{0.35}^{-}$	226(5)	0,00087 (8)	Allowed	5,71
$\beta_{0.34}^{-}$	247(5)	0,000082 (21)		
$\beta_{0.33}^{-}$	272 (5)	0,000049 (14)		
$\beta_{0,32}^{-}$	294~(5)	0,00021 (4)	Allowed	6,7
$\beta_{0,31}^{-}$	296~(5)	0,000086 (16)	Allowed	$7,\!09$
$\beta_{0,30}^{-}$	325~(5)	0,00402 (13)	Allowed	$5,\!56$
$\beta_{0,29}^{-}$	382~(5)	0,00070 (5)	(Allowed)	$6,\!55$
$\beta_{0,28}^{-}$	462~(5)	$0,00278\ (13)$		
$\beta_{0,27}^{-}$	491(5)	0,0101~(5)	Allowed	5,76
$\beta_{0,26}^{-}$	509(5)	0,0022 (3)		
$\beta_{0,25}^{-}$	577(5)	0,00022 (4)	Unique 1st Forbidden	$7,\!82$
$\beta_{0,24}^{-}$	628~(5)	0,0183~(7)	Allowed	$5,\!87$
$\beta_{0,23}^{-}$	644~(5)	$0,00760\ (18)$	Allowed	$6,\!29$
$\beta_{0,22}^{-}$	668~(5)	0,0262 (9)	Allowed	$5,\!81$
$\beta_{0,21}^{-}$	718(5)	0,00731 (19)	Allowed	$6,\!47$
$\beta_{0,20}^{-}$	725~(5)	0,0090 (3)	Allowed	6,4

	Energy (keV)	Probability (%)	Nature	$\lg ft$
$\beta_{0,19}^{-}$	762(5)	0,00117 (8)	Allowed	7,36
$\beta_{0.18}^{-}$	828~(5)	0,00023~(12)		
$\beta_{0,17}^{-}$	841(5)	0,0106~(4)	(Allowed)	$6,\!56$
$\beta_{0.16}^{-}$	922~(5)	0,090 (3)	Allowed	5,78
$\beta_{0.15}^{-}$	1046~(5)	0,0284~(6)	1st Forbidden	$6,\!48$
$\beta_{0,14}^{-}$	1061 (5)	0,00093~(15)	(1st Forbidden)	$7,\!99$
$\beta_{0.13}^{-}$	1107(5)	0,0208 (5)	Allowed	6,71
$\beta_{0.12}^{-}$	1237(5)	0,0430 (7)	Allowed	$6,\!57$
$\beta_{0.11}^{-1}$	1268(5)	0,043~(5)	Allowed	$6,\!62$
$\beta_{0,10}^{-1}$	$1304\ (5)$	0,0372~(8)	Allowed	6,72
$\beta_{0,9}^{-}$	1545 (5)	0,448 (9)	Allowed	$5,\!93$
$\beta_{0.8}^{-}$	1637~(5)	0,00277 (21)	(Allowed)	8,24
$\beta_{0.7}^{-}$	1840(5)	0,0664 (10)	Allowed	$7,\!06$
$\beta_{0.6}^{-}$	1984~(5)	$1,\!67~(3)$	Allowed	5,79
$\beta_{0,4}^{-}$	2317~(5)	0,0051 (5)	Unique 2nd Forbidden	11
$\beta_{0,3}^{-}$	2412(5)	9,82~(15)	Allowed	$5,\!37$
$\beta_{0,2}^{-}$	2418(5)	0,608~(21)	Allowed	$6,\!58$
$\beta_{0,1}^{-}$	3034~(5)	$^{8,2}(3)$	Allowed	$5,\!87$
$\beta_{0,0}^{\underline{s},\underline{s}}$	3546~(5)	78,80 (24)	Allowed	$5,\!18$

2.2 Gamma Transitions and Internal Conversion Coefficients

	$\frac{\rm Energy}{\rm (keV)}$	$\begin{array}{c} \mathrm{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	$ \overset{\alpha_K}{(10^{-3})} $	$ \substack{\alpha_L \\ (10^{-4})} $	$\overset{\alpha_M}{(10^{-5})}$	$ \overset{\alpha_T}{(10^{-3})} $	$\overset{\alpha_{\pi}}{(10^{-4})}$
$\gamma_{6,3}(\mathrm{Pd})$	428,49 (5)	0,0711 (24)	$\mathrm{E2}$	8,17 (12)	10,63(15)	20,0(3)	9,47(14)	
$\gamma_{6,2}(\mathrm{Pd})$	434,23(4)	0,020(4)	E2	7,85(11)	10,19(15)	19,2(3)	9,09(13)	
$\gamma_{9,6}(\mathrm{Pd})$	439,23(6)	0,0111(16)						
$\gamma_{1,0}(\mathrm{Pd})$	511,8547 (23)	20,63 (23)	E2	4,84(7)	6,12(9)	11,53(17)	5,59(8)	
$\gamma_{7,2}(\mathrm{Pd})$	578,42(6)	0,0090(6)	E2	3,43(5)	4,27(6)	8,04 (12)	3,95(6)	
$\gamma_{2,1}(\mathrm{Pd})$	616,17(3)	0,733(17)	M1 + 98% E2	2,89(4)	3,57(5)	6,71(10)	3,33(5)	
$\gamma_{3,1}(\mathrm{Pd})$	621,91 (4)	9,90(15)	E2	2,82(4)	3,48(5)	6,54(10)	3,24(5)	
$\gamma_{10,6}(\mathrm{Pd})$	680,23 (6)	0,0103(6)	E1+14%M2	2,34(4)	2,74(4)	5,15(8)	2,68(4)	
$\gamma_{10,5}(\mathrm{Pd})$	684,80 (6)	0,00552 (21)						
$\gamma_{17,9}(\mathrm{Pd})$	702,8(10)	0,00029 (18)						
$\gamma_{11,6}(\mathrm{Pd})$	715,86(9)	0,0099(4)						
$\gamma_{4,1}(\mathrm{Pd})$	717,45(4)	0,0067 (4)	E2	1,94(3)	2,36(4)	4,43~(7)	2,23(4)	
$\gamma_{12,5}(\mathrm{Pd})$	751,26 (20)	0,00121 (23)						
$\gamma_{9,2}(\mathrm{Pd})$	873,46 (6)	0,436 (8)	E2	1,201 (17)	1,432(20)	2,69(4)	1,375(20)	
$\gamma_{15,5}(\mathrm{Pd})$	942,63 (9)	0,00060 (18)						
$\gamma_{5,1}(\mathrm{Pd})$	1045,83(4)	0,0131 (16)	M1 + 94% E2	0,803(12)	0,942(14)	1,766(25)	0,918(13)	
$\gamma_{6,1}(\mathrm{Pd})$	1050, 40 (3)	1,492 (25)	M1+5,4%E2	0,883~(13)	1,018(15)	1,91(3)	1,007(15)	
$\gamma_{16,6}(\mathrm{Pd})$	1062, 15(6)	0,0304 (19)						
$\gamma_{10,3}(\mathrm{Pd})$	1108,72(6)	0,0056 (3)						
$\gamma_{10,2}(\mathrm{Pd})$	1114,46(6)	0,0117 (3)	M1+69%E2	0,720(12)	0,838(14)	1,570(25)	0,823(14)	0,00830(17)
$\gamma_{2,0}(\mathrm{Pd})$	1128,02 (3)	0,398~(8)	E2	0,675~(10)	0,790(11)	1,479(21)	0,773~(11)	0,01341 (19)
$\gamma_{3,0}(\mathrm{Pd})$	1133,76 (4)		E0					
$\gamma_{11,2}(\mathrm{Pd})$	1150,09 (9)	0,00287 (17)	E2	0,648 (9)	0,757(11)	1,417(20)	0,742(11)	0,0248(4)
$\gamma_{18,5}(\mathrm{Pd})$	1159,91 (21)	0,00023 (12)						
$\gamma_{12,2}(\mathrm{Pd})$	1180,80 (6)	0,0144 (3)	M1+0,4%E2	0,689(10)	0,792(12)	1,482(22)	0,790(12)	0,0421 (7)
$\gamma_{7,1}(\mathrm{Pd})$	1194,59(5)	0,0573 (8)	E2	0,597 (9)	0,696(10)	1,304(19)	0,689(10)	0,0664 (10)
$\gamma_{13,4}(\mathrm{Pd})$	1209,80 (8)	0,00039 (8)						
$\gamma_{20,6}(\mathrm{Pd})$	1258,72 (9)	0,00066 (8)						
LNE – LNHB/CEA Table de Radionucléides

	Energy (keV)	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	$\binom{\alpha_K}{(10^{-3})}$	$ \overset{\alpha_L}{(10^{-4})} $	$ \overset{\alpha_M}{(10^{-5})} $	$ \overset{\alpha_T}{(10^{-3})} $	(10^{-4})
$\gamma_{21.6}(Pd)$	1266,04 (9)	0,00109(10)						
$\gamma_{13,3}(Pd)$	1305, 34 (8)	0,00109(12)						
$\gamma_{22,6}(\mathrm{Pd})$	1315,67 (8)	0,0030(5)	E2	0,489(7)	0,567(8)	1,061(15)	0,586(9)	0,280(4)
$\gamma_{24,6}(\mathrm{Pd})$	1355,61 (9)	0,00060(25)						
$\gamma_{24,5}(\mathrm{Pd})$	1360, 18 (9)	0,0018(4)						
$\gamma_{15,2}(\mathrm{Pd})$	1372,29 (9)	0,00199 (15)						
$\gamma_{8,1}(\mathrm{Pd})$	1397,52 (16)	0,00277 (21)						
$\gamma_{9,1}(\mathrm{Pd})$	1489,63(5)	0,0018 (3)						
$\gamma_{16,2}(\mathrm{Pd})$	1496, 38(6)	0,0240 (17)						
$\gamma_{27,5}(\mathrm{Pd})$	1498,74(16)	0,0068 (4)						
$\gamma_{6,0}(\mathrm{Pd})$	1562,25(3)	0,156(8)						
$\gamma_{17,3}(\text{Pd})$	1572,48(20)	0,00185(19)						
$\gamma_{17,2}(\text{Pd})$	1577,28(9)	0,00105(16)						
$\gamma_{20,3}(Pd)$	1687,21(10) 1602.2(2)	0,00055(16)						
$\gamma_{20,2}(Pd)$	1095,2(5) 1720,46(20)	0,00082(14) 0.00200(12)						
$\gamma_{10,1}(Fd)$	1750,40(20) 176626(0)	0,00209(13)	\mathbf{F}^{2}	0.274(4)	0.314(5)	0.586 (0)	0.506 (7)	1.03(3)
$\gamma_{11,1}(\mathbf{I} \mathbf{d})$	1700,20(9) 1774.46(10)	0,030(3)	112	0,214 (4)	0,314 (0)	0,380(3)	0,500 (7)	1,35 (5)
$\gamma_{23,2}(Pd)$	1784.10(9)	0.00043(12)						
$\gamma_{12,1}(Pd)$	1796.97(5)	0.0274(5)	M1 + 5.9% E2	0.287(4)	0.327(5)	0.611(9)	0.516(8)	1.89(3)
$\gamma_{28,4}(Pd)$	1854,91 (20)	0,00125(10)	. ,	, ()	, , ,	, , ,	/ (/	, , ,
$\gamma_{26,2}(\mathrm{Pd})$	1909,30(17)	0,00107(25)						
$\gamma_{13,1}(\mathrm{Pd})$	1927,25(7)	0,0147(4)	M1+0,5%E2	0,250(4)	0,285(4)	0,533~(8)	0,532 (8)	2,47(4)
$\gamma_{28,2}(\mathrm{Pd})$	1954,9(4)	0,00020 (4)						
$\gamma_{14,1}(\mathrm{Pd})$	1973,4 (8)	0,00017 (4)						
$\gamma_{15,1}(\mathrm{Pd})$	1988,46(8)	0,0258 (5)	E1+0,25%M2	0,1173 (22)	0,1318 (25)	0,246~(5)	0,735(11)	6,02 (9)
$\gamma_{30,2}(\mathrm{Pd})$	2093,35(25)	0,00029(6)	E2	0,200(3)	0,228(4)	0,426(6)	0,576(8)	3,48(5)
$\gamma_{16,1}(\mathrm{Pd})$	2112,55(5)	0,0351(7)	E2	0,197(3)	0,224(4)	0,419(6)	0,581(9)	3,57(5)
$\gamma_{35,3}(\text{Pd})$	2185,7(5)	0,00025(6)		0.104 (0)	0.000 (0)	0.410.(0)	0 504 (0)	0 = 0 (0)
$\gamma_{17,1}(\text{Pd})$	2193,19(10)	0,00495(21)	M1+2,8%E2	0,194(3)	0,220(3)	0,412(6)	0,594(9)	3,73 (6)
$\gamma_{10,0}(Pd)$	2242,48(0)	0,00195(8) 0.00117(8)						
$\gamma_{19,1}(Pd)$	2271,09(21) 2300.12(0)	0,00117(8) 0.00575(16)						
$\gamma_{20,1}(Pd)$	2305,12(9) 231644(9)	0,00575(10) 0,00622(16)	E2	0.1670(24)	0.189(3)	0.354(5)	0.646(9)	456(7)
$\gamma_{22,1}(Pd)$	2366.07(7)	0.0232(7)	E2	0.1608(23)	0.182(3)	0.341(5)	0.663(10)	4.80(7)
$\gamma_{23,1}(Pd)$	2390.63(10)	0.00660(16)	M1+1.0%E2	0.1645(24)	0.186(3)	0.349(5)	0.654(10)	4.67(7)
$\gamma_{24,1}(Pd)$	2406,01 (8)	0,0145(4)	M1+0,25%E2	0,1626(23)	0,184(3)	0,344(5)	0,659(10)	4,74 (7)
$\gamma_{13,0}(Pd)$	2439,10(7)	0,00464 (13)	E2	0,1525(22)	0,1727 (25)	0,323(5)	0,689(10)	5,15(8)
$\gamma_{25,1}(\mathrm{Pd})$	2456, 83(21)	0,00022 (4)						
$\gamma_{14,0}(\mathrm{Pd})$	2484,66 (20)	0,00076~(14)						
$\gamma_{26,1}(\mathrm{Pd})$	2525,47 (17)	0,00011 (3)						
$\gamma_{27,1}(\mathrm{Pd})$	2542,82 (10)	0,00289 (9)	M1+0,5%E2	0,1464~(21)	0,1657~(24)	0,310~(5)	0,705~(10)	5,39(8)
$\gamma_{28,1}(\mathrm{Pd})$	2571,19(20)	0,00133 (6)						
$\gamma_{29,1}(\text{Pd})$	2651,43(20)	0,00068(4)						
$\gamma_{17,0}(\text{Pd})$	2705,30 (8)	0,00248(13)	Fa		0.1.40.6 (0.1)	0.000 (1)		a 11 (a)
$\gamma_{30,1}(\text{Pd})$	2709,52(25)	0,00373(11)	${ m E2}$	0,1271 (18)	0,1436(21)	0,268(4)	0,785(11)	6,41(9)
$\gamma_{32,1}(Pd)$	2740,2(4)	0,00021(4)						
$\gamma_{34,1}(\mathbf{Fd})$	2700,2(3) 2800,1(3)	0,000082(21) 0.00062(4)	\mathbf{F}^{2}	0.1105(17)	0 1340 (10)	0.252 (4)	0.822 (12)	6 86 (10)
$\gamma_{35,1}(\mathbf{I}\mathbf{d})$	2809,1(3) 2821.2(3)	0,00002(4) 0.00120(4)	112	0,1130 (17)	0,1349(19)	0,202 (4)	0,022 (12)	0,00 (10)
$\gamma_{20,0}(Pd)$	2865(1)	0.000120(1)						
$\gamma_{23,0}(Pd)$	2902.6(5)	0.000066(21)						
$\gamma_{24,0}(Pd)$	2917.6(3)	0,00094(4)						
$\gamma_{26,0}(Pd)$	3037,4(3)	0,00105(4)						
$\gamma_{27,0}(\mathrm{Pd})$	3055,1 (3)	0,00036 (4)						
$\gamma_{29,0}(\mathrm{Pd})$	3164,7(10)	0,000023 (12)						
$\gamma_{31,0}(\mathrm{Pd})$	3249,9(5)	0,000086 (16)						
$\gamma_{33,0}(\mathrm{Pd})$	3273,5(7)	0,000049 (14)						
$\gamma_{36,0}(\mathrm{Pd})$	3376,0(14)	0,0000113 (21)						
$\gamma_{37,0}(\mathrm{Pd})$	3401,9 (9)	0,0000125 (19)						

3 Atomic Data

3.1 Pd

ω_K	:	0,820	(4)
$\bar{\omega}_L$:	$0,\!0536$	(13)
n_{KL}	:	$0,\!975$	(4)

3.1.1 X Radiations

		$\frac{\rm Energy}{\rm (keV)}$		Relative probability
X _K	V.	01 0002		50.02
	$\mathbf{K}\alpha_2$ $\mathbf{K}\alpha_1$	21,0203 21,1774		52,93 100
	$egin{array}{c} \mathrm{K}eta_3\ \mathrm{K}eta_1\ \mathrm{K}eta_5^{\prime\prime} \end{array}$	23,7914 23,819 24,013	}	27,44
	$\begin{array}{c} \mathrm{K}\beta_2\\ \mathrm{K}\beta_4 \end{array}$	24,2994 24,344	}	4,66
X_L	$egin{array}{c} { m L}\ell \ { m L}lpha \ { m L}eta \ { m L}\gamma \ { m L}\gamma \end{array}$	2,5045 2,8337 - 2,839 2,6611 2,9904 - 3,1715 3,2464 - 3,5545		

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K KLL KLX KXY	17,032 - 17,884 20,032 - 21,176 23,011 - 24,347	$100 \\ 42 \\ 4,4$
Auger L	1,83 - 3,60	

4 Electron Emissions

		Energy (keV)			Electrons (per 100 disint.)
\mathbf{e}_{AL}	(Pd)	1,83 -	- 3,60		0,1377 (8)
e _{AK}	(Pd) KLL KLX KXY	17,032 - 20,032 - 23,011 -	- 17,884 - 21,176 - 24,347	<pre>}</pre>	0,0238~(7)
$\beta^{0,37}$	max: avg:	144	(5)	}	0,0000125 (19)
$\beta^{0,36}$	max: avg:	169	(5)	}	0,000025 (9)
$\beta^{0,35}$	max: avg:	$226 \\ 62,9$	(5) (16)	}	0,00087 (8)
$\beta^{0,34}$	max: avg:	247	(5)	}	0,000082 (21)
$\beta^{0,33}$	max: avg:	272	(5)	}	0,000049 (14)
$\beta^{0,32}$	max: avg:	$294 \\ 84,5$	(5) (17)	}	0,00021 (4)
$\beta^{0,31}$	max: avg:	$296 \\ 85,2$	(5) (17)	}	0,000086 (16)
$\beta^{0,30}$	max: avg:	$325 \\ 94,5$	(5) (17)	}	0,00402 (13)
$\beta^{0,29}$	max: avg:	$382 \\ 113,8$	(5) (17)	}	0,00070 (5)
$\beta^{0,28}$	max: avg:	462	(5)	}	0,00278 (13)
$\beta^{0,27}$	max: avg:	$491 \\ 151,8$	(5) (18)	}	0,0101~(5)
$\beta^{0,26}$	max: avg:	509	(5)	}	0,0022 (3)
$\beta^{0,25}$	max: avg:	$577 \\ 202,8$	(5) (19)	}	0,00022 (4)
$\beta^{0,24}$	max: avg:	$628 \\ 202,3$	(5) (19)	}	0,0183~(7)
$\beta^{0,23}$	max: avg:	$644 \\ 208,1$	(5) (19)	}	0,00760 (18)
$\beta^{0,22}$	max: avg:	$668 \\ 217,5$	(5) (20)	}	0,0262 (9)
$\beta^{0,21}$	max: avg:	$718 \\ 236,6$	(5) (20)	}	0,00731 (19)
$\beta^{0,20}$	max: avg:	$725 \\ 239,4$	(5) (20)	}	0,0090 (3)

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$			Electrons (per 100 disint.)
$\beta^{0,19}$	max: avg:	$762 \\ 254$	(5) (2)	}	0,00117 (8)
$\beta_{0,18}^-$	max: avg:	828	(5)	}	0,00023 (12)
$\beta^{0,17}$	max: avg:	$841 \\ 285,1$	(5) (20)	}	0,0106~(4)
$\beta_{0,16}^-$	max: avg:	$922 \\ 317,8$	(5) (21)	}	0,090 (3)
$\beta_{0,15}^-$	max: avg:	$1046 \\ 369,0$	(5) (21)	}	0,0284~(6)
$\beta_{0,14}^-$	max: avg:	$1061 \\ 375,6$	(5) (21)	}	0,00093 (15)
$\beta_{0,13}^-$	max: avg:	$1107 \\ 394,7$	(5) (21)	}	0,0208~(5)
$\beta_{0,12}^-$	max: avg:	$1237 \\ 450,1$	(5) (22)	}	0,0430 (7)
$\beta_{0,11}^-$	max: avg:	$1268 \\ 463,3$	(5) (22)	}	0,043~(5)
$\beta_{0,10}^-$	max: avg:	$1304 \\ 478,7$	(5) (22)	}	0,0372 (8)
$\beta_{0,9}^-$	max: avg:	$1545 \\ 584,3$	(5) (23)	}	0,448 (9)
$\beta_{0,8}^-$	max: avg:	$1637 \\ 625,2$	(5) (23)	}	0,00277 (21)
$\beta_{0,7}^-$	max: avg:	$1840 \\ 716,4$	(5) (23)	}	0,0664 (10)
$\beta_{0,6}^-$	max: avg:	$1984 \\781,9$	(5) (23)	}	$1,\!67$ (3)
$\beta_{0,4}^-$	max: avg:	2317 951,8	(5) (23)	}	0,0051 (5)
$\beta_{0,3}^-$	max: avg:	2412 978,9	(5) (24)	}	9,82~(15)
$\beta_{0,2}^-$	max: avg:	2418 981,6	(5) (24)	}	0,608~(21)
$\beta_{0,1}^-$	max: avg:	$3034 \\ 1269,5$	(5) (24)	}	8,2 (3)
$\beta_{0,0}^-$	max: avg:	$3546 \\ 1511,1$	(5) (24)	}	78,80 (24)

5 Photon Emissions

5.1 X-Ray Emissions

		${ m Energy}\ ({ m keV})$		Photons (per 100 disint.)		
$\begin{array}{c} \text{XL} \\ \text{XK}\alpha_2 \\ \text{XK}\alpha_1 \end{array}$	(Pd) (Pd) (Pd)	2,5045 - 3,5545 21,0203 21,1774		0,00785 (14) 0,0310 (5) 0,0586 (9)	}	$K\alpha$
$egin{array}{c} { m XK}eta_3\ { m XK}eta_1\ { m XK}eta_5^{\prime\prime} \end{array}$	(Pd) (Pd) (Pd)	$23,7914 \\ 23,819 \\ 24,013$	<pre>}</pre>	0,01608 (29)		$\mathrm{K}'eta_1$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4 \end{array}$	(Pd) (Pd)	24,2994 24,344	}	0,00273 (10)		$\mathrm{K}'eta_2$

5.2 Gamma Emissions

	Energy	Photons
	(keV)	(per 100 disint.)
$\gamma_{6,3}(\mathrm{Pd})$	428,49(5)	0,0704 (24)
$\gamma_{6,2}(\mathrm{Pd})$	434,23~(4)	0,020 (4)
$\gamma_{9,6}(\mathrm{Pd})$	439,23~(6)	0,0111 (16)
$\gamma_{1,0}(\mathrm{Pd})$	511,8534 (23)	$20,\!52~(23)$
$\gamma_{7,2}(\mathrm{Pd})$	578,42~(6)	0,0090 (6)
$\gamma_{2,1}(\mathrm{Pd})$	616, 16 (3)	$0,731\ (17)$
$\gamma_{3,1}(\mathrm{Pd})$	621,90 (4)	$9,\!87\ (15)$
$\gamma_{10,6}(\text{Pd})$	$680,\!23~(6)$	0,0103~(6)
$\gamma_{10,5}(\mathrm{Pd})$	$684,\!80~(6)$	$0,00552\ (21)$
$\gamma_{17,9}(\mathrm{Pd})$	702,8(10)	0,00029 (18)
$\gamma_{11,6}(\mathrm{Pd})$	$715,\!86$ (9)	0,0099~(4)
$\gamma_{4,1}(\mathrm{Pd})$	717,44 (4)	0,0067~(4)
$\gamma_{12,5}(\mathrm{Pd})$	751,26 (20)	0,00121 (23)
$\gamma_{9,2}(\mathrm{Pd})$	$873,\!46~(6)$	$0,\!435~(8)$
$\gamma_{15,5}(\text{Pd})$	$942,\!63~(9)$	0,00060 (18)
$\gamma_{5,1}(\mathrm{Pd})$	1045,82 (4)	$0,0131\ (16)$
$\gamma_{6,1}(\mathrm{Pd})$	$1050,\!39$ (3)	1,490 (25)
$\gamma_{16,6}(\mathrm{Pd})$	1062, 14(6)	0,0304~(19)
$\gamma_{10,3}(\mathrm{Pd})$	1108,71~(6)	0,0056 (3)
$\gamma_{10,2}(\mathrm{Pd})$	1114,45~(6)	0,0117~(3)
$\gamma_{2,0}(\mathrm{Pd})$	1128,01 (3)	0,398~(8)
$\gamma_{11,2}(\text{Pd})$	1150,08 (9)	0,00287 (17)
$\gamma_{18,5}(\mathrm{Pd})$	$1159,\!90\ (21)$	0,00023~(12)
$\gamma_{12,2}(\mathrm{Pd})$	1180,79~(6)	0,0144~(3)
$\gamma_{7,1}(\mathrm{Pd})$	1194,58(5)	$0,\!0573\ (8)$
$\gamma_{13,4}(\mathrm{Pd})$	1209,79 (8)	0,00039 (8)
$\gamma_{20,6}(\mathrm{Pd})$	1258,71 (9)	0,00066 (8)

	Energy	Photons
	(keV)	(per 100 disint.)
$\gamma_{21,6}(\mathrm{Pd})$	1266,03 (9)	0,00109(10)
$\gamma_{13,3}(\text{Pd})$	1305,33(8)	0,00109(12)
$\gamma_{22,6}(\mathrm{Pd})$	1315,66 (8)	0,0030 (5)
$\gamma_{24,6}(\text{Pd})$	1355,60 (9)	0,00060 (25)
$\gamma_{24,5}(\text{Pd})$	1360,17 (9)	0,0018 (4)
$\gamma_{15,2}(\mathrm{Pd})$	1372,28 (9)	0,00199(15)
$\gamma_{8,1}(\mathrm{Pd})$	1397,51 (16)	0,00277 (21)
$\gamma_{9,1}(\mathrm{Pd})$	1489,61(5)	0,0018(3)
$\gamma_{16,2}(\text{Pd})$	1496,37(6)	0,0240 (17)
$\gamma_{27,5}(\text{Pd})$	1498,73(16)	0,0068(4)
$\gamma_{6,0}(\mathrm{Pd})$	1562,24(3)	0,156(8)
$\gamma_{17,3}(\mathrm{Pd})$	1572,47(20)	0,00185(19)
$\gamma_{17,2}(\mathrm{Pd})$	1577,27(9)	0,00105(16)
$\gamma_{20,3}(\text{Pd})$	1687,2(1)	0,00055(16)
$\gamma_{20,2}(\mathrm{Pd})$	1693,2(3)	0,00082(14)
$\gamma_{10,1}(\mathrm{Pd})$	1730,44 (20)	0,00209(13)
$\gamma_{11,1}(\text{Pd})$	1766,24(9)	0,030(5)
$\gamma_{23,2}(\text{Pd})$	1774,44(10)	0,00094(8)
$\gamma_{24,3}(\text{Pd})$	1784,08(9)	0,00043(12)
$\gamma_{12,1}(\mathrm{Pd})$	1796,95(5)	0,0274 (5)
$\gamma_{28,4}(\text{Pd})$	1854,89(20)	0,00125(10)
$\gamma_{26,2}(\text{Pd})$	1909,28(17)	0,00107 (25)
$\gamma_{13,1}(\text{Pd})$	1927,23(7)	0,0147(4)
$\gamma_{28,2}(\text{Pd})$	1954,9(4) 1072 4(8)	0,00020(4)
$\gamma_{14,1}(\text{Pd})$	1973,4(8) 1088 44(8)	0,00017 (4) 0.0258 (5)
$\gamma_{15,1}(Pd)$	1900,44(0) 2002,22(25)	0,0238(3)
$\gamma_{30,2}(Pd)$	2093,33(23) 2112.52(5)	0,00029(0)
$\gamma_{16,1}(\mathbf{ru})$	2112,52(5) 21857(5)	0,0001(7)
$\gamma_{35,3}(Fd)$	2100,7(0) 2103,17(10)	0,00025(0) 0.00405(21)
$\gamma_{17,1}(1 \text{ d})$	2135,17(10) 2242.45(5)	0,00495(21) 0,00105(8)
$\gamma_{10,0}(1 \text{ d})$	2242,46(0) 2271.86(21)	0,00135(8)
$\gamma_{19,1}(\mathbf{I} \mathbf{u})$	2309.09(9)	0.00575(16)
$\gamma_{20,1}(Pd)$	$2316\ 41\ (9)$	0,00673(10)
$\gamma_{21,1}(\mathbf{Pd})$	$2366\ 04\ (7)$	0.0232(10)
$\gamma_{22,1}(Pd)$	2390.6(1)	0.00659(16)
$\gamma_{23,1}(Pd)$	2405.98(8)	0.0145(4)
$\gamma_{24,1}(Pd)$	2439.07(7)	0.00464(13)
$\gamma_{25,1}(Pd)$	2456.79(21)	0.00022(4)
$\gamma_{23,1}(Pd)$	2484.63(20)	0.00076(14)
$\gamma_{26,1}(Pd)$	2525.43(17)	0.00011(3)
$\gamma_{20,1}(Pd)$	2542.79(10)	0.00289(9)
$\gamma_{28,1}(Pd)$	2571,16(20)	0,00133 (6)
$\gamma_{29,1}(Pd)$	2651.39(20)	0,00068 (4)
$\gamma_{170}(Pd)$	2705.26(8)	0,00248 (13)
$\gamma_{30,1}(Pd)$	2709,48 (25)	0,00373(11)
$\gamma_{32.1}(Pd)$	2740,1 (4)	0,00021 (4)
$\gamma_{34,1}(\mathrm{Pd})$	2788,2(5)	0,000082 (21)

	Energy (keV)	Photons (per 100 disint.)
$\gamma_{35,1}(\mathrm{Pd})$	2809,1 (3)	0,00062 (4)
$\gamma_{20,0}(\mathrm{Pd})$	2821,2 (3)	0,00120 (4)
$\gamma_{36,1}(\mathrm{Pd})$	2865(1)	0,000014 (8)
$\gamma_{23,0}(\mathrm{Pd})$	2902,6 (5)	0,000066 (21)
$\gamma_{24,0}(\mathrm{Pd})$	2917,6 (3)	0,00094 (4)
$\gamma_{26,0}(\mathrm{Pd})$	$3037,\!3\ (3)$	0,00105~(4)
$\gamma_{27,0}(\mathrm{Pd})$	3055,0~(3)	0,00036 (4)
$\gamma_{29,0}(\mathrm{Pd})$	3164,6(10)	0,000023 (12)
$\gamma_{31,0}(\mathrm{Pd})$	3249,8(5)	0,000086 (16)
$\gamma_{33,0}(\mathrm{Pd})$	3273,4(7)	0,000049 (14)
$\gamma_{36,0}(\mathrm{Pd})$	3375,9(14)	0,0000113 (21)
$\gamma_{37,0}(\mathrm{Pd})$	3401,8 (9)	0,0000125 (19)

6 Main Production Modes

 235 U(n,f) 106 Ru

 106 Ru $(\beta^{-})^{106}$ Rh

7 References

- W.SEELMANN-EGGEBERT. Naturwiss. 33 (1946) 279 (Half-life)
- W.C.PEACOCK. Phys. Rev. 72 (1947) 1049 (Beta emission energies, Beta emission probabilities)
- L.E.GLENDENIN, E.P.STEINBERG. NNES 9 (1950) 793 (Half-life)
- B.KAHN, W.S.LYON. Phys. Rev. 92 (1953) 902 (Gamma ray energies, Gamma-ray emission probabilities)
- E.I.FIRSOV, A.A.BASHILOV. Izvest. Akad. Nauk SSSR, Ser. Fiz. 21 (1957) 1633; Columbia Tech. Transl. 21 (1958) 1619
 - (Gamma ray energies, Gamma-ray emission probabilities)
- E.P.GRIGOREV, A.V.ZOLOTAVIN, I.I.KUZMIN, E.D.PAVLITSKAIA. Izvest. Akad. Nauk SSSR, Ser. Fiz. 22 (1958) 194; Columbia Tech. Transl. 22 (1959) 191
- (Beta emission energies, Beta emission probabilities)
- R.L.ROBINSON, F.K.McGOWAN, W.G.SMITH. Phys. Rev. 119 (1960) 1692 (Gamma ray energies, Gamma-ray emission probabilities)
- O.J.SEAGERT, J.L.DEMUYNCK. Nucl. Phys. 16 (1960) 492 (Gamma ray energies, Gamma-ray emission probabilities)
- S.Y.AMBIYE, R.P.SHARMA. Nucl. Phys. 29 (1962) 657
- (Gamma ray energies, Gamma-ray emission probabilities, Beta emission probabilities)
- T.J.KENNETT, G.L.KEECH, Nucl. Instrum. Methods 24 (1963) 142
- (Beta emission energies, Beta emission probabilities)
- R.L.ROBINSON, P.H.STELSON, F.K.McGOWAN, J.L.C.FORD, JR., W.T.MILNER. Nucl. Phys. 74 (1965) 281 (Gamma ray energies)
- V.MIDDLEBOE. Nature 211 (1966) 283 (Half-life)
- V.V.OVECHKIN, T.K.RAGIMOV, D.F.RAU. Yadern. Fiz. 4 (1966) 683 (Gamma ray energies, Gamma-ray emission probabilities)
- A.S.JOHNSTON, G.M.JULIAN. Bull. Am. Phys. Soc. 11, No. 3 (1966) 409 (Beta emission energies, Beta emission probabilities)
- H.FOREST, M.HUGUET, C.YTHIER. C. R. Acad. Sci. (Paris) 264B (1967) 1614 (Gamma ray energies, Gamma-ray emission probabilities)

- P.V.RAO, R.W.FINK. Nucl. Phys. A103 (1967) 385 (Gamma ray energies, Gamma-ray emission probabilities)
- J.VRZAL, E.P.GRIGOREV, A.V.ZOLOTAVIN, J.LIPTAK, V.O.SERGEEV, J.URBANETS. Izvest. Akad. Nauk SSSR, Ser. Fiz. 31 (1967) 696; Bull. Acad. Sci. USSR, Phys. Ser. 31 (1968) 692 (Gamma ray energies, Gamma-ray emission probabilities)
- J.HATTULA, E.LIUKKONEN. Ann. Acad. Sci. Fenn. Ser. A VI (1968) 274 (Gamma ray energies, Gamma-ray emission probabilities)
- KL.-D.STRUTZ, H.-J.STRUTZ, A. FLAMMERSFELD. Z. Phys. 221 (1969) 231 (Gamma ray energies, Gamma-ray emission probabilities)
- E.BECK. Nucl. Instrum. Methods 76 (1969) 77 (Beta emission energies)
- Y.Kobayashi. JAERI-1178 (1969) 21 (Half-life)
- P.Odru. Radiochim. Acta 12 (1969) 64 (Gamma-ray emission probabilities)
- T.AZUMA, Y.SATO. Annual Rep. Radiat. Center Osaka Prefect. 12 (1971) 28 (Gamma ray energies, Gamma-ray emission probabilities)
- C.MARSOL, O.RAHMOUNI, G.ARDISSON, C. R. Acad. Sci. (Paris) 275B (1972) 805
- (Gamma ray energies, Gamma-ray emission probabilities)C.MARSOL, G.ARDISSON. Rev. Roumaine Phys. 18 (1973) 1101
- (Gamma ray energies, Gamma-ray emission probabilities)
- K.DEBERTIN, U.SCHOTZIG, K.F.WALZ, H.M.WEISS. Ann. Nucl. Energy 2 (1975) 37 (Gamma-ray emission probabilities)
- A.M.GEIDELMAN, V.V.OVECHKIN, D.F.RAU, P.I.FEDOTOV, Y.V.KHONOLOV. Izvest. Akad. Nauk SSSR, Ser. Fiz. 39 (1975) 555; Bull. Acad. Sci. USSR, Phys. Ser. 39, No. 3 (1975) 76 (Gamma-ray emission probabilities)
- S.T.HSUE, H.H.HSU, F.K.WOHN, W.R.WESTERN, S.A.WILLIAMS. Phys. Rev. C12 (1975) 582 (Gamma ray energies, Gamma-ray emission probabilities)
- K.SHIZUMA, H.INOUE, Y.YOSHIZAWA. Nucl. Instrum. Methods 137 (1976) 599 (Gamma ray energies)
- K.OKANO, Y.KAWASE, S.YAMADA. J. Phys. Soc. Japan 43 (1977) 381 (Gamma ray energies, Gamma-ray emission probabilities)
- R.KAUR, A.K.SHARMA, S.S.SOOCH, N.SINGH, P.N. TREHAN. J. Phys. Soc. Japan 51 (1982) 23 (Gamma ray energies, Gamma-ray emission probabilities)
- H.KUMAHORA, H.INOUE, Y.YOSHIZAWA. Nucl. Instrum. Methods 206 (1983) 489 (Gamma ray energies)
- R.C.GREENWOOD, D.A.STRUTTMANN, K.D.WATTS. Nucl. Instrum. Methods Phys. Res. A317 (1992) 175 (Beta emission probabilities)
- T.CHANG, S.WANG, H.WANG, B.MENG. Nucl. Instrum. Methods Phys. Res. A325 (1993) 196 (Gamma ray energies)
- E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (XK, XL, Auger electrons)
- R.G.HELMER, C.VAN DER LEUN. Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma ray energies)
- I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN. At. Data Nucl. Data Tables 81 (2002) 1 (ICC)
- T.KIBÉDI, R.H.SPEAR. At. Data Nucl. Data Tables 89 (2005) 77 (E0 transition)
- D.DE FRENNE, A.NEGRET. Nucl. Data Sheets 109 (2008) 943 (Spin, Parity, Multipolarities, Energy level)
- T.KIBÉDI, T.W.BURROWS, M.B.TRAZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)
- M.WANG, G.AUDI, A.H.WAPSTRA, F.G.KONDEV, M.MACCORMICK, X.XU, B.PFEIFFER. Chin. Phys. C36 (2012) 1603
 - $(\mathbf{Q} \text{ value})$

0

1 Decay Scheme

Cd-109 decays by electron capture to the isomeric state (88 keV) of Ag-109. Le cadmium 109 se désintègre uniquement par capture électronique vers l'état isomérique de l'argent 109 (88 keV).

2 Nuclear Data

 $\begin{array}{rrrr} T_{1/2}(^{109}\mathrm{Cd}~) &:& 461,9 & (4) & \mathrm{d} \\ Q^+(^{109}\mathrm{Cd}~) &:& 215,5 & (18) & \mathrm{keV} \end{array}$

2.1 Electron Capture Transitions

	Energy (keV)	Probability (%)	Nature	$\lg ft$	P_K	P_L	P_M
$\epsilon_{0,1}$	127,5(18)	100	Allowed	6	0,812 (3)	$0,\!150(3)$	0,0321 (9)

2.2 Gamma Transitions and Internal Conversion Coefficients

	$\frac{\rm Energy}{\rm (keV)}$	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$\gamma_{1,0}(\mathrm{Ag})$	88,0341 (10)	100	E3	11,41 (16)	12,06 (17)	2,47(4)	26,3(4)

3 Atomic Data

3.1 Ag

ω_K	:	0,831	(4)
$\bar{\omega}_L$:	$0,\!0583$	(14)
n_{KL}	:	0,964	(4)

3.1.1 X Radiations

		Energy (keV)		Relative probability
X _K				
	$K\alpha_2$	21,9906		$53,\!05$
	$K\alpha_1$	$22,\!16317$		100
	$K\beta_3$	24,9118)	
	$K\beta_1$	$24,\!9427$	}	27,7
	${ m K}eta_5^{\prime\prime}$	$25,\!146$	J	
	$K\beta_2$	$25,\!4567$	١	4.99
	$\mathrm{K}\beta_4$	$25,\!512$	Ĵ	4,02
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	$2,\!634$		
	$L\alpha$	2,977 - 2,985		
	$\mathrm{L}\eta$	$2,\!807$		
	$L\beta$	3,151 - 3,438		
	$ m L\gamma$	3,431 - 3,748		

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K KLL KLX KXY	17,79 - 18,69 20,945 - 22,160 24,079 - 25,507	$100 \\ 42,5 \\ 4.51$
Auger L	1,8 - 3,8	1194

4 Electron Emissions

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$		Electrons (per 100 disint.)
e_{AL}	(Ag)	1,8 - 3,8		167,3(8)
e _{AK}	(Ag) KLL KLX KXY	17,79 - 18,69 20,945 - 22,160 24,079 - 25,507	}	20,8 (6)
$ec_{1,0 \text{ K}} \\ ec_{1,0 \text{ L}} \\ ec_{1,0 \text{ M}} \\ ec_{1,0 \text{ N}}$	$\begin{array}{c} (\mathrm{Ag}) \\ (\mathrm{Ag}) \\ (\mathrm{Ag}) \\ (\mathrm{Ag}) \end{array}$	62,520 (1) 84,2279 - 84,6826 87,3162 - 87,6670 87,9385 - 88,0304		$\begin{array}{c} 41,8 \ (8) \\ 44,1 \ (9) \\ 9,04 \ (19) \\ 1,413 \ (29) \end{array}$

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Photons (per 100 disint.)		
$\begin{array}{c} \text{XL} \\ \text{XK}\alpha_2 \\ \text{XK}\alpha_1 \end{array}$	$\begin{array}{c} (\mathrm{Ag}) \\ (\mathrm{Ag}) \\ (\mathrm{Ag}) \end{array}$	2,634 - 3,748 21,9906 22,16317		$\begin{array}{c} 10,37 \ (27) \\ 29,21 \ (30) \\ 55,1 \ (5) \end{array}$	}	$K\alpha$
$egin{array}{c} { m XK}eta_3\ { m XK}eta_1\ { m XK}eta_5^{\prime\prime} \end{array}$	$\begin{array}{c} (\mathrm{Ag}) \\ (\mathrm{Ag}) \\ (\mathrm{Ag}) \end{array}$	$24,9118 \\ 24,9427 \\ 25,146$	<pre>}</pre>	15,25 (20)		$\mathrm{K}'eta_1$
$\begin{array}{c} {\rm XK}\beta_2\\ {\rm XK}\beta_4 \end{array}$	$\begin{array}{c} (\mathrm{Ag}) \\ (\mathrm{Ag}) \end{array}$	$25,\!4567$ $25,\!512$	}	2,65(10)		$K'\beta_2$

5.2 Gamma Emissions

	Energy (keV)	Photons (per 100 disint.)
$\gamma_{1,0}(Ag)$	88,0336 (10)	$3,\!66~(5)$

6 Main Production Modes

 $\begin{cases} Cd - 108(n,\gamma)Cd - 109 \quad \sigma : 1,1 (3) \text{ barns} \\ Possible impurities: Ag - 110m \\ \\ Ag - 109(p,n)Cd - 109 \\ Possible impurities: none \end{cases}$

7 References

- L.W.ALVAREZ, A.C.HELMHOLZ, E.NELSON. Phys. Rev. 57 (1940) 660 (Half-life isomeric level)
- A.C.HELMHOLZ. Phys. Rev. 60 (1941) 415 (Half-life isomeric level)
- M.L.WIEDENBECK. Phys. Rev. 67 (1945) 92 (Half-life isomeric level)
- H.BRADT, P.C.GUGELOT, O.HUBER, H.MEDICUS, P.PREISWERK, P.SCHERRER, R.STEFFEN. Helv. Phys. Acta 20 (1947) 153
- (Half-life isomeric level)
- J.R.GUM, M.L.POOL. Phys. Rev. 80 (1950) 315 (Half-life)
- E.J.WOLICKI, B.WALDMAN, W.C.MILLER. Phys. Rev. 82 (1951) 486 (Half-life isomeric level)
- E.DER MATEOSIAN. Phys. Rev. 92 (1953) 938 (X-ray emission probabilities)

- J.BRUNNER, O.HUBER, R.JOLY, D.MAEDER. Helv. Phys. Acta 26 (1953) 588 (Conv. Elec. emission probabilities)
- G.BERTOLINI, A.BISI, E.LAZZARINI, L.ZAPPA. Nuovo Cimento 11 (1954) 539 (X-ray emission probabilities)
- A.H.WAPSTRA, W.VANDEREIJK. Nucl. Phys. 4 (1957) 325 (X-ray emission probabilities)
- H.W.BOYD, J.H.HAMILTON, A.R.SATTLER, P.F.A.GOUDSMIT. Physica 30 (1964) 124 (Conv. Elec. emission probabilities)
- S.K.SEN, I.O.DUROSINMI-ETTI. Phys. Lett. 18 (1965) 144 (Conv. Elec. emission probabilities)
- R.B.MOLER, R.W.FINK. Phys. Rev. 2B (1965) B282 (X-ray emission probabilities)
- H.LEUTZ, K.SCHNECKENBERGER, H.WENNINGER. Nucl. Phys. 63 (1965) 263 (X-ray emission probabilities, Conv. Elec. emission probabilities, Half-life,Q(EC))
- J.W.F.JANSEN, A.H.WAPSTRA. Internal Conversion Processes, ed. J. H. Hamilton, Academic Press, New York (1966) p.237
- (K X-ray emission probabilities, Gamma-ray emission probabilities)
- I.O.DUROSINMI-ETTI, D.R.BRUNDRIT, S.K.SEN. International Conversion Processes, Ed. Hamilton, Acad. Press, New York (1966) 201
- (K X-ray emission probabilities, X-ray emission probabilities)
 M.S.FREEDMAN, F.T.PORTER, F.WAGNER JR., Phys. Rev. 151 (1966) 886
- (K X-ray emission probabilities, Gamma-ray emission probabilities)
- V.MIDDELBOE. Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 35,8 (1966) (Half-life isomeric level)
- I.A.ABRAMS, L.L. PELEKIS. Program and Theses, Proc. 17th All Union Conf. Nucl. spectroscopy and Struct. At. Nuclei, Kharkov (1967) 30 (Half-life isomeric level)
- J.LIBERT. Nucl. Phys. A102 (1967) 477 (Gamma ray energies)
- F.J.SCHIMA, J.M.R.HUTCHINSON. Nucl. Phys. A102 (1967) 667 (Gamma ray energies)
- W.R.PIERSON, R.H.MARSH. Nucl. Phys. A104 (1967) 511 (Gamma ray energies)
- W.GOEDBLOED, PROC.CONF.ELECTRONCAPTURE, HIGHERORDERPROCESSES IN NUCL.DECAYS, DEBRECEN, HUN-GARY, D.BERENYI, ED.. Eötvös Lorand Phys.Soc.,Budapest,vol. 1 (1968) 92 (Q(EC), X-ray emission probabilities)
- K.P.GOPINATHAN, W.RUBINSON. Bull. Am. Phys. Soc. 13, 11 (1968) 1452 (Q(EC))
- L.V.EAST, H.M.MURPHY JR.. Nucl. Phys. A107 (1968) 382 (Half-life)
- S.A.REYNOLDS, J.F.EMERY, E.I.WYATT. Nucl. Sci. Eng. 32 (1968) 46 (Half-life)
- K.C.FOIN, A.GIZON, J.OMS. Nucl. Phys. A113 (1968) 241 (Gamma-ray emission probabilities, X-ray emission probabilities, Gamma ray energies, Conv. Elec. emission probabilities, K fluorescence yield)
- T.FURUTA, J.R.RHODES. Int. J. Appl. Radiat. Isotop. 19 (1968) 483 (Gamma ray energies)
- R.L.HEATH. Proc. Int. Conf. On Radioactivity, Nucl.Spectroscopy, Nashville, USA (1969) (Gamma ray energies)
- B.Planskoy. Nucl. Instrum. Methods 73 (1969) 205 (Conv. Elec. emission probabilities)
- R.C.GREENWOOD, R.G.HELMER, R.J.GEHRKE. Nucl. Instrum. Methods 77 (1970) 141 (Gamma ray energies)
- D.E.RAESIDE. Nucl. Instrum. Methods 87 (1970) 7 (Gamma ray energies)
- E.BASHANDY. Z. Phys. 236 (1970) 130 (Conv. Elec. emission probabilities)
- W.GOEDBLOED, S.C.GOVERSE, C.P.GERNER, A.BRINKMAN, J.BLOK. Nucl. Instrum. Methods 88 (1970) 197 (X-ray emission probabilities,Q(EC))

- J.L.CAMPBELL, L.A.MCNELLES. Nucl. Instrum. Methods 98 (1972) 433 (Gamma-ray emission probabilities, K X-ray emission probabilities)
- D.S.BRENNER, M.L.PERLMAN. Nucl. Phys. A181 (1972) 207
- (K X-ray energies, K X-ray emission probabilities, Conv. Elec. emission probabilities)
- C.W.COTTRELL. Nucl. Phys. A204 (1973) 160 (Half-life isomeric level)
- J.LEGRAND, M.BLONDEL, P.MAGNIER. Nucl. Instrum. Methods 112 (1973) 101 (Conv. Elec. emission probabilities)
- B.MARTIN, D.MERKERT, J.L.CAMPBELL. Z.Physik A274 (1975) 15 (K X-ray emission probabilities, K X-ray energies)
- O.DRAGOUN, V.BRABEC, M.RYSAVY, J.PLCH, J.ZDERADICKA. Physik A279 (1976) 107 (Conv. Elec. emission probabilities, K X-ray emission probabilities, Gamma-ray emission probabilities)
- C.W.E.VAN EIJK, J.WIJNHORST. Phys. Rev. C15 (1977) 1068 (K ICC)
- T.MORII. Nucl. Instrum. Methods 151 (1978) 489 (Half-life)
- I.PROCHAZKA, T.I.KRACIKOVA, V.JAHELKOVA, Z.HONS, M.FRISER, J.JURSIK. Czech. J. Phys. B28 (1978) 134 (Conv. Elec. emission probabilities)
- G.A.SHEVELEV, A.G.TROITSKAYA, V.M.KARTASHOV. Izv. Akad. Nauk SSSR, Ser. Fiz. 42 (1978) 211 (ICC ratios)
- J.Plch, P.DRYAK, J.ZDERADICKA, E.SCHÖNFELD, A.SZÖRENYI. Czech. J. Phys. B29 (1979) 1071 (K fluorescence yield, K X-ray emission probabilities, Conv. Elec. emission probabilities, Gamma-ray emission probabilities)
- C.W.E.VAN EIJK, J.WIJNHORST, M.A.POPELIER. Phys. Rev. C19 (1979) 1047 (K ICC)
- R.I.DAVIDONIS, R.K.ZHIRGULYAVICHYUS, R.A.KALINAUSKAS, V.I.KERSKULIS, K.V.MAKARYUNAS. Izv. Akad. Nauk. SSSR, Ser. Fiz. 44 (1980) 1060 (ICC ratios)
- R.VANINBROUKX, G.GROSSE, W.ZEHNER. Int. J. Appl. Radiat. Isotop. 32 (1981) 589 (Half-life)
- D.D.HOPPES, J.M.R.HUTCHINSON, F.J.SCHIMA, M.P.UNTERWEGER. NBS-Special Publ. 626 (1982) 85-99 (Half-life, K X-ray emission probabilities, Gamma-ray emission probabilities)
- F.LAGOUTINE, J.LEGRAND. Int. J. Appl. Radiat. Isotop. 33 (1982) 711 (Half-life)
- K.V.MAKARYUNAS, E.K.MAKARYUNENE. Izv. Akad. Nauk. SSSR, Ser. Fiz. 48 (1984) 23-27 (Half-life)
- H.HORVAT, K.ILAKOVAC. Phys. Rev. A31 (1985) 1543 (Double K capture probability)
- K.ILAKOVAC, G.JERBIC-ZORC, M.BOZIN, R.POSIC, W.HORVAT. Fizika (Zagreb) 20 (1988) 91 (Gamma-ray emission probabilities)
- C.BALLAUX, B.M.COURSEY, D.D.HOPPES. Appl. Radiat. Isot. 39 (1988) 1131 (Gamma-ray emission probabilities, Conv. Elec. emission probabilities)
- Y.HINO, Y.KAWADA. Appl. Radiat. Isot. 40 (1989) 79
- (Gamma-ray emission probabilities) - A.G.EGOROV, Y.S.EGOROV, V.G.NEDOVESOV, G.E.SHCHUKIN, K.P.YAKOVLEV. 39th Conf. On Nucl. Spectro-
- Scopy and Atomic Nucleus Structure, Tashkent, USSR 18-21 April 1989, Lo.Nauka, Leningrad (1989) 505 (Gamma-ray emission probabilities, K X-ray emission probabilities)
- V.G.NEDOVESOV, V.P. CHECHEV, E.S. CHECHEVA. Measuring Technics 6 (1989) 52
- (Gamma-ray emission probabilities)
- U.SCHÖTZIG, H.SCHRADER, K.DEBERTIN. Proc. Int. Conf. Nuclear Data for Science and Technology, Jülich (1992) 562
 - (Gamma-ray emission probabilities)
- G.RATEL. Nucl. Instrum. Methods A345 (1994) 289
- (Conv. Elec. emission probabilities, Gamma-ray emission probabilities)
- E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Methods A369 (1996) 527 (K X-ray emission probabilities)
- R.H.MARTIN, K.I.W.BURNS, J.G.V.TAYLOR. Nucl. Instrum. Methods A390 (1997) 267 (Half-life)
- R.G.HELMER, C.VAN DER LEUN. Nucl. Instrum. Methods A450 (2000) 35 (Gamma ray energies)

- E.YOSHIDA, T.KOBAYASHI, Y.KOJIMA, K.SHIZUMA. Nucl. Instrum. Methods Phys. Res. A449 (2000) 217 (Half-life isomeric level)
- E.SCHÖNFELD, H.JANSSEN. Appl. Radiat. Isot. 52 (2000) 595
- (Calculation of emission probabilities of X-rays and Auger electrons)
- I.M.BAND, M.B.TRZHASKOVSKAYA. At. Data. Nucl. Data Tables 88,1 (2002) (Theoretical ICC)
- H.SCHRADER. Appl. Radiat. Isot. 60 (2004) 317 (Half-life)
- J.BLACHOT. Nucl. Data Sheets 107 (2006) 355 (Spin and Parity)
- K.Kossert, H.Janssen, R.Klein, M.K.H.Schneider, H.Schrader. Appl. Radiat. Isot. 64 (2006) 1031 (Gamma-ray emission probabilities)
- T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)
- R.VAN AMMEL, S.POMMÉ, J. PAEPEN, G.SIBBENS. Appl. Radiat. Isot. 69 (2011) 785 (Half-life)
- R.FITZGERALD. J.Res.Natl.Inst.Stand.Technol. 117 (2012) 80 (Half-life)
- M. WANG, G. AUDI, A.H. WAPSTRA, F.G. KONDEV, M. MACCORMICK, X. XU, B. PFEIFFER. Chin. Phys. C36 (2012) 1603
- (Q)
- M.P. UNTERWEGER, R. FITZGERALD. Appl. Radiat. Isot. 87 (2014) 92 (Half-life)

1 Decay Scheme

Xe-127 decays by electron capture to excited levels in I-127. Le Xe-127 se désintègre par capture électronique vers des niveaux excités de I-127.

2 Nuclear Data

 $\begin{array}{rrrr} T_{1/2}(^{127}\mathrm{Xe~}) &:& 36{,}358 & (31) & \mathrm{d} \\ Q^+(^{127}\mathrm{Xe~}) &:& 662{,}3 & (20) & \mathrm{keV} \end{array}$

2.1 Electron Capture Transitions

	Energy (keV)	Probability (%)	Nature	\lgft	P_K	P_L	P_M
$ \begin{array}{c} \epsilon_{0,4} \\ \epsilon_{0,3} \\ \epsilon_{0,2} \end{array} $	$\begin{array}{c} 43,9 \ (21) \\ 287,3 \ (20) \\ 459,4 \ (20) \end{array}$	$\begin{array}{c} 0,0142 \ (9) \\ 47,3 \ (7) \\ 52,7 \ (14) \end{array}$	Allowed Allowed Allowed	$7,42 \\ 6,21 \\ 6,61$	$\begin{array}{c} 0,31 \ (6) \\ 0,830 \ (8) \\ 0,842 \ (8) \end{array}$	$egin{array}{c} 0,523 & (44) \ 0,134 & (1) \ 0,125 & (1) \end{array}$	$\begin{array}{c} 0,137 \ (12) \\ 0,0294 \ (6) \\ 0,0272 \ (5) \end{array}$

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy (keV)	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$ \begin{array}{c} \gamma_{1,0}(I) \\ \gamma_{2,1}(I) \\ \gamma_{3,2}(I) \\ \gamma_{2,0}(I) \\ \gamma_{3,0}(I) \\ \gamma_{4,0}(I) \end{array} $	57,609 (11) 145,251 (14) 172,132 (12) 202,860 (8) 374,992 (9) 618 4 (3)	$\begin{array}{c} 6,00 \ (18) \\ 6,22 \ (11) \\ 29,74 \ (45) \\ 76,3 \ (5) \\ 17,60 \ (28) \\ 0.0142 \ (9) \end{array}$	$\begin{array}{c} \mathrm{M1} + 0.68 \ (8) \ \% \ \mathrm{E2} \\ \mathrm{E2} \\ \mathrm{M1} + 0.72 \ (10) \ \% \ \mathrm{E2} \\ \mathrm{M1} + 21.1 \ (17) \ \% \ \mathrm{E2} \\ \mathrm{E2} \\ \mathrm{M1} + 0.65 \ (29) \ \% \ \mathrm{E2} \end{array}$	3,16 (5) 0,357 (5) 0,1419 (20) 0,0964 (15) 0,01671 (24) 0,00528 (8)	$\begin{array}{c} 0,449 \ (8) \\ 0,0906 \ (13) \\ 0,0185 \ (3) \\ 0,0142 \ (3) \\ 0,00257 \ (4) \\ 0,000656 \ (10) \end{array}$	$\begin{array}{c} 0,0910 \ (16) \\ 0,0189 \ (3) \\ 0,00373 \ (6) \\ 0,00289 \ (6) \\ 0,000524 \ (8) \\ 0.0001316 \ (19) \end{array}$	3,72 (6) 0,471 (7) 0,1649 (24) 0,1142 (18) 0,0199 (3) 0,00609 (9)

3 Atomic Data

3.1 I

ω_K	:	0,8842	(40)
$\bar{\omega}_L$:	0,092	(4)
n_{KL}	:	0,909	(4)

3.1.1 X Radiations

		$\frac{\rm Energy}{\rm (keV)}$		Relative probability
X _K				
	$K\alpha_2$	28,3175		$53,\!84$
	$K\alpha_1$	$28,\!6123$		100
	$K\beta_3$	$32,\!2397$)	
	$K\beta_1$	$32,\!2951$	}	$28,\!81$
	$\mathrm{K}eta_5''$	$32,\!544$	J	
	$K\beta_2$	33,042)	
	$\mathrm{K}eta_4$	$33,\!12$	}	6,51
	$\mathrm{KO}_{2,3}$	$33,\!166$	J	
$\mathbf{X}_{\mathbf{L}}$				
	$L\ell$	$3,\!4848$		
	$L\alpha$	3,9269 - 3,9382		
	$\mathrm{L}\eta$	3,7791		
	$L\beta$	4,2212 - 4,5678		
	$ m L\gamma$	4,6668 - 5,0595		

3.1.2 Auger Electrons

	Energy (keV)	Relative probability
Auger K KLL KLX KXY	22,66 - 23,91 26,85 - 28,56 30,99 - 33,07	$100 \\ 45,8 \\ 6,2$
Auger L	2,4 - $5,1$	

4 Electron Emissions

		Energy (keV)	Electrons (per 100 disint.)
		(10))	
\mathbf{e}_{AL}	(I)	2,4 - $5,1$	96,4~(6)
e_{AK}	(I))
	KLL	22,66 - 23,91	118(5)
	KLX	26,85 - 28,56	$\left(\begin{array}{c} 11,0 \\ \end{array} \right)$
	KXY	30,99 - 33,07	J
$ec_{1,0}$ T	(I)	24,440 - 57,606	4,73~(15)
$ec_{1,0 K}$	(I)	24,440 (11)	4,02~(13)
$ec_{1,0 L}$	(I)	52,421 - 53,052	$0,571\ (19)$
$ec_{1,0 M}$	(I)	56,537 - 56,990	0,1158 (38)
$ec_{1,0 N}$	(I)	57,423 - 57,559	0,0233~(8)
$ec_{2,1}$ T	(I)	112,082 - 145,248	1,992~(44)
$ec_{2,1 K}$	(I)	112,082 (14)	1,510 (33)
$ec_{3,2}$ K	(I)	138,963 (12)	$3,\!62\ (7)$
ес _{3,2 Т}	(I)	138,963 - 172,129	4,21 (9)
$ec_{2,1 L}$	(I)	140,063 - 140,694	$0,\!383\ (8)$
$ec_{2,1}$ M	(I)	$144,\!179 - 144,\!632$	0,0799~(18)
$ec_{2,1 N}$	(I)	145,065 - 145,201	0,01561 (36)
$ec_{3,2 L}$	(I)	166,944 - 167,575	0,472~(10)
ес _{2,0 Т}	(I)	169,69 - 202,86	$7,\!82\ (13)$
$ec_{2,0 K}$	(I)	$169,\!691$ (8)	$6,\!60\ (11)$
$ec_{3,2}$ M	(I)	171,060 - 171,513	0,0952~(21)
$ec_{3,2}$ N	(I)	171,946 - 172,082	0,01925 (40)
$ec_{2,0 L}$	(I)	$197,\!67 - 198,\!30$	0,972~(22)
$ec_{2,0 M}$	(I)	201,79 - 202,24	0,1978 (43)
$ec_{2,0 N}$	(I)	$202,\!67 - 202,\!81$	0,0396 (9)
$ec_{3,0 K}$	(I)	341,823 (9)	$0,\!288~(6)$
$ec_{3,0}$ L	(I)	369,804 - 370,435	0,0444 (10)

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Photons (per 100 disint.)		
XL	(I)	3,4848 - 5,0595		9,60 (19)		
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(I) (I)	28,3175 28,6123		$\begin{array}{c} 25,0 \ (4) \\ 46,5 \ (8) \end{array}$	}	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(I) (I) (I)	32,2397 32,2951 32,544	<pre>}</pre>	13,39 (25)		$K' \beta_1$
$\begin{array}{c} {\rm XK}\beta_2\\ {\rm XK}\beta_4\\ {\rm XKO}_{2,3} \end{array}$	(I) (I) (I)	$33,042 \\ 33,12 \\ 33,166$	}	3,03~(9)		$\mathrm{K}'eta_2$

5.2 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\begin{array}{c} \gamma_{1,0}(I) \\ \gamma_{2,1}(I) \\ \gamma_{3,2}(I) \\ \gamma_{2,0}(I) \\ \gamma_{3,0}(I) \\ \gamma_{4,0}(I) \end{array}$	$\begin{array}{c} 57,61 \ (2) \\ 145,252 \ (10) \\ 172,132 \ (10) \\ 202,86 \ (1) \\ 374,991 \ (12) \\ 618,41 \ (14) \end{array}$	$\begin{array}{c} 1,272 \ (35) \\ 4,23 \ (7) \\ 25,53 \ (38) \\ 68,45 \ (45) \\ 17,26 \ (27) \\ 0,0141 \ (9) \end{array}$

6 Main Production Modes

 $\begin{cases} {\rm Xe} - 126({\rm n},\gamma){\rm Xe} - 127 & \sigma: 3,5 \ (8) \ {\rm barns} \\ {\rm Possible \ impurities: \ Xe} - 129{\rm m}, \ {\rm Xe} - 131{\rm m} \\ \\ {\rm I} - 127({\rm p},{\rm n}){\rm Xe} - 127{\rm m} \\ {\rm Possible \ impurities: \ Xe} - 122, \ {\rm Xe} - 125 \\ \\ {\rm I} - 127({\rm d},2{\rm n}){\rm Xe} - 127{\rm m} \\ {\rm Possible \ impurities: \ I} - 126 \\ {\rm Xe} - 126({\rm n},\gamma){\rm Xe} - 127{\rm m} \\ {\rm Xe} - 127{\rm m}({\rm I}.{\rm T}.){\rm Xe} - 127 \quad T_{1/2}: \ 69 \ s \end{cases}$

7 References

- E.C. CREUTZ, L.A. DELSASSO, R.B. SUTTON, M.G. WHITE, W.H. BARKAS. Phys. Rev. 58 (1940) 481 (First measurement, half-life)
- D.L. ANDERSON, M.L. POOL. Phys. Rev. 77 (1950) 142 (Identification, half-life)
- S.A. BALESTRINI. Phys. Rev. 95 (1954) 1502 (Half-life)
- R.N. FORREST, H.T. EASTERDAY. Phys. Rev. 112 (1958) 950 (Half-life Gamma-ray emission probabilities and energies)
- P. THIEBERGER. Ark. Fysik 22 (1962) 127 (Half-life)
- M. Bresesti, F. Cappellani, A.M. Del Turco. Nucl. Phys. 58 (1964) 491 (Half-life)
- S. Jha, R. Leonard. Phys. Rev. 136 (1964) B1585 (Half-life, Mixing ratios)
- G. WINTER, K. HOHMUTH, J. SCHINTLMEISTER, Nucl. Phys. 73 (1965) 91 (Half-life)
- J.S. GEIGER, R.L. GRAHAM, I. BERGSTROM, F. BROWN. Nucl. Phys. 68 (1965) 352 (Half-life)
- H. LANGHOFF. Nucl. Phys. 63 (1965) 425 (Mixing ratios)
- H.J. LEISI. Nucl. Phys. 76 (1966) 308 (Mixing ratios)
- J.S. GEIGER, R.L. GRAHAM. Nucl. Phys. 89 (1966) 81 (Half-life)
- J.S. GEIGER. Phys. Rev. 158 (1967) 1094 (Gamma-ray emission probabilities K ICC, L ICC, Mixing ratios)
- A.G. Svensson, R.W. Sommerfeldt, L.-O. Norlin, P.N. Tandon. Nucl. Phys. A95 (1967) 653 (Half-life)
- J. KOWNACKI, J. LUDZIEJEWSKI, M. MOSZYNSKI. Nucl. Phys. A107 (1968) 476 (Half-life)
- W.D. SCHMIDT-OTT, W. WEIRAUCH, F. SMEND, H. LANGHOFF, D. GFOLLER. Z. Phys. 217 (1968) 282 (Spin and Parity Gamma-ray energies)
- H. LANGHOFF, D. GFOLLER. Nucl. Phys. A127 (1969) 379 (Half-life)
- R.B. BEGZHANOV, K.T. SALIKHBAEV, D. GAFFAROV. Program and Theses, Proc. 19th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Erevan (1969) 77 (Half-life)
- R. GUNNINK, J.B. NIDAY, R.P. ANDERSON, R.A. MEYER. UCID (1969) 15439 (Gamma-ray energies)
- K.E. APT, W.B. WALTERS, G.E. GORDON. Nucl. Phys. A152 (1970) 344 (Spin and Parity Gamma-ray energies)
- R. COLLE, R. KISHORE. Phys. Rev. C9 (1974) 981 (Gamma-ray emission probabilities and energies Half-life)
- D.S. ANDREEV, G.M. GUSINSKII, K.I. EROKHINA, V.S. ZVONOV, A.A. PASTERNAK. Bull. Acad. Sci. USSR, Phys. Ser. 39, 10 (1975) 10
- (Half-life)T. V. LEDEBUR. Helv. Phys. Acta 49 (1976) 661 (Mixing ratios)
- R.J. GEHRKE, R.G. HELMER. Int. J. Appl. Radiat. Isotop. 28 (1977) 744 (Gamma-ray emission probabilities Gamma-ray energies)
- W.P. Alford, R.E. Anderson, P.A. BATAY-CSORBA, R.A. EMIGH, D.A. LIND, P.A. SMITH, C.D. ZAFIRATOS. Nucl. Phys. A 323 (1979) 339 (Spin and parity)
- M.P. UNTERWEGER. Appl. Rad. Isotopes 56 (2002) 125 (Half-life)
- A. HASHIZUME. Nucl. Data Sheets 112 (2011) 1647 (Gamma-ray emission energies)

- M. WANG, G. AUDI, A.H. WAPSTRA, F.G. KONDEV, M. MACCORMICK, X. XU, B. PFEIFFER. Chin. Phys. C36 (2012) 1603 (Q value)
- M.P. UNTERWEGER, R. FITZGERALD. Appl. Radiat. Isotop. ICRM 2013 Conference (2013) accepted (Half-life)
- M. RODRIGUES, M.-C. LÉPY, P. CASSETTE, X. MOUGEOT, M.-M. BÉ. Appl. Radiat. Isotop. ICRM 2013 Conference (2013) accepted

(Gamma-ray emission probabilities)

1 Decay Scheme

L'iode 131 se désintègre par émission bêta moins vers les niveaux excités de xénon 131, incluant l'isomère xénon 131m de 11,962 (20) jours de période. L'état d'équilibre idéal, c'est à dire l'activité de l'iode 131 étant égale à l'activité de xénon 131m, est obtenue uniquement à tm = 14,04 (9) jours.

I-131 disintegrates through beta minus emissions to excited levels of Xe-131, including the isomeric state Xe-131m. The radioactive equilibrium, i.e. when the activity of I-131 is equal to the activity of Xe-131m, is valid only at tm = 14.04 (9) days.

Pour cette évaluation, l'intensité de la raie gamma de 163,9 keV est donnée, et est valable seulement, au temps t = tm.

For this evaluation, the intensity of the 163.9 keV gamma ray given is only valid at t = tm.

2 Nuclear Data

$T_{1/2}(^{131}\mathrm{I})$:	8,0233	(19)	d
$Q^{-}(^{131}\mathrm{I})$:	970,8	(6)	keV

2.1 β^- Transitions

	Energy (keV)	Probability (%)	Nature	$\lg ft$
$\beta_{0.8}^{-}$	247,9(6)	2,130(21)	Allowed	$6,\!98$
$\beta_{0,7}^{-}$	$303,\!9~(6)$	$0,\!643\ (27)$	1st Forbidden	7,79
$\beta_{0.6}^{-}$	$333,\!8~(6)$	7,20(7)	Allowed	$6,\!86$
$\beta_{0.4}$	606, 3 (6)	89,4(8)	Allowed	$6,\!64$
$\beta_{0.3}^{-}$	629,7~(6)	0,060(12)	1st Forbidden	9,8
$\beta_{0,2}^{-}$	806,9~(6)	$0,\!386\ (23)$	Unique 1st Forbidden	$10,\!03$

	Energy (keV)	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	α_K	$lpha_L$	$lpha_M$	α_T
$\gamma_{1,0}(Xe)$	80,1854 (19)	6,63(15)	M1	1,32(4)	0,175~(5)	0,036(1)	1,544 (46)
$\gamma_{8,6}(Xe)$	85,919(8)	0,0163~(23)	[M1, E2]	1,50(6)	0,56(2)		2,2(1)
$\gamma_{2,0}(Xe)$	163,930 (8)	1,087(21)	M4	31,6(5)	14,75(21)	3,38(5)	50,5(7)
$\gamma_{3,2}(Xe)$	177,214(12)	0,344(9)	M1+94,9(9)%E2	0,187~(6)	0,0427 (13)	0,00901 (27)	0,241(7)
$\gamma_{6,5}(Xe)$	232,175(8)	0,0025(10)	[E2]	0,0782 (22)	0,0151(5)	0,0031(1)	0,097(2)
$\gamma_{6,4}(Xe)$	272,500(8)	0,0612(16)	M1+12,6(6)%E2	0,0453~(7)	0,0061 (3)	0,00125~(6)	0,0530 (9)
$\gamma_{4,1}(Xe)$	284,305(5)	6,45(6)	E2	0,0408~(6)	0,00714(10)	0,001479 (21)	0,0497~(7)
$\gamma_{6,3}(Xe)$	295,846(13)	0,0012~(6)	[E1]	0,0093(2)	0,00117 (3)	0,00024 (4)	0,0108 (3)
$\gamma_{7,4}(Xe)$	302,444(13)	0,0046(7)	[E1]	0,0088(2)	0,00111(1)	0,00022(1)	0,0102 (2)
$\gamma_{8,5}(Xe)$	318,094(8)	0,0835(21)	M1+1,2(9)%E2	0,0301(5)	0,00388 (6)	0,000786(12)	0,0350(5)
$\gamma_{5,1}(Xe)$	324,630(6)	0,0252 (26)	M1+E2	0,0278(10)	0,0041 (4)	0,00083 (9)	0,0329 (6)
$\gamma_{7,3}(Xe)$	325,790(18)	0,283(8)	M1 + 39(34)% E2	0,0288 (9)	0,00376(11)	0,000765~(23)	0,0335(10)
$\gamma_{8,4}(Xe)$	358,419(8)	0,017(8)	[M1,E2]	0,0210 (12)	0,00301 (18)	0,00061~(5)	0,0248 (10)
$\gamma_{4,0}(\mathrm{Xe})$	364,490(4)	83,1(5)	M1+95,4(23)%E2	0,0190(3)	0,00300 (5)	0,000616 (9)	0,0228 (4)
$\gamma_{5,0}(Xe)$	404,815(4)	0,0562(17)	M1 + 50% E2	0,0151 (13)	0,00210 (4)	0,000429(11)	0,0177(12)
$\gamma_{7,2}(Xe)$	503,004 (17)	0,3571 (46)	E2	0,00748~(11)	0,001083 (16)	0,000221 (3)	0,00883 (13)
$\gamma_{6,0}({ m Xe})$	636,990 (4)	7,15(7)	${ m E2}$	0,00401 (6)	0,000551 (8)	0,0001123 (16)	0,00470 (7)
$\gamma_{8,1}(Xe)$	642,724 (6)	0,2193(26)	[E2]	0,0039(1)	0,00054(1)	0,00011(2)	0,0046(1)
$\gamma_{8,0}(Xe)$	722,909 (4)	1,794 (19)	M1+4,1(1)%E2	0,00390 (6)	0,000488 (7)	0,0000987 (14)	0,00451 (7)

2.2 Gamma Transitions and Internal Conversion Coefficients

3 Atomic Data

3.1 Xe

ω_K	:	0,888	(5)
$\bar{\omega}_L$:	0,097	(5)
n_{KL}	:	0,902	(4)

3.1.1 X Radiations

		$\frac{\rm Energy}{\rm (keV)}$		Relative probability
X _K				
	$K\alpha_2$	$29,\!459$		$53,\!98$
	$K\alpha_1$	29,779		100
	$K\beta_3$	$33,\!562$		
	$K\beta_1$	$33,\!625$	}	$28,\!99$
	$\mathrm{K}eta_5''$	$33,\!881$	J	
	$K\beta_2$	$34,\!415$)	
	$K\beta_4$	34,496	}	$6,\!84$
	$\mathrm{KO}_{2,3}$	$34,\!552$	J	
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	$3,\!64$		
	$L\alpha$	4,1 - 4,11		
	$\mathrm{L}\eta$	3,96		
	$L\beta$	4,42 - 4,78		
	$ m L\gamma$	$4,\!89 - 5,\!3$		

	Energy (keV)	Relative probability
Auger K KLL KLX KXY	23,512 - 24,842 27,897 - 29,770 32,27 - 34,54	$100 \\ 46,5 \\ 5,41$
Auger L	2,50 - 5,43	

4 Electron Emissions

		Energy (keV)		Electrons (per 100 disint.)
e_{AL}	(Xe)	2,50 - 5,43		5,87~(4)
e_{AK}	(Xe)			0,67(4)
	KLĹ	23,512 - 24,842)	
	KLX	27,897 - 29,770	Ş	
	KXY	32,27 - 34,54	J	
$ec_{1,0}$ T	(Xe)	45,6209 - 80,1732		4,03~(13)
$ec_{1,0 K}$	(Xe)	45,6209 (19)		3,44(11)
$ec_{1,0 L}$	(Xe)	74,7325 - 75,4031		$0,\!456\ (14)$
$ec_{1,0 M}$	(Xe)	79,0366 - 79,5086		0,0939~(29)
$ec_{1,0 N}$	(Xe)	79,9720 - 80,1178		0,01921 (39)
ес _{2,0 Т}	(Xe)	129,366 - 163,917		1,066~(47)
$ec_{2,0}$ K	(Xe)	129,366 (8)		0,662~(29)
$ec_{2,0 L}$	(Xe)	158,477 - 159,148		0,315~(14)
$ec_{2,0 M}$	(Xe)	162,781 - 163,253		0,0727 (32)
$ec_{2,0 N}$	(Xe)	163,717 - 163,862		0,0148~(7)
$ec_{4,1 \text{ K}}$	(Xe)	249,741 (5)		0,2505~(44)
$ec_{4,1 L}$	(Xe)	278,852 - 279,523		0,0438~(7)
$ec_{4,0}$ K	(Xe)	329,926 (4)		1,543~(26)
ес _{4,0 Т}	(Xe)	329,93 - 364,48		$1,851 \ (34)$
$ec_{4,0}$ L	(Xe)	359,04 - 359,71		0,2436~(43)
$ec_{4,0 M}$	(Xe)	$363,\!34 - 363,\!81$		0,0500 (8)
$ec_{4,0 N}$	(Xe)	$364,\!28 - 364,\!42$		$0,01020\ (16)$
$ec_{6,0\ K}$	(Xe)	602,426 (4)		0,0286 (5)
β^{-}	max:	247,9 (6)	۱	9.120.(91)
$\rho_{0,8}$	avg:	$69,\!35$ (19)	}	2,130 (21)
0-	max:	303,9 (6)	٦	0.049.(97)
$\beta_{0,7}$	avg:	86,94 (19)	}	0,643 (27)
β^{-}	max:	333,8 (6)	١	7.90(7)
$\rho_{0,6}$	avg:	96,61 (19)	}	(,20 (7)
$\rho -$	max:	606,3 (6)	١	00.4(0)
$\rho_{0,4}$	avg:	191,59 (22)	}	89,4 (8)
	-	· · ·		

 $\rm CEA/LNE-LNHB$ / V. Chisté, M. M. Bé

		Energy (keV)		Electrons (per 100 disint.)
$eta_{0,3}^-$ $eta_{0,2}^-$	max: avg: max: avg:	$\begin{array}{ccc} 629,7 & (6) \\ 200,23 & (22) \\ 806,9 & (6) \\ 267,91 & (23) \end{array}$	} }	0,060 (12) 0,386 (23)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy (keV)		Photons (per 100 disint.)		
XL	(Xe)	3,64 - 5,3		0,631~(13)		
$ ext{XK} lpha_2 \\ ext{XK} lpha_1$	(Xe) (Xe)	29,459 29,779		$1,52 (4) \\ 2,81 (6)$	<pre>}</pre>	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{''} \end{array}$	(Xe) (Xe) (Xe)	$33,562 \\ 33,625 \\ 33,881$	}	0,816 (19)		K'¢
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2.3} \end{array}$	(Xe) (Xe) (Xe)	34,415 34,496 34,552	}	0,193~(6)		$\mathbf{K}' \boldsymbol{\beta}$

5.2 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\gamma_{1,0}(Xe)$	80,185~(2)	2,607 (35)
$\gamma_{8,6}(Xe)$	85,9(2)	0,0051~(7)
$\gamma_{2,0}(Xe)$	163,930 (8)	0,0211 (3)
$\gamma_{3,2}(Xe)$	177,214(20)	0,277~(7)
$\gamma_{6,5}(Xe)$	232,18(15)	0,0023 (9)
$\gamma_{6,4}(Xe)$	272,498 (17)	0,0581 (15)
$\gamma_{4,1}(Xe)$	284,305 (5)	6,14~(6)
$\gamma_{6,3}(Xe)$	295,8~(2)	0,0012~(6)
$\gamma_{7,4}(Xe)$	302,4(2)	0,0046~(7)
$\gamma_{8,5}(Xe)$	318,088 (16)	0,0807~(20)
$\gamma_{5,1}(Xe)$	324,651 (25)	0,0244~(25)
$\gamma_{7,3}(Xe)$	325,789(4)	0,274~(8)
$\gamma_{8,4}(Xe)$	358,4(2)	0,017~(8)
$\gamma_{4,0}(Xe)$	$364,\!489$ (5)	81,2~(5)
$\gamma_{5,0}({\rm Xe})$	404,814 (4)	0,0552 (17)

	Energy (keV)	Photons (per 100 disint.)
$\begin{array}{l} \gamma_{7,2}(\mathrm{Xe}) \\ \gamma_{6,0}(\mathrm{Xe}) \\ \gamma_{8,1}(\mathrm{Xe}) \\ \gamma_{8,0}(\mathrm{Xe}) \end{array}$	503,004 (4) 636,989 (4) 642,719 (5) 722,911 (5)	$\begin{array}{c} 0,3540 \ (46) \\ 7,12 \ (7) \\ 0,2183 \ (26) \\ 1,786 \ (19) \end{array}$

6 Main Production Modes

Fission product

 $\begin{array}{ll} {\rm Te}-130({\rm n},\gamma){\rm Te}-131 & \sigma:0,27\ (6)\ {\rm barns}\\ {\rm Possible\ impurities:\ Te}-121{\rm m,\ Te}-121,\ {\rm Te}-123{\rm m,\ Te}-125{\rm m,\ Te}-127,\ {\rm Te}-129{\rm m}\\ {\rm Te}-131(\beta^-){\rm I}-131 & T_{1/2}:\ 25\ {\rm min}\\ {\rm Te}-130({\rm n},\gamma){\rm Te}-131{\rm m} & \sigma:0,02\ (1)\ {\rm barns}\\ {\rm Possible\ impurities:\ Te}-121{\rm m,\ Te}-121,\ {\rm Te}-123{\rm m,\ Te}-125{\rm m,\ Te}-127,\ {\rm Te}-129{\rm m}\\ {\rm Te}-131{\rm m}(\beta^-){\rm I}-131 & T_{1/2}:\ 30\ {\rm h}\\ \end{array}$

7 References

- J.J.LIVINGOOD, G.T.SEABORG. Phys. Rev. 54 (1938) 775 (Half-life)
- J.H.SREB. Phys. Rev. 81 (1951) 643 (Half-life)
- W.K.SINCLAIR, A.F.HOLLOWAY. Nature (London) 167 (1951) 365 (Half-life)
- R.E.BELL, R.L.GRAHAM. Phys. Rev. 86 (1952) 212 (Gamma ray intensities, K-internal coefficients)
- J.R.HASKINS, J.D.KURBATOV. Phys. Rev. 88 (1952) 884 (K conversion coefficients)
- I.Bergströм. Ark. Fysik 5 (1952) 191 (ICC)
- E.E.LOCKETT, R.H.THOMAS. Nucleonics 11 (1953) 14 (Half-life)
- R.M.BARTHOLOMEW, F.BROWN, R.C.HAWKINGS, W.F.MERRITT, L.YAFFE. Can. J. Chem. 31 (1953) 120 (Half-life)
- H.H.SELIGER, L.CAVALLO, S.V.CULPEPPER. Phys. Rev. 90 (1953) 443 (Half-life)
- L.Burkinshaw. Phys. in. Med. Biol. 2 (1958) 255 (Half-life)
- J.P.KEENE, L.A.MCKENZIE, C.W.GILBERT. Philos. Mag. 2 (1958) 360 (Half-life)
- J.L.WOLFSON, J.J.H.PARK, L.YAFFE. Nucl. Phys. 39 (1962) 613 (Internal Conversion)
- H.JUNGCLAUSSEN, J.S.SCHINTLMEISTER, H.SODAN. Nucl. Phys. 43 (1963) 650 (Gamma ray intensities)
- C.K.HARGROVE, K.W.GEIGER, A.CHATTERJEE. Nucl. Phys. 40 (1963) 566 (Gamma ray intensities, Multipolarity)
- H.DANIEL, O.MEHLING, P.SCHMIDLIN, D.SCHOTTE, E.THUMMERNICHT. Z. Phys. 179 (1964) 62 (Gamma ray intensities, L,M-internal coefficients)
- G.A.Moss, D.O.WELLS, D.K.McDANIELS. Nucl. Phys. 82 (1966) 289 (Gamma ray energies and intensities)

- C.YTHIER, G.ARDISSON. Comp. Rend. Acad. Sci. (Paris) 264C (1967) 944 (Gamma ray intensities)
- G.V.YAKOVLEVA. Program and Theses, Proc. 17th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei (1967) 45 (Half-life)
- G.GRAEFFE, W.B.WALTERS. Phys. Rev. 153 (1967) 1321 (Gamma ray intensities, K, L conversion coefficients)
- P.KEMENY. Rev. Roumaine Phys. 13 (1968) 485 (Half-life)
- M.BERMAN, G.B.BEARD. Phys. Rev. C2 (1970) 1506 (Total conversion coefficients)
- A.F.Rupp. Report ORNL-TM 2876 (1970) (Half-life)
- W.H.ZOLLER, P.K.HOPKE, J.L.FASCHING, E.S.MACIAS, W.B.WALTERS. Phys. Rev. C3 (1971) 1699 (Half-life)
- N.SINGH, S.S.BHATI, R.L.DHINGRA, P.N.TRETHAN. Nucl. Phys. and Solid State Phys. Symp. Chandigarh (India) (1972) 435
- (Gamma ray intensities)
- K.S.KRANE, C.E.OLSEN, W.A.STEYERT. Phys. Rev. C5 (1972) 1671 (Mixing Ratios)
- J.F.EMERY, S.A.REYNOLDS, E.I.WYATT, G.I.GLEASON. Nucl. Science and Eng. 48 (1972) 319 (Half-life)
- R.A.MEYER, F.MOMYER, W.B.WALTERS. Z. Phys. 268 (1974) 387 (Gamma ray energies and intensities, Total Branching)
- B.K.S.KOENE, H.POSTMA. Nucl. Phys. A219 (1974) 563 (Mixing ratios)
- J.H.M.KARSTEN, P.G.MARAIS, F.J.HAASBROEK, C.J.VISSER. Agrochemophysica 6 (1974) 25 (Half-life)
- B.K.S.KOENE, H.POSTMA, H.LIGTHART. Nucl. Phys. A250 (1975) 38 (Mixing ratio)
- Chr.Bargholtz, S.Behai, L.Gidefeldt. Nucl. Phys. A270 (1976) 189 (Mixing Ratio)
- K.S.KRANE. At. Data. Nucl. Data Tables 19 (1977) 363 (Mixing Ratio)
- F.LAGOUTINE, J.LEGRAND, C.BAC. Int. J. Appl. Radiat. Isotop. 29 (1978) 269 (Half-life)
- A.D.IRVING, P.D.FORSYTH, I.HALL, D.G.E.MARTIN. J. Phys. (London) G5 (1979) 1595 (Mixing Ratio)
- H.HOUTERMANS, O.MILOSEVIC, F.REICHEL. Int. J. Appl. Radiat. Isotop. 31 (1980) 153 (Half-life)
- D.D.HOPPES. Report NBS-SP 626 (1982) 93 (Half-life)
- K.F.WALZ, K.DEBERTIN, H.SCHRADER. Int. J. Appl. Radiat. Isotop. 34 (1983) 1191 (Half-life)
- B.CHAND, J.GOSWAMY, D.MEHTA, N.SINGH, P.N.TREHAN. Nucl. Instrum. Methods A284 (1989) 393 (Gamma ray intensities)
- R.A.MEYER. Fisika (Zagreb) 22 (1990) 153 (Gamma ray intensities)
- YU.V.SERGEENKOV, YU.L.KHAZOV, T.W.BURROWS, M.R.BHAT. Nucl. Data Sheets 72 (1994) 487 (Gamma ray energies, Spin, Parity, Gamma intensities)
- E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Methods A369 (1996) 527 (Atomic Data)
- I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN. At. Data. Nucl. Data Tables 81 (2002) 1
- (Theoretical ICC)
- M.A.L.DA SILVA, M.C.M.DE ALMEIDA, C.J.DA SILVA, J.U.DELGADO. Appl. Rad. Isotopes 60 (2004) 301 (Half-life)
- H.SCHRADER. Appl. Rad. Isotopes 60 (2004) 317 (Half-life)

- T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICCs)
- M.WANG, G.AUDI, A.H.WAPSTRA, F.G.KONDEV, M.MACCORMICK, X.XU, B.PFEIFFER. Chin. Phys. C36 (2012) 1603

- R.FITZGERALD. J. Res. Natl. Inst. Stand. Technol. 117 (2012) 80 (Half-life)
- M.-C.LÉPY, L.BRONDEAU. To be submitted to Applied Radiation Isotopes (2014) (Gamma-ray emission intensities)
- M.P.UNTERWEGER, R.FITZGERALD. Appl. Rad. Isotopes, doi.org/10.1016/j.apradiso.2013.11.017 (2014) (Half-life)

 $^{(\}mathbf{Q})$

 $^{\mathbf{131}}_{53}\mathrm{I}_{78}$

Le xénon 131 métastable se désexcite par une transition gamma (163,930 keV) fortement convertie. Xe-131m decays by a strongly converted gamma transition.

2 Nuclear Data

 $\begin{array}{rrrr} T_{1/2}(^{131\mathrm{m}}\mathrm{Xe}~) &:& 11,962 & (20) & \mathrm{d} \\ Q^{IT}(^{131\mathrm{m}}\mathrm{Xe}~) &:& 163,930 & (8) & \mathrm{keV} \end{array}$

2.1 Gamma Transitions and Internal Conversion Coefficients

	Energy (keV)	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	α_K	$lpha_L$	$lpha_M$	α_T
$\gamma_{1,0}(Xe)$	163,930 (8)	100	M4	31,6(5)	14,75 (21)	3,38(5)	50,5(7)

3 Atomic Data

3.1 Xe

ω_K	:	0,888	(5)
$\bar{\omega}_L$:	0,097	(5)
n_{KL}	:	0,902	(4)

3.1.1 X Radiations

	$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$	Relative probability
$egin{array}{c} X_{\mathrm{K}} & & & \\ & & \mathrm{K}lpha_{2} & & \\ & & \mathrm{K}lpha_{1} & & \end{array}$	29,459 29,779	$53,\!98$ 100

		Energy (keV)		Relative probability
	$\begin{array}{c} \mathrm{K}\beta_{3} \\ \mathrm{K}\beta_{1} \\ \mathrm{K}\beta_{5}^{\prime\prime} \end{array}$	33,562 33,625 33,881	}	28,99
	$egin{array}{c} { m K}eta_2 \ { m K}eta_4 \ { m KO}_{2,3} \end{array}$	34,415 34,496 34,552	}	6,84
\mathbf{X}_{L}	τØ	2.64		
	${ m L}\ell$ ${ m L}lpha$	3,04 4,1 - 4,11		
	$L\eta$	3,96		
	$egin{array}{c} { m L}eta \ { m L}\gamma \end{array}$	4,42 - 4,78 4,89 - 5,3		

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K		
KLL	23,512 - 24,842	100
KLX	27,897 - 29,770	46,5
KXY	32,27 - 34,54	$5,\!41$
Auger L	2,50 - 5,43	

4 Electron Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Electrons (per 100 disint.)
e_{AL}	(Xe)	2,50 - 5,43		75,8(5)
e _{AK}	(Xe) KLL KLX KXY	23,512 - 24,842 27,897 - 29,770 32,27 - 34,54	<pre>}</pre>	6,9 (4)
$ec_{1,0} K ec_{1,0} L ec_{1,0} M ec_{1,0} N$	(Xe) (Xe) (Xe) (Xe)	$\begin{array}{r} 129,366 (8) \\ 158,48 - 159,15 \\ 162,78 - 163,25 \\ 163,72 - 163,86 \end{array}$		$\begin{array}{c} 61,4 \ (13) \\ 28,6 \ (6) \\ 6,56 \ (13) \\ 1,342 \ (26) \end{array}$

5.1 X-Ray Emissions

		Energy (keV)		Photons (per 100 disint.)		
XL	(Xe)	3,64 - 5,3		8,12 (16)		
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Xe) (Xe)	29,459 29,779		$\begin{array}{c} 15,5 \ (4) \\ 28,7 \ (7) \end{array}$	<pre>}</pre>	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Xe) (Xe) (Xe)	$33,562 \\ 33,625 \\ 33,881$	<pre>}</pre>	8,31 (22)		$\mathrm{K}'eta_1$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Xe) (Xe) (Xe)	34,415 34,496 34,552	<pre>}</pre>	1,96~(7)		$\mathbf{K}'eta_2$

5.2 Gamma Emissions

	$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$	Photons (per 100 disint.)
$\gamma_{1,0}(Xe)$	163,930 (8)	1,942 (26)

6 Main Production Modes

 $\begin{cases} \text{Fission product} \\ \text{Possible impurities: Xe} - 127, \text{ Xe} - 129\text{m}, \text{ Xe} - 133, \text{ Xe} - 133\text{m}, \text{ Xe} - 135 \\ \end{cases} \\ \begin{cases} \text{Xe} - 130(\text{n}, \gamma)\text{Xe} - 131\text{m} & \sigma : 0.45 \text{ (10) barns} \\ \text{Possible impurities: Xe} - 129\text{m} \\ \text{I} - 131(\beta^{-})\text{Xe} - 131\text{m} \end{cases}$

- I.Bergström. Ark. Fysik 5 (1952) 191 (Half-life)
- I.BERGSTRÖM, S.THULIN, A.H.WAPSTRA, B.ASTROM. Ark. Fysik 7 (1954) 255 (Internal Conversion Coefficients)
- J.S.GEIGER, R.L.GRAHAM, F.BROWN. Can. J. Phys. 40 (1962) 1258 (K conversion coefficient)
- G.Andersson. Ark. Fysik 28 (1964) 37 (Half-life)
- K.KNAUF, H.SOMMER, H.KLEWE-NEBENIUS. Z. Phys. 197 (1966) 101 (Half-life, K conversion coefficient)
- K.FRANSSON, P.ERMAN. Ark. Fysik 39 (1969) 7 (Multipolarity)
- J.F.EMERY, S.A.REYNOLDS, E.I.WYATT, G.I.GLEASON. Nucl. Science and Eng. 48 (1972) 319 (Half-life)

- P.A.BENSON, H.Y.GEE, M.W.NATHANS. J. Inorg. Nucl. Chem. 35 (1973) 2614 (Branching Ratio)
- R.A.MEYER, F.MOMYER, W.B.WALTERS. Z. Phys. 268 (1974) 387 (Total branching, Half-life)
- D.C.HOFFMAN, J.W.BARNES, B.J.DROPESKI, F.O.LAWRENCE, G.M.KELLY, M.A.OTT. J. Inorg. Nucl. Chem. 37 (1975) 2336 (Half-life)
- R.L.AUBLE, H.R.HIDDLESTON, C.P.BROWNE. Nucl. Data Sheets 17 (1976) 573 (Spin, Parity, Energy Levels)
- N.C.TAM, A.VERES, I.PAVLICSEK, L.LAKOSI. J. Phys. G 16 (1990) 1215 (Half-life)
- YU.V.SERGEENKOV, YU.L.KHAZOV, T.W.BURROWS, M.R.BHAT. Nucl. Data Sheets 72 (1994) 487 (Spin, Parity, Level Energy, Gamma Transition Energy)
- E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Methods A369 (1996) 527 (Atomic Data)
- I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN. At. Data. Nucl. Data Tables 81 (2002) 1
 - (Theoretical ICC)
- T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICCs)
- M.WANG, G.AUDI, A.H.WAPSTRA, F.G.KONDEV, M.MACCORMICK, X.XU, B.PFEIFFER. Chin. Phys. C36 (2012) 1603
- (\mathbf{Q})
- R.FITZGERALD. J. Res. Natl. Inst. Stand. Technol. 117 (2012) 80 (Half-life)
- M.P.UNTERWEGER, R.FITZGERALD. Appl. Rad. Isotopes, doi.org/10.1016/j.apradiso.2013.11.017 (2014) (Half-life)

 133 Ba disintegrates by electron capture mainly to two 133 Cs excited levels of 437 keV (85.4%) and of 383 keV (14.5%) with three very minor branches to the 160 keV, 81 keV excited levels and the ground state.

Le baryum 133 se désintègre par capture électronique principalement vers deux niveaux excités de 437 keV et 383 keV du césium 133.

2 Nuclear Data

 $T_{1/2}(^{133}\text{Ba})$: 10,539 (6) a $Q^+(^{133}\text{Ba})$: 517,3 (10) keV

2.1 Electron Capture Transitions

	Energy (keV)	Probability (%)	Nature	$\lg ft$	P_K	P_L	P_M
$\epsilon_{0,4} \ \epsilon_{0,3}$	$80,3 (10) \\133,5 (10)$	85,41 (53) 14,46 (51)	Allowed Allowed	$6,63 \\ 8,03$	$0,671 (5) \\ 0,7727 (9)$	$0,251 (4) \\ 0,1755 (7)$	0,0777 (11) 0,05174 (23)
$\epsilon_{0,2}$	356,7(10)	< 0,3	2nd Forbidden	>10,6	$0,\!83$	$0,\!13$	0,037
$\epsilon_{0,1}$	436,3(10)	$<\!0,\!7$	2nd Forbidden	>10,9	$0,\!84$	$0,\!13$	0,037
$\epsilon_{0,0}$	517,3(10)	$<\!0,\!0005$	Unique 2nd Forbidden	>13,9	0,77	$0,\!18$	0,05

	$\frac{\rm Energy}{\rm (keV)}$	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}}\\ (\%) \end{array}$	Multipolarity	α_K	α_L	$lpha_M$	$lpha_T$
$\gamma_{4.3}(Cs)$	53,1622 (18)	14,25 (46)	M1+E2	4,78 (7)	0,70(5)	0,144(12)	5,66(11)
$\gamma_{2,1}(Cs)$	79,6142 (19)	7,3(5)	M1+E2	1,495(22)	0,217(6)	0,0447(13)	1,77(3)
$\gamma_{1,0}(Cs)$	80,9979(11)	90,05(6)	M1+E2	1,431(20)	0,216(4)	0,0447(8)	1,703(24)
$\gamma_{2,0}(Cs)$	160,6121 (16)	0,826 (9)	M1+E2	0,234(4)	0,0471 (13)	0,0099(3)	0,294(6)
$\gamma_{3,2}(Cs)$	223,237(2)	0,494(6)	M1+E2	0,0836(12)	0,01103(16)	0,00226 (4)	0,0975(14)
$\gamma_{4,2}(Cs)$	276,3992 (21)	7,53(6)	E2	0,0460(7)	0,00842(12)	0,001763 (25)	0,0566(8)
$\gamma_{3,1}(Cs)$	302,8512 (16)	19,10(12)	M1+E2	0,0373 (6)	0,00484(7)	0,000988(14)	0,0434(6)
$\gamma_{4,1}(Cs)$	356,0134(17)	63, 63 (20)	E2	0,0211 (3)	0,00346(5)	0,000721(10)	0,0254(4)
$\gamma_{3,0}(\mathrm{Cs})$	383,8491 (12)	9,12(6)	E2	0,01684 (24)	0,00270 (4)	0,000560 (8)	0,0202 (3)

2.2 Gamma Transitions and Internal Conversion Coefficients

3 Atomic Data

3.1 Cs

ω_K	:	$0,\!894$	(4)
$\bar{\omega}_L$:	$0,\!104$	(5)
n_{KL}	:	$0,\!895$	(4)

3.1.1 X Radiations

		$\frac{\rm Energy}{\rm (keV)}$		Relative probability
X _K				
	$K\alpha_2$	$30,\!6254$		$54,\!13$
	$K\alpha_1$	$30,\!9731$		100
	${ m K}eta_3$	$34,\!9197$)	
	$K\beta_1$	$34,\!9873$	}	29,21532
	${ m K}eta_5^{\prime\prime}$	$35,\!252$	J	
	$K\beta_2$	$35,\!822$)	
	$K\beta_4$	$35,\!907$	}	$7,\!12854$
	$\mathrm{KO}_{2,3}$	$35,\!972$	J	
$\mathbf{X}_{\mathbf{L}}$				
	$L\ell$	3,7946		
	$L\alpha$	4,2729 - 4,2866		
	$L\eta$	4,1418		
	$L\beta$	4,62 - 4,9333		
	$ m L\gamma$	5,1308 - 5,5525		

3.1.2 Auger Electrons

	Energy (keV)	Relative probability
Auger K KLL KLX KXY	24,411 - 25,804 28,991 - 30,961 33,55 - 35,96	$100 \\ 47,2 \\ 5,56$
Auger L	2,5777 - 5,5590	

4 Electron Emissions

		$\frac{\rm Energy}{\rm (keV)}$	Electrons (per 100 disint.)
e _{AL}	(Cs)	2,5777 - 5,5590	136,8 (8)
елк	(Cs)		
-AIX	KLL	24,411 - 25,804)
	KLX	28,991 - 30,961	14.1(6)
	KXY	33,55 - 35,96	J
$ec_{4,3}$ T	(Cs)	17,1776 - 53,1508	12,11 (41)
$ec_{4,3}$ K	(Cs)	17,1776 (18)	$10,\!23\ (32)$
$ec_{2,1}$ T	(Cs)	43,6296 - 79,6028	$4,\!66\ (35)$
$ec_{2,1 K}$	(Cs)	43,6296 (19)	$3,93\ (29)$
$ec_{1,0 K}$	(Cs)	45,0133 (11)	47,7(8)
$ec_{1,0 T}$	(Cs)	45,0133 - 80,9865	56,7~(9)
$ec_{4,3 L}$	(Cs)	47,4479 - 48,1503	$1,50\ (11)$
$ec_{4,3}$ M	(Cs)	51,9451 - 52,4367	$0,\!308~(27)$
$ec_{4,3 N}$	(Cs)	52,9314 - 53,0857	0,065~(5)
$ec_{2,1 L}$	(Cs)	$73,\!8999 - 74,\!6023$	0,571 (44)
$ec_{1,0 L}$	(Cs)	75,2836 - 75,9860	$7,\!19\ (15)$
$ec_{2,1 M}$	(Cs)	78,3971 - 78,8887	$0,\!118~(9)$
$ec_{2,1 N}$	(Cs)	79,3834 - 79,5377	0,0247~(19)
$ec_{1,0}$ M	(Cs)	79,7808 - 80,2724	$1,\!489$ (30)
$ec_{1,0 N}$	(Cs)	80,7671 - 80,9214	$0,\!313~(6)$
$ec_{2,0 K}$	(Cs)	124,6275 (16)	$0,\!1493~(29)$
$ec_{2,0 L}$	(Cs)	154,8978 - 155,6002	0,0300 (9)
$ec_{3,2 K}$	(Cs)	187,252 (2)	0,0376~(7)
$ec_{4,2 \text{ K}}$	(Cs)	240,4146 (21)	$0,\!328~(6)$
ес _{3,1 Т}	(Cs)	266,8666 - 302,8398	0,795~(12)
ес _{3,1 К}	(Cs)	266,8666 (16)	$0,\!683~(12)$
$ec_{4,2}$ L	(Cs)	270,6849 - 271,3873	0,060(1)
$ec_{4,2}$ M	(Cs)	275,1821 - 275,6737	0,01257 (21)
$ec_{3,1 L}$	(Cs)	297,1369 - 297,8393	0,0886~(14)
$ec_{3,1 M}$	(Cs)	$301,\!6341 - 302,\!1257$	0,01809 (28)
$ec_{4,1 T}$	(Cs)	320,0288 - 356,0020	$1,576\ (25)$

KRI / V.P. Chechev, N.K. Kuzmenko

		$\frac{\rm Energy}{\rm (keV)}$	Electrons (per 100 disint.)
ес _{4,1 К}	(Cs)	320,0288 (17)	1,309 (19)
ес _{3,0 К}	(Cs)	347,8645 (12)	0,1505(24)
$ec_{4,1}$ L	(Cs)	350,2991 - 351,0015	0,2147(32)
$ec_{4,1 M}$	(Cs)	354,7963 - 355,2879	0,0447(6)
эс _{3.0 L}	(Cs)	378,1348 - 378,8372	0,02414 (39)

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Photons (per 100 disint.)		
XL	(Cs)	3,7946 - 5,5525		15,87(26)		
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Cs) (Cs)	$30,6254 \\ 30,9731$		$\begin{array}{c} 33,8 \ (4) \\ 62,4 \ (7) \end{array}$	}	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	$\left({ m Cs} ight)$ $\left({ m Cs} ight)$ $\left({ m Cs} ight)$	34,9197 34,9873 35,252	<pre>}</pre>	18,24 (29)		$\mathrm{K}'eta_1$
$egin{array}{c} XKeta_2\ XKeta_4\ XKO_{2,3} \end{array}$	$\left({{ m Cs}} ight)$ $\left({{ m Cs}} ight)$ $\left({{ m Cs}} ight)$	35,822 35,907 35,972	}	4,45 (12)		$\mathrm{K}'eta_2$

5.2 Gamma Emissions

	Energy	Photons
	(keV)	(per 100 disint.)
$\gamma_{4,3}(Cs)$	53,1622 (18)	2,14~(6)
$\gamma_{2,1}(Cs)$	79,6142 (19)	$2,\!63\ (19)$
$\gamma_{1,0}(Cs)$	80,9979(11)	33,31 (30)
$\gamma_{2,0}(Cs)$	160,6121 (16)	$0,\!638~(6)$
$\gamma_{3,2}(Cs)$	223,2368(13)	0,450(5)
$\gamma_{4,2}(Cs)$	276,3989(12)	7,13(6)
$\gamma_{3,1}(Cs)$	302,8508(5)	18,31(11)
$\gamma_{4,1}(Cs)$	356,0129(7)	62,05 (19)
$\gamma_{3.0}(Cs)$	383,8485(12)	8,94(6)

6 Main Production Modes

 $\begin{cases} Ba - 132(n,\gamma)Ba - 133 \quad \sigma : 6,5 (8) \text{ barns} \\ Possible impurities: Ba - 131, Ba - 140 \\ Ba - 132(n,\gamma)Ba - 133m \quad \sigma : 0,5 \text{ barns} \\ \int Ca - 133(p,n)Ba - 133 \end{cases}$

Possible impurities: Cs - 132

- E.I. WYATT, S.A. REYNOLDS, T.H. HANDLEY, W.S. LYON, H.A. PARKER. Nucl. Sci. Eng. 11 (1961) 74 (Half-life)
- P. BLASI, M. BOCCIOLINI, P.R. MAURENZIG, P. SONA, N. TACCETTI. Nuovo Cim. 50B (1967) 298 (Gamma-ray emission probabilities)
- J.A. BEARDEN. Rev. Mod. Phys. 39 (1967) 78 (X-ray energies)
- D.P. DONNELLY, J.J. REIDY, M.L. WIEDENBECK. Phys. Rev. 173 (1968) 1192 (Gamma-ray emission probabilities)
- S.A. REYNOLDS, J.F. EMERY, E.I. WYATT. Nucl. Sci. Eng. 32 (1968) 46 (Half-life)
- P. ALEXANDER, J. P. LAU. Nucl. Phys. A121 (1968) 612 (Gamma-ray emission probabilities, ICC)
- V. NARANG, H. HOUTERMANS. In: Proc. Conf. Electron Capture and Higher Order Processes in Nucl. Decays, Debrecen, Hungary, D. Berenyi, Ed. Eotvos Lorand Phys Soc, Budapest, (1968) 97 (L/K-capture ratio)
- A. NOTEA, Y. GURFINKEL. Nucl. Phys. A107 (1968) 193 (Gamma-ray emission probabilities)
- F. LAGOUTINE, Y. LE GALLIC, J. LEGRAND. Int. J. Appl. Radiat. Isotop. 19 (1968) 475 (Half-life)
- H.E. BOSCH, A.J. HAVERFIELD, E. SZICHMAN, S.M. ABECASIS. Nucl. Phys. A108 (1968) 209 (ICC 81 keV)
- R. GUNNINK, J.B. NIDAY, R.P. ANDERSON, R.A. MEYER. In: UCID-15439 (1969); Gunnink, R.; Nethaway, D. -Priv. Comm. (1969) (Gamma-ray emission probabilities)
- K.F. WALZ, H.M. WEISS. Z. Naturforsch. 25a (1970) 921 (Half-life)
- J.F. EMERY, S.A. REYNOLDS, E.I. WYATT, G.I. GLEASON. Nucl. Sci. Eng. 48 (1972) 319 (Half-life)
- W.D. Schmidt-Ott, R.M. Fink. Z. Physik 249 (1972) 286
- (K-capture probability, absolute XK emission probability, gamma-ray emission probabilities, ICC)
- H. INOUE, Y. YOSHIZAWA, T. MORII. J. Phys. Soc. Jpn 34 (1973) 1437 (Gamma-ray emission probabilities)
- J. LEGRAND. Nucl. Instrum. Methods 112 (1973) 229 (Gamma-ray emission probabilities)
- R.D. LLOYD, C.W. MAYS. Int. J. Appl. Radiat. Isotop. 24 (1973) 189 (Half-life)
- L.A. MCNELLES, J.L. CAMPBELL. Nucl. Instrum. Methods 109 (1973) 241 (Gamma-ray emission probabilities)
- B.K. DAS MAHAPATRA, P. MUKHERJEE. J. Phys. (London) A7 (1974) 388 (K-capture probability)
- W.F. NICAISE, A.W. WALTNER. Nucl. Instrum. Methods 131 (1975) 477 (K-capture probability)
- R.J. GEHRKE, R.G. HELMER, R.C. GREENWOOD. Nucl. Instrum. Methods 147 (1977) 405 (Gamma-ray emission probabilities)
- U. SCHÖTZIG, K. DEBERTIN, K.F. WALZ. Int. J. Appl. Radiat. Isotop. 28 (1977) 503 (X-ray emission probabilities, Gamma-ray emission probabilities)

- C. VYLOV, B.P. OSIPENKO, V.G. CHUMIN. In: Elementarnie chastitsi and atomnie yadra (Particles and Nuclei) 9 (1978) 1350
 (Gamma-ray emission probabilities)
- R.G. HELMER, R.C. GREENWOOD, R.J. GEHRKE. Nucl. Instrum. Methods 155 (1978) 189 (Gamma-ray emission probabilities)
- H.H. HANSEN, D. MOUCHEL. In: NEANDC(E) 202U; Vol III (1979) 28 (Half-life)
- B. CHAUVENET, J. MOREL, J. LEGRAND. Report ICRM-S-6(December 1980) (1980) (Absolute gamma-ray emission probabilities)
- H. HOUTERMANS, O. MILOSEVIC, F. REICHEL. Int. J. Appl. Radiat. Isotop. 31 (1980) 153 (Half-life)
- W.M. RONEY JR., W.A. SEALE. Nucl. Instrum. Methods 171 (1980) 389 (Gamma-ray emission probabilities)
- A.R. RUTLEDGE, L.V. SMITH, J.S. MERRITT. In: AECL 6692 (1980) (Half-life)
- D.D. HOPPES, J.M.R. HUTCHINSON, F.J. SCHIMA, M.P. UNTERWEGER. In: NBS-SP-626 (1982) 85 (Half-life)
- K. SINGH, H.S. SAHOTA. J. Phys. (London) G9 (1983) 1565 (K-capture probability)
- K. SINGH, H.S. SAHOTA. J. Phys. Soc. Jpn 52 (1983) 2336 (K-capture probability)
- B. CHAUVENET, J. MOREL, J. LEGRAND. Int. J. Appl. Radiat. Isotop. 34 (1983) 479 (Absolute gamma-ray emission probabilities)
- J. KITS, F. LATAL, M. CHOC. Int. J. Appl. Radiat. Isotop. 34 (1983) 935 (Half-life)
- K.F. WALZ, K. DEBERTIN, H. SCHRADER. Int. J. Appl. Radiat. Isotop. 34 (1983) 1191 (Half-life)
- Y. YOSHIZAWA, Y. IWATA, T. KATOH, J.Z. RUAN, Y. KAWADA. Nucl. Instrum. Methods 212 (1983) 249 (Gamma-ray emission probabilities)
- A.S.V. SUBBA LAKSHMI, S. VENKATARATNAM, S.B. REDDY, K.V. REDDY. Curr. Sci. 56 (1987) 407 (Gamma-ray relative emission probabilities)
- R.B. BEGZHANOV, SH.K. AZIMOV, R.D. MAGRUPOV, SH.A. MIRAKHMEDOV, A. MUKHAMMADIEV, M. NARZIKU-LOV, S.KH. SALIMOV. In: Program and Theses, Proc. 38th Ann. Conf. Nucl. Spectrosc. Struct. At Nuclei, Baku (1988) 93
- (K-capture probabilities)
- M.C. MARTINS, M.I. MARQUES, F. PARENTE, J.G. FERREIRA. J. Phys. (London) B22 (1989) 3167 (X-ray emission probabilities)
- A.G. EGOROV, YU.S. EGOROV, V.G. NEDOVESOV, G.E. SHCHUKIN, K.P. YAKOVLEV. In: Program and Thesis, Proc. 39th Ann. Conf. Nucl. Spectrosc. Struct. At Nuclei, Leningrad (1989) 505 (X-ray emission probabilities)
- V.N. DANILENKO, A.A. KONSTANTINOV, N.V. KURENKOV, L.N. KURCHATOVA, A.B. MALININ, A.V. MAMELIN, S.V. MATVEEV, T.E. SAZONOVA, E.K. STEPANOV, S.V. SERMAN, YU.G. TOPOROV. Appl. Radiat. Isot. 40 (1989) 707
- (Gamma-ray emission probabilities)
- B. DASMAHAPATRA, S. BHATTACHARYA, S. SEN, M. SAHA, A. GOSWAMI. J. Phys. (London) G16 (1990) 1227 (K-capture probability)
- R.B. FIRESTONE. Nucl. Instrum. Methods Phys. Res. A286 (1990) 584 (Gamma-ray emission probabilities)
- K. BHASKARA RAO, S.S. RAO, V.S. RAO, H.C. PADHI. Nuovo Cim. 103A (1990) 683 (K-capture probability)
- R.A. MEYER. Fizika (Zagreb) 22 (1990) 153 (Gamma-ray emission probabilities)
- C. WESSELBORG, D.E. ALBURGER. Nucl. Instrum. Methods Phys. Res. A302 (1991) 89 (Gamma ray energies)
- G.P.S. SAHOTA, H. SINGH, H.S. BINARH, B.S. PALLAN, H.S. SAHOTA. J. Phys. Soc. Jpn 61 (1992) 3518 (K-capture probability)
- M.P. UNTERWERGER, D.D. HOPPES, F.J. SCHIMA. Nucl. Instrum. Methods Phys. Res. A312 (1992) 349 (Half-life)
- F.E. CHUKREEV. In: Voprosi Atomnoi Nauki i Tekhniki, Ser.: Yadernie konstanti, 1992 2 (1992) 92 (Decay scheme)

- A.L. NICHOLS. AEA Technology Report AEA- RS-5449 (1993) (Decay scheme)
- S. RAB. Nucl. Data Sheets 75 (1995) 491 (Decay scheme)
- H. MIYAHARA, K. USAMI, C. MORI. Nucl. Instrum. Methods Phys. Res. A374 (1996) 193 (Gamma-ray emission probabilities)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic Data)
- R.H. MARTIN, K.I.W. BURNS, J.G.V. TAYLOR. Nucl. Instrum. Methods Phys. Res. A390 (1997) 267 (Half-life)
- H.Y. HWANG, C.B. LEE, T.S. PARK. Appl. Radiat. Isot. 49 (1998) 1201 (Gamma-ray emission probabilities)
- R.G. HELMER, C. VAN DER LEUN. Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma ray energies)
- M.P. UNTERWEGER. Appl. Radiat. Isot. 56 (2002) 125 (Half-life)
- H. SCHRADER. Appl. Radiat. Isot. 60 (2004) 17 (Half-life)
- M.M. BÉ, V. CHISTÉ, C. DULIEU, E. BROWNE, V. CHECHEV, N. KUZMENKO, R. HELMER, A. NICHOLS, E. SCHÖNFELD, R. DERSCH. Monographie BIPM-5 1 (2004) 263 (Decay data evaluation)
- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (BrIcc computer program)
- H. SCHRADER. Appl. Radiat. Isot. 68 (2010) 1583 (Half-life)
- Yu. Khazov, A. Rodionov, F.G. Kondev. Nucl. Data Sheets 112 (2011) 855 (Decay scheme)
- M. WANG, G. AUDI, A.H. WAPSTRA, F.G. KONDEV, M. MACCORMICK, X. XU, B. PFEIFFER. Chin. Phys. C36 (2012) 1603
 (Q)
- R. FITZGERALD. J. Res. Natl. Inst. Stand. Technol. 117 (2012) 80 (Half-life)
- G.V. SAI MANOHAR, K.S. YADAV, K.V. SAI, R. GOWRISHANKAR, K. VENKATARAMANIAH, S. DEEPA, D. RAO. Proceedings of the DAE Symp. on Nucl. Phys. 59 (2014) 286 (Gamma-ray and electron relative emission probabilities)
- M.P. UNTERWEGER, R. FITZGERALD. Appl. Radiat. Isot. 87 (2014) 92 (Half-life)

La-138 decays by an electron capture transition and a β^- decay to the first excited levels of Ba-138 and of Ce-138 respectively.

Le lanthane 138 se désintègre par une transition capture électronique et un bêta moins vers les premiers niveaux excités, respectivement, du baryum 138 et du cérium 138.

2 Nuclear Data

$T_{1/2}(^{138}\text{La})$:	$103,\! 6$	(20)	$10^{9} {\rm a}$
$Q^{+}(^{138}\text{La})$:	1740,0	(34)	keV
$Q^{-}(^{138}\text{La})$:	1051,7	(40)	keV

2.1 Electron Capture Transitions

	Energy (keV)	Probability (%)	Nature	\lgft	P_K	P_L	P_M
$\epsilon_{0,1}$	304,2 (34)	65,2~(6)	Unique 2nd Forbidden	17,2	0,637~(5)	0,275 (3)	0,0880 (11)

2.2 β^- Transitions

	Energy (keV)	Probability (%)	Nature	\lgft
$\beta_{0,1}^-$	263(4)	34,8(6)	Unique 2nd Forbidden	18,7

2.3 Gamma Transitions and Internal Conversion Coefficients

	$\frac{\rm Energy}{\rm (keV)}$	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	$\binom{\alpha_K}{(10^{-3})}$	$ \overset{\alpha_L}{(10^{-4})} $	$lpha_M$ (10^{-4})	$ \overset{\alpha_T}{(10^{-3})} $	(10^{-4})
$\begin{array}{c} \gamma_{1,0}(\text{Ce}) \\ \gamma_{1,0}(\text{Ba}) \end{array}$	$\begin{array}{c} 788,744 \ (8) \\ 1435,816 \ (10) \end{array}$	34,8(6) 65,2(6)	E2 E2	$2,91 (4) \\ 0,742 (11)$	$\begin{array}{c} 4,06\ (6)\ 0,937\ (14) \end{array}$	$0,852 (12) \\ 0,192 (3)$	$3,42 (5) \\ 0,917 (13)$	0,572 (8)

3 Atomic Data

3.1 Ba

ω_K	:	0,900	(4)
$\bar{\omega}_L$:	$0,\!110$	(5)
n_{KL}	:	0,888	(4)

3.1.1 X Radiations

		$\frac{\rm Energy}{\rm (keV)}$		Relative probability
X _K				
	$K\alpha_2$	$31,\!8174$		$54,\!28$
	$K\alpha_1$	$32,\!1939$		100
	$K\beta_3$	$36,\!3045$)	
	$K\beta_1$	$36,\!3786$	}	29,41
	${ m K}eta_5^{\prime\prime}$	$36,\!654$	J	,
	$K\beta_2$	$37,\!258$)	
	$K\beta_4$	$37,\!312$	}	7,41
	$\mathrm{KO}_{2,3}$	$37,\!425$	J	,
$\mathbf{X}_{\mathbf{L}}$				
_	$\mathrm{L}\ell$	3,9544		
	$L\alpha$	4,4515 - 4,4666		
	$L\eta$	$4,\!3307$		
	$\mathrm{L}eta$	4,8278 - 5,207		
	$ m L\gamma$	5,3715 - 5,8104		

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K KLL KLX KXY	25,314 - 26,786 30,095 - 32,179 34,86 - 37,41	$100 \\ 47,7 \\ 5,7$
Auger L	2,66 - 5,81	

3.2 Ce

ω_K	:	0,910	(4)
$\bar{\omega}_L$:	$0,\!125$	(5)
n_{KL}	:	$0,\!876$	(4)

3.2.1 X Radiations

		Energy		Relative
		(keV)		probability
X_{K}				
	$K\alpha_2$	$34,\!2793$		$54,\! 6$
	$K\alpha_1$	34,72		100
	$K\beta_3$	$39,\!1705$)	
	$K\beta_1$	$39,\!2578$	}	$_{30,1}$
	$\mathrm{K}eta_5''$	39,549	J	
	$K\beta_2$	40,233)	
	$K\beta_4$	40,337	}	7,7
	$\mathrm{KO}_{2,3}$	40,423	J	
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	4,2868		
	$L\alpha$	4,822 - 4,8411		
	$\mathrm{L}\eta$	4,7274		
	$\mathrm{L}eta$	5,2625 - 5,665		
	$ m L\gamma$	5,8755 - 6,3412		

3.2.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K		
KLL	27,190 - 28,828	100
KLX	32,392 - 34,700	48,9
KXY	37,57 - 40,40	$5,\!97$
Auger L	2,85 - 6,51	

4 Electron Emissions

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$	Electrons (per 100 disint.)
e_{AL}	(Ba)	2,66 - 5,81	48,8 (4)
e _{AK}	(Ba) KLL KLX KXY	25,314 - 26,786 30,095 - 32,179 34,86 - 37,41	4,16 (18) }
\mathbf{e}_{AL}	(Ce)	2,85 - 6,51	0,0895~(7)
e _{AK}	(Ce) KLL KLX KXY	27,190 - 28,828 32,392 - 34,700 37,57 - 40,40	0,0091 (5)

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$		Electrons (per 100 disint.)
ес _{1,0 К} ес _{1,0 L} ес _{1,0 К}	(Ce) (Ce) (Ba)	$\begin{array}{ccc} 748,301 & (8) \\ 782,195 & -783,021 \\ 1398,38 & (1) \end{array}$		$\begin{array}{c} 0,1010 \ (22) \\ 0,01409 \ (32) \\ 0,0483 \ (8) \end{array}$
$\beta_{0,1}^-$	max: avg:	$\begin{array}{ccc} 263 & (4) \\ 91,1 & (21) \end{array}$	}	34,8 (6)

5.1 X-Ray Emissions

		Energy (keV)		Photons (per 100 disint.)		
XL	(Ba)	3,9544 - 5,8104		$6{,}03~(10)$		
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Ba) (Ba)	$31,\!8174$ $32,\!1939$		$10,63\ (15)\ 19,58\ (26)$	}	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Ba) (Ba) (Ba)	36,3045 36,3786 36,654	<pre>}</pre>	5,76(10)		$\mathrm{K}'eta_1$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Ba) (Ba) (Ba)	37,258 37,312 37,425	<pre>}</pre>	1,45 (4)		$\mathrm{K}'eta_2$
XL	(Ce)	4,2868 - 6,3412		0,01301 (29)		
${ m XK}lpha_2 { m XK}lpha_1$	(Ce) (Ce)	$34,2793 \\ 34,72$		$\begin{array}{c} 0,0261 \ (6) \\ 0,0478 \ (11) \end{array}$	}	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Ce) (Ce) (Ce)	39,1705 39,2578 39,549	}	0,0144 (4)		$\mathrm{K}'eta_1$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Ce) (Ce) (Ce)	$\begin{array}{c} 40,233 \\ 40,337 \\ 40,423 \end{array}$	}	0,00365(12)		$\mathrm{K}'eta_2$

5.2 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\gamma_{1,0}(ext{Ce})$ $\gamma_{1,0}(ext{Ba})$	$\begin{array}{c} 788,742 \ (8) \\ 1435,795 \ (10) \end{array}$	$\begin{array}{c} 34,7 \ (6) \\ 65,1 \ (6) \end{array}$

6 Main Production Modes

 $\begin{cases} Naturally occurring \\ Possible impurities: <math>Ac - 227 \end{cases}$

- W. TURCHINETZ, R.W. PRINGLE. Phys. Rev. 103 (1956) 1000 (Half-life, Gamma-ray emission intensities)
- R.N. GLOVER, D.E. WATT. Phil. Mag. 2 (1957) 49 (Half-life, Gamma-ray emission intensities)
- A.W. DE RUYTER, A.H.W. ATEN, JR., A. VAN DULMEN, C. KROL-KONING, E. ZUIDEMA. Physica 32 (1966) 991 (Half-life, Gamma-ray emission intensities)
- C. MARSOL, F. ARMANET, G. ARDISSON. C.R. Acad. Sci., Ser.B, 274 (1972) 904 (Half-life, Gamma-ray emission intensities)
- J.L. Ellis, H.E. Hall Jr. Nucl. Phys. A179 (1972) 540 (Half-life, Gamma-ray emission intensities)
- A. CESANA, M. TERRANI. Anal. Chem. 49,8 (1977) 1156 (Half-life, Gamma-ray emission intensities)
- H.W. TAYLOR, R.J. BAUER. J. Phys. Soc. Jpn. 47 (1979) 1395 (Half-life)
- J. SATO, T. HIROSE. Radiochem. Radioanal. Lett. 46 (1981) 145 (Half-life, Gamma-ray emission intensities)
- E.B. NORMAN, M.A. NELSON. Phys. Rev. C27 (1983) 1321 (Half-life, Gamma-ray emission intensities)
- A.M. MANDAL, A.P. PATRO. J. Phys. G10 (1984) 1765 (L/K capture ratio)
- J. DALMASSO, G. BARCI-FUNEL, G. ARDISSON. Appl. Radiat. Isot. 45,3 (1994) 388 (Half-life)
- Y. NIR-EL. Radiochim. Acta 77 (1997) 191 (Half-life)
- I.M. BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR JR., P.O. TIKKANEN, S. RAMAN. At. Data. Nucl. Data Tables 81 (2002) 1 (Theoretical ICC)
- R. BERNABEI, P. BELLI, F. MONTECCHIA, F. NOZZOLI, A. D'ANGELO, F. CAPPELLA, A. INCICCHITTI, D. PROSPERI, S. CASTELLANO, R. CERULLI, C.J. DAI, V.I. TRETYAK. Nucl. Instrum. Methods Phys. Res. A555 (2005) 270 (Half-life)
- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (ICC)
- M. WANG, G. AUDI, A.H. WAPSTRA, F.G. KONDEV, M. MACCORMICK, X. XU, B. PFEIFFER. Chin. Phys. C36 (2012) 1603
- (Q(EC))
- F.G.A. QUARATI, I.V. KHODYUK, C.W.E. VAN EIJK, P. QUARATI, P. DORENBOS. Nucl. Instrum. Methods Phys. Res. A683 (2012) 46
 - (L/K capture ratio)
- G. AUDI. Priv. Comm. (2016) (Q(β⁻))
- F.G.A. QUARATI, P. DORENBOS, X. MOUGEOT. Appl. Radiat. Isot. 109 (2016) 172 (Q(β^-) and end-point, β^- spectrum shape, L/K capture ratio)

Ba-140 decays by beta minus emission to various excited levels of La-140. The activity ratio La-140/Ba-140 at time t (for initially pure Ba-140) is given by:

$$\frac{T_1}{T_1-T_2} (1-e^{-t \times ln(2) \times \frac{T_1-T_2}{T_1 \times T_2}}).$$

where T_1 is the half-life of Ba-140 and T_2 is the half-life of La-140. At equilibrium (t \geq 19 d) the activity ratio is simply: $T_1/(T_1 - T_2) = 1.1516 \pm 0.0005$.

Le baryum 140 se désintègre par émission bêta moins vers des niveaux excités de lanthane 140. Le rapport au temps t des activités La-140/Ba-140 dans le Ba-140 initialement pur s'écrit :

$$\frac{T_1}{T_1 - T_2} (1 - e^{-t \times ln(2) \times \frac{T_1 - T_2}{T_1 \times T_2}}).$$

 T_1 et T_2 étant respectivement les périodes de Ba-140 et La-140. À l'équilibre ($t \ge 19$ jours) ce rapport est égal à : $T_1/(T_1 - T_2) = 1,1516 \pm 0,0005$.

2 Nuclear Data

$T_{1/2}(^{140}\text{Ba})$:	12,753	(5)	d
$T_{1/2}^{(140}$ La)	:	$1,\!67858$	(21)	d
$Q^{-}(^{140}\text{Ba})$:	1048	(8)	keV

2.1 β^- Transitions

	Energy (keV)	Probability (%)	Nature	$\lg ft$
$\beta_{0.6}^{-}$	467(8)	24,94(50)	1st Forbidden	7,1
$\beta_{0.5}^{-}$	580(8)	9,71(12)	1st Forbidden	7,8
$\beta_{0.4}^{-}$	885(8)	$4,14\ (31)$	Unique 1st Forbidden	9,3
$\beta_{0,2}^{\underline{\circ,\circ}}$	1004(8)	35,6(31)	1st Forbidden	8
$\beta_{0,1}^{-}$	1018(8)	25,6 (42)	Unique 1st Forbidden	8,7

KRI / V.P. Chechev, N.K. Kuzmenko

	$\frac{\rm Energy}{\rm (keV)}$	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$\gamma_{2,1}(\text{La})$	13,880 (18)	63,8(31)	M1+E2		42,8 (15)	8,9(4)	54,0 (19)
$\gamma_{1,0}(La)$	29,9641(6)	91,7(29)	M1(+E2)		4,26 (6)	0,885(13)	5,37(8)
$\gamma_{3,0}(La)$	63,1790(7)	0,00015(8)	M1	3,45(5)	0,472(7)	0,0983(14)	4,05(6)
$\gamma_{4,3}(\text{La})$	99,4801 (20)	0,00006 (4)	[E2]	1,235(18)	0,620 (9)	0,1371 (20)	2,03(3)
$\gamma_{6,5}({ m La})$	113,48(4)	0,0302 (23)	M1	0,645 (9)	0,0872 (13)	0,0181 (3)	0,755(11)
$\gamma_{4,2}(La)$	118,815(18)	0,101~(4)	M1	0,566 (8)	0,0765~(11)	0,01591 (23)	0,663(10)
$\gamma_{4,1}(La)$	132,695(2)	0,300 (9)	M1	0,415~(6)	0,0560 (8)	$0,01163\ (17)$	0,485~(7)
$\gamma_{4,0}({ m La})$	162,6591 (19)	8,3(3)	M1(+E2)	0,235~(4)	0,0317 (5)	0,00659(11)	0,275~(4)
$\gamma_{5,4}({ m La})$	304,971 (30)	4,55(9)	M1(+E2)	0,0434~(6)	0,00573 (8)	0,001189(17)	0,0506(7)
$\gamma_{5,2}(La)$	423,786 (35)	3,20(6)	M1	0,0186(3)	0,00243 (4)	0,000503 (7)	0,0217 (3)
$\gamma_{5,1}(La)$	437,666(30)	1,98(4)	M1	0,01716(24)	0,00224 (4)	0,000464 (7)	0,0200(3)
$\gamma_{6,2}(La)$	537,262 (25)	24,9(5)	M1	0,01029 (15)	0,001332 (19)	0,000276 (4)	$0,01197\ (17)$
$\gamma_{6,1}({ m La})$	551,142 (18)	0,0049~(20)	[E2]	0,00666 (10)	0,000997 (14)	0,000209 (3)	$0,00792\ (11)$

2.2 Gamma Transitions and Internal Conversion Coefficients

3 Atomic Data

3.1

ω_K	:	$0,\!905$	(4)
$\bar{\omega}_L$:	$0,\!117$	(5)
n_{KL}	:	$0,\!882$	(4)
\bar{n}_{LM}	:	$1,\!61$	(3)

3.1.1 X Radiations

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$		Relative probability
X _K				
	$K\alpha_2$	$33,\!0344$		$54,\!44$
	$K\alpha_1$	$33,\!4421$		100
	${ m K}eta_3$	37,7206)	
	$K\beta_1$	$37,\!8015$	l	20.0
	${ m K}eta_5^{\prime\prime}$	38,075	ſ	29,8
	${ m K}eta_5'$	39,095	J	
	$K\beta_2$	38,7303		
	$K\beta_4$	$38,\!828$	}	$7,\!5$
	$\mathrm{KO}_{2,3}$	$39,\!91$	J	
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	$4,\!1174$		
	$L\alpha$	4,6338 - 4,6504		
	$L\eta$	4,5248		
	$\mathrm{L}eta$	5,0412 - 5,3814		
	$ m L\gamma$	5,6198 - 6,0724		

3.1.2 Auger Electrons

	Energy (keV)	Relative probability
Auger K KLL KLX KXY	26,240 - 27,795 31,231 - 33,428 36,2 - 38,9	$100 \\ 47,8 \\ 6,65$
Auger L	2,7 - 6,2	

4 Electron Emissions

		Energy		Electrons
		(keV)		(per 100 disint.)
e_{AL}	(La)	2,7 - 6,2		99,5~(19)
e_{AK}	(La)			
	KLL	26,240 - 27,795		
	KLX	31,231 - 33,428	}	0,208(11)
	KXY	36,2 - 38,9	J	
$ec_{2,1 L}$	(La)	7,61 - 8,40		49,6(24)
$ec_{2,1 M}$	(La)	12,52 - 13,05		10,3~(6)
$ec_{2,1 N}$	(La)	$13,\!61 - 13,\!78$		2,26(11)
$ec_{1,0 L}$	(La)	$23,\!6978$ - $24,\!4814$		$61,\!3$ (19)
$ec_{1,0 M}$	(La)	$28,\!6028 - 29,\!1324$		12,74 (40)
$ec_{1,0 N}$	(La)	29,6937 - 29,8652		2,79 (9)
$ec_{6,5 K}$	(La)	74,56 (4)		0,0111 (9)
$ec_{4,2 K}$	(La)	79,890 (18)		$0,0346\ (13)$
$ec_{4,1 \text{ K}}$	(La)	93,770 (2)		0,0838~(28)
$ec_{4,0 T}$	(La)	123,7345 - 162,6447		1,78(8)
$ec_{4,0 K}$	(La)	123,7345 (19)		1,53~(7)
$ec_{4,1 L}$	(La)	$126,\!429 - 127,\!212$		0,01131 (37)
$ec_{4,0 L}$	(La)	156,3928 - 157,1764		0,206 (9)
$ec_{4,0}$ M	(La)	161,2978 - 161,8274		0,0428 (19)
$ec_{5,4 K}$	(La)	$266,\!05$ (3)		0,1884~(47)
$ec_{5,4 L}$	(La)	298,705 - 299,488		0,0249~(6)
$ec_{5,2 K}$	(La)	384,861 (35)		0,0582 (15)
$ec_{5,1 K}$	(La)	398,74 (3)		0,0333 (8)
$ec_{6,2 K}$	(La)	498,337 (25)		0,253~(6)
$ec_{6,2 \ L}$	(La)	530,996 - 531,779		0,0328 (8)
β-	max:	467 (8)	J	24.04.(50)
$\nu_{0,6}$	avg:	141 (3)	Ş	24,94 (00)
β_{-}^{-}	max:	580 (8)	Ì	9.71(12)
$\sim 0,5$	avg:	181 (3)	ſ	0,11 (14)
Q^{-}	max:	885 (8)	Ì	1 1 4 (91)
$\rho_{0,4}$	avg:	311 (3)	Ĵ	4,14(31)
$e_{1,0} L$ $e_{1,0} M$ $e_{1,0} N$ $e_{1,0} N$ $e_{1,0} N$ $e_{1,0} N$ $e_{1,0} N$ $e_{1,0} N$ $e_{1,0} K$ $e_{1,0} T$ $e_{1,0} K$ $e_{1,0} T$ $e_{1,0} K$ e_{1	 (La) (La)<td>$\begin{array}{c} 23,6978 - 24,4814\\ 28,6028 - 29,1324\\ 29,6937 - 29,8652\\ 74,56 & (4)\\ 79,890 & (18)\\ 93,770 & (2)\\ 123,7345 - 162,6447\\ 123,7345 & (19)\\ 126,429 - 127,212\\ 156,3928 - 157,1764\\ 161,2978 - 161,8274\\ 266,05 & (3)\\ 298,705 - 299,488\\ 384,861 & (35)\\ 398,74 & (3)\\ 498,337 & (25)\\ 530,996 - 531,779\\ \hline 467 & (8)\\ 141 & (3)\\ 580 & (8)\\ 181 & (3)\\ 885 & (8)\\ 311 & (3)\\ \end{array}$</td><td><pre>} }</pre></td><td>$\begin{array}{c} 61,3 \ (19) \\ 12,74 \ (40) \\ 2,79 \ (9) \\ 0,0111 \ (9) \\ 0,0346 \ (13) \\ 0,0838 \ (28) \\ 1,78 \ (8) \\ 1,53 \ (7) \\ 0,01131 \ (37) \\ 0,206 \ (9) \\ 0,0428 \ (19) \\ 0,0428 \ (19) \\ 0,0428 \ (19) \\ 0,0249 \ (6) \\ 0,0582 \ (15) \\ 0,0333 \ (8) \\ 0,253 \ (6) \\ 0,0328 \ (8) \\ 24,94 \ (50) \\ 9,71 \ (12) \\ 4,14 \ (31) \end{array}$</td>	$\begin{array}{c} 23,6978 - 24,4814\\ 28,6028 - 29,1324\\ 29,6937 - 29,8652\\ 74,56 & (4)\\ 79,890 & (18)\\ 93,770 & (2)\\ 123,7345 - 162,6447\\ 123,7345 & (19)\\ 126,429 - 127,212\\ 156,3928 - 157,1764\\ 161,2978 - 161,8274\\ 266,05 & (3)\\ 298,705 - 299,488\\ 384,861 & (35)\\ 398,74 & (3)\\ 498,337 & (25)\\ 530,996 - 531,779\\ \hline 467 & (8)\\ 141 & (3)\\ 580 & (8)\\ 181 & (3)\\ 885 & (8)\\ 311 & (3)\\ \end{array}$	<pre>} }</pre>	$\begin{array}{c} 61,3 \ (19) \\ 12,74 \ (40) \\ 2,79 \ (9) \\ 0,0111 \ (9) \\ 0,0346 \ (13) \\ 0,0838 \ (28) \\ 1,78 \ (8) \\ 1,53 \ (7) \\ 0,01131 \ (37) \\ 0,206 \ (9) \\ 0,0428 \ (19) \\ 0,0428 \ (19) \\ 0,0428 \ (19) \\ 0,0249 \ (6) \\ 0,0582 \ (15) \\ 0,0333 \ (8) \\ 0,253 \ (6) \\ 0,0328 \ (8) \\ 24,94 \ (50) \\ 9,71 \ (12) \\ 4,14 \ (31) \end{array}$

KRI / V.P. Chechev, N.K. Kuzmenko

		Energy (keV)		Electrons (per 100 disint.)
$\beta_{0,2}^{-}$ $\beta_{0,1}^{-}$	max: avg: max: avg:	$\begin{array}{rrrr} 1004 & (8) \\ 345 & (3) \\ 1018 & (8) \\ 362 & (3) \end{array}$	}	35,6 (31) 25,6 (42)

5.1 X-Ray Emissions

		Energy (keV)		Photons (per 100 disint.)		
XL	(La)	4,1174 - 6,0724		13,7 (4)	`	
$\operatorname{XK} \alpha_2$ $\operatorname{XK} \alpha_1$	(La) (La)	$33,0344 \\ 33,4421$		$\begin{array}{c} 0,562 \ (19) \\ 1,03 \ (4) \end{array}$	}	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \ { m XK}eta_5^{\prime\prime} \ { m XK}eta_5^{\prime} \end{array}$	(La) (La) (La) (La)	37,7206 37,8015 38,075 39,095	}	0,307~(11)		$\mathrm{K}'eta_1$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(La) (La) (La)	38,7303 38,828 39,91	<pre>}</pre>	0,078~(3)		$\mathrm{K}'eta_2$

5.2 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\gamma_{2,1}(La)$ $\gamma_{1,0}(La)$ $\gamma_{3,0}(La)$ $\gamma_{4,3}(La)$ $\gamma_{6,5}(La)$ $\gamma_{4,2}(La)$ $\gamma_{4,1}(La)$ $\gamma_{4,0}(La)$ $\gamma_{5,4}(La)$	$\begin{array}{c} 13,880 \ (18) \\ 29,9641 \ (6) \\ 63,1790 \ (7) \\ 99,4801 \ (20) \\ 113,48 \ (4) \\ 118,815 \ (18) \\ 132,695 \ (2) \\ 162,6591 \ (19) \\ 304,971 \ (30) \\ 423 \ 786 \ (35) \end{array}$	$\begin{array}{c} 1,16 \ (4) \\ 14,4 \ (4) \\ 0,000030 \ (15) \\ 0,000020 \ (12) \\ 0,0172 \ (13) \\ 0,0610 \ (21) \\ 0,202 \ (6) \\ 6,49 \ (27) \\ 4,33 \ (9) \\ 3 \ 13 \ (6) \end{array}$
$\begin{array}{l} \gamma_{5,2}(\mathrm{La}) \\ \gamma_{5,1}(\mathrm{La}) \\ \gamma_{6,2}(\mathrm{La}) \\ \gamma_{6,1}(\mathrm{La}) \end{array}$	$\begin{array}{c} 423,130 \\ 437,666 \\ 537,261 \\ (25) \\ 551,141 \\ (18) \end{array}$	$\begin{array}{c} 3,13 \\ 1,94 \\ 24,6 \\ (5) \\ 0,0049 \\ (20) \end{array}$

6 Main Production Modes

Fission product Possible impurities: none

- P. SIMONET, G. BOILE, G. SIMONET. Report CEA-R-2461 (1965) (Half-life)
- G.A. Moss, D.K. McDaniels. Nucl. Phys. 85 (1966) 513 (Gamma ray energies)
- J. KERN, G. MAURON. Helv. Phys. Acta 43 (1970) 272 (Gamma-ray emission probabilities)
- V.G. KALINNIKOV, H.L. RAVN. Bull. Acad. Sci. USSR, Phys. Ser. 33 (1970) 1283 (K X-ray emission probabilities, Gamma-ray emission probabilities)
- S. BABA, H. BABA, H. NATSUME. J. Inorg. Nucl. Chem. 33 (1971) 589 (Half-life)
- S. RAMAN, N.B. GOVE. Phys. Rev. C7 (1973) 1995 (log ft systematics)
- J.T. HARVEY, J.L. MEASON, J.C. HOGAN, H.L. WRIGHT. Nucl. Sci. Eng. 58, (1975) 431 (Gamma-ray emission probabilities)
- C.-C. LIN. J. Inorg. Nucl. Chem. 38 (1976) 1409 (Gamma-ray emission probabilities)
- R.J. GEHRKE, R.G. HELMER, R.C. GREENWOOD. Nucl. Instrum. Methods 147 (1977) 405 (Gamma-ray emission probabilities)
- K. DEBERTIN, U. SCHÖTZIG, K.F. WALZ. Nucl. Sci. Eng. 64 (1977) 784 (Gamma-ray emission probabilities)
- I. Adam, N.M. Antoneva, V.B. Brudanin, M. Budzynski, Ts. Vylov, V.A. Dzhashi, A. Zhumamuratov, A.I. Ivanov, V.G. Kalinnikov, A. Kugler, V.V. Kuznetsov, Li Zon Sik, T.M. Muminov, A.F. Novgorodov, Yu.N.Podkopaev, et al., Izv. Akad. Nauk. SSSR, Ser. Fiz. 46 (1982) 2 (Gamma-ray emission probabilities)
- D.D. HOPPES, J.M.R. HUTCHINSON, F.J. SCHIMA, M.P. UNTERWEGER. Report NBS-SP-626 (1982) 85 (Half-life)
- K.F. WALZ, K. DEBERTIN, H. SCHRADER. Int. J. Appl. Radiat. Isotop. 34 (1983) 1191 (Half-life)
- R.A. MEYER, K.V. MARSH, H. SEYFARTH, S. BRANT, M. BOGDANOVIC, V. PAAR. Phys. Rev. C 41 (1990) 1172 (Gamma-ray emission probabilities)
- B. CHAND, J. GOSWAMY, D. MEHTA, N. SINGH, P.N. TREHAN. Can. J. Phys. 69 (1991) 90 (Gamma-ray emission probabilities)
- M.P. UNTERWEGER, D.D. HOPPES, F.J. SCHIMA. Nucl. Instrum. Methods Phys. Res. A312 (1992) 349 (Half-life)
- B. SINGH, J.L. RODRIGUEZ, S.S.M. WONG, J.K. TULI. Nucl. Data Sheets 84 (1998) 487 (log ft systematics)
- M.P. UNTERWEGER. Appl. Radiat. Isot. 56 (2002) 125 (Half-life)
- I.M. BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR JR., P.O. TIKKANEN, S. RAMAN. At. Data Nucl. Data Tables 81 (2002) 1
 - (Theoretical ICC)
- M.M. Bé, V. CHISTÉ, C. DULIEU, E. BROWNE, V. CHECHEV, N. KUZMENKO, R. HELMER, A. NICHOLS, E. SCHÖNFELD, R. DERSCH. Bureau International des Poids et Mesures, Monographie BIPM-5 1 (2004) (Ba-140 decay data evaluation)
- N. NICA. Nucl. Data Sheets 108 (2007) 1287
- (Decay Scheme, 140La adopted levels and gammas, multipolarities, mixing ratios)
- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR JR.. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (BrIcc computer program)
- M. WANG, G. AUDI, A.H. WAPSTRA, F.G. KONDEV, M. MACCORMICK, X. XU, B. PFEIFFER. Chin. Phys. C36 (2012) 1603
 - (\mathbf{Q})

- R. FITZGERALD. J. Res. Natl. Inst. Stand. Technol. 117 (2012) 80 (Half-life)
- M.P. UNTERWEGER, R. FITZGERALD. Appl. Radiat. Isot. 87 (2014) 92 (Half-life)

Le lanthane 140 se désintègre par émission bêta moins vers les niveaux excités du cérium 140. La-140 decays by beta minus emission to the Ce-140 excited levels.

2 Nuclear Data

 $T_{1/2}(^{140}\text{La})$: 1,67858 (21) d $Q^{-}(^{140}\text{La})$: 3760,9 (18) keV

2.1 β^- Transitions

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	$\lg ft$
$\beta_{0.19}^{-}$	240,1 (18)	0,011 (3)	1st Forbidden	8,6
$\beta_{0,18}^{-}$	287,4 (18)	$0,\!052~(7)$	Allowed	8,2
$\beta_{0,17}^{-}$	366,1~(18)	0,020~(4)	Allowed	9
$\beta_{0.16}^{-}$	441,3(18)	0,0039~(3)	1st Forbidden	$_{9,9}$
$\beta_{0.15}^{-}$	642,5 (18)	0,027~(1)	1st Forbidden	9,6
$\beta_{0,14}^{-}$	760,0 (18)	$0,\!085~(9)$	1st Forbidden	9,4
$\beta_{0,13}^{-}$	861,2(18)	0,112~(6)	1st Forbidden	9,5
$\beta_{0.12}^{-}$	1213,7(18)	$0,\!636~(7)$	Unique 1st Forbidden	10
$\beta_{0.11}^{-1}$	1239,5(18)	11,11 (9)	1st Forbidden	8,1
$\beta_{0,10}^{-1}$	1245,2(18)	$5,\!80~(4)$	1st Forbidden	8,4
$\beta_{0.9}^{-}$	1280,0 (18)	1,14(2)	1st Forbidden	9,1
$\beta_{0.8}^{-}$	1296,8(18)	$5,\!60\ (7)$	Allowed	8,44
$\beta_{0.7}^{-}$	1348,9(18)	44,8(4)	1st Forbidden	7,6
$\beta_{0,6}^{-}$	1411,1(18)	0,262~(22)	Unique 1st Forbidden	10,7
$\beta_{0.5}^{-}$	1413,0 (18)	5,03(12)	1st Forbidden	8,6
$\beta_{0,3}^{-}$	1677,7(18)	$20,\!8~(6)$	1st Forbidden	8,3
$\beta_{0,1}^{\frac{1}{2}}$	2164,7(18)	4,5(6)	1st Forbidden	$9,\!4$

2.2 Gamma Transitions and Internal Conversion Coefficients

	$\frac{\rm Energy}{\rm (keV)}$	$\stackrel{\mathrm{P}_{\gamma+\mathrm{ce}}}{(\%)}$	Multipolarity	$_{(10^{-3})}^{\alpha_K}$	$\stackrel{\alpha_L}{(10^{-2})}$	$\stackrel{\alpha_M}{(10^{-2})}$	$\binom{\alpha_N}{(10^{-3})}$	$ \overset{\alpha_T}{(10^{-2})} $	$_{(10^{-5})}^{\alpha_{\pi}}$
$\gamma_{4,3}(\text{Ce})$	24,594(4)	0,480(11)	E2		54500 (800)	12200 (180)	25900 (400)	69600 (1000)	
$\gamma_{7,5}(\text{Ce})$	64,129(4)	0,073(11)	M1	3610(50)	49,9 (7)	10,46(15)	23,2(4)	424 (6)	
$\gamma_{9,7}(\text{Ce})$	68,923 (5)	0,342(10)	M1	2930(50)	40,5(6)	8,48 (12)	18,8(3)	344(5)	
$\gamma_{11,7}(\text{Ce})$	109,417 (4)	0,423(12)	M1+E2	787(12)	12,8(4)	2,71(8)	5,97(18)	94,9(15)	
$\gamma_{9,6}({ m Ce})$	131,121 (4)	0,729(16)	M1+E2	468(7)	6,60(22)	1,39(5)	3,07(11)	55,2 (9)	
$\gamma_{11,5}(\text{Ce})$	173,546(5)	0,158~(6)	M1	214(3)	2,91 (4)	0,609 (9)	1,350(19)	25,1 (4)	
$\gamma_{6,4}({ m Ce})$	241,959 (6)	0,480(11)	M1+E2	84(3)	1,30(11)	0,275~(25)	0,61~(6)	10,05~(18)	
$\gamma_{6,3}({ m Ce})$	266,554(5)	0,531 (10)	M1+E2	67,1(11)	0,906~(17)	0,190(4)	0,420 (9)	7,85(12)	
$\gamma_{2,1}({ m Ce})$	307,08 (4)	0,023~(5)	E2	36,2~(6)	0,695~(10)	0,1495~(21)	0,326~(5)	4,50(7)	
$\gamma_{7,3}(\text{Ce})$	328,761 (4)	21,7(3)	M1+E2	38,8(6)	0,516 (8)	0,1078~(15)	0,239 (4)	4,53(7)	
$\gamma_{9,3}(\text{Ce})$	$397,\!674$ (6)	0,0765 (31)	(E2)	16,89(24)	0,288 (4)	0,0615 (9)	0,1347 (19)	2,05(3)	
$\gamma_{10,3}(\text{Ce})$	432,513 (8)	3,063(31)	M1+E2	17,9(4)	0,245 (4)	0,0514 (8)	$0,1138\ (17)$	2,10(4)	
$\gamma_{11,3}(\text{Ce})$	438,178(6)	0,017(10)	M1	18,6(3)	0,244(4)	0,0510 (8)	0,1132(16)	2,17(3)	
$\gamma_{5,2}(Ce)$	444,57 (4)	0,003(1)	[E2]	12,34(18)	0,202 (3)	0,0429 (6)	0,0942(14)	1,490(21)	
$\gamma_{3,1}(\text{Ce})$	487,022 (6)	46,6(5)	E2	9,63(14)	0,1526 (22)	0,0324(5)	0,0711 (10)	1,156(17)	
$\gamma_{11,2}(Ce)$	618,12(4)	0,041(3)	[E2]	5,20(8)	0,0768(11)	0,01619(23)	0,0357(5)	0,617(9)	
$\gamma_{5,1}(\text{Ce})$	751,655 (7)	4,41 (5)	M1+E2	4,71 (8)	0,0613(10)	0,01277(20)	0,0283(5)	0,548(9)	
$\gamma_{7,1}(\text{Ce})$	815,784 (6)	23,83(20)	M1+E2	4,05(6)	0,0521(8)	0,01085(16)	0,0241(4)	0,471(7)	
$\gamma_{8,1}(Ce)$	867,842 (16)	5,59(7)	E1+M2	0,977(22)	0,0122(3)	0,00253(7)	0,00561(14)	0,113(3)	
$\gamma_{10,1}(Ce)$	919,536(10)	2,74(3)	M1+E2	2,19(6)	0,0295(7)	0,00616(13)	0,0136(3)	0,257(6)	
$\gamma_{11,1}(\text{Ce})$	925,201(7)	7,06(7)	M1+E2	2,96(5)	0,0381(6)	0,00792(12)	0,0176(3)	0,344(6)	
$\gamma_{12,1}(Ce)$	950,991(20)	0,533(7)	M1+E2	2,82(4)	0,0361(5)	0,00752(11)	0,01669(24)	0,328(5)	
$\gamma_{18,9}(Ce)$	992,64 (18)	0,010(3)	[E1]	0,743(11)	0,00924 (13)	0,00191(3)	0,00423(6)	0,0860(12)	
$\gamma_{17,6}(Ce)$	1045,02(9) 1007.58(0)	0,020(4)	[E1] [F9]	0,675(10)	0,00837(12)	0,001733(25)	0,00384(6)	0,0781(11) 0.1658(24)	
$\gamma_{14,2}(Ce)$	1097,58(9) 1202.25(7)	0,023(5)	$[E_2]$	1,42(2)	0,0188(3)	0,00392(6)	0,00808 (13)	0,1058(24)	
$\gamma_{13,1}(Ce)$	1303,35(7) 1404.67(0)	0,045(6)	[M1+E2+E0]	1,2(2) 1 01(15)	0,015(2)	0,0032(5)	0.0050(8)	0,14(2) 0.117(15)	4 79 (9)
$\gamma_{14,1}(Ce)$	1404,07 (9) 1506,212 (12)	0,002(8)	[M1+E2]	1,01(10)	0,0129(10)	0,0027 (4) 0.00170 (2)	0,0059(6)	0,117(10) 0.0787(12)	4,13(0) 11.09(16)
$\gamma_{1,0}(Ce)$	1090,213(13) 1977.24(18)	95,49(5)	E2	0,070(10) 0.245(4)	0,00805(12) 0.00200(5)	0,00179(3)	0,00597(0) 0.001277(20)	0,0787 (13) 0.0284 (4)	11,20(10)
$\gamma_{18,1}(Ce)$	1077,34(10) 1003.20(4)	0,041(0)		0,243 (4)	0,00300 (3)	0,000021(9)	0,001377(20)	0,0284 (4)	49,9 (7)
$\gamma_{2,0}(Ce)$	1903,29(4) 1024 5(2)	0,0140(13)	[E2]	0.478(7)	0.00601.(9)	0.001947(18)	0.00276(4)	0.0554 (8)	25.7(4)
$\gamma_{19,1}(OC)$	2083 236 (14)	0,011(3) 0.036(7)	[112] E4	1,470(17)	0,00001(3) 0.01508(23)	0.001247(10)	0,00210 (4) 0.00743 (11)	0,0354(0) 0.1364(10)	20,1 (4)
$\gamma_{3,0}(Ce)$	2003,250(14) 2347.868(14)	0,030(1) 0.846(16)	E2	1,102(17) 0.333(5)	0,01398(23) 0.00415(6)	0,00355(5)	0,00743(11) 0.00191(3)	0,1304(19) 0.0386(5)	46.0(7)
$\gamma_{5,0}(Ce)$	2347,000(14) 2464.054(20)	0,040(10) 0.0007(13)	[E3]	0,555(0)	0,00410(0)	0,000300(12) 0.001375(20)	0,00191(5) 0.00305(5)	0,0500(3)	$\frac{40,0}{33,1}$ (7)
$\gamma_{8,0}(Ce)$	2404,054(20) 2521.410(14)	3.41(5)	[E5] E2	0,313(8) 0.294(5)	0,00001(10) 0.00365(6)	0,001375(20) 0.000756(11)	0,00505(5)	0,0330(8)	54.2(8)
$\gamma_{11,0}(Ce)$	2521,410(14) 2547,200(23)	0.1021(20)	M1	0,294(0) 0,320(5)	0,00308(6)	0,000700(11) 0,000824(12)	0.001070(24)	0,0340(5)	59.3(9)
$\gamma_{12,0}(Ce)$	2347,200(23) 2899 56 (7)	0.0661(20)	E2	0.920(0)	0,00380(0)	0,000524(12)	0.001306(10)	0.0266(4)	71.4(10)
$\gamma_{15,0}(Ce)$	2033,50(1) 3118 53 (10)	0.026(1)	(E2)	0.201(4)	0.00250(4)	0.000518(8)	0.001149(16)	0.0234(3)	80.8(12)
$\gamma_{16,0}(Ce)$	3319.56(24)	0.0039(3)	E2	0.183(3)	0.00225(4)	0.000464(7)	0.001031(15)	0.0211(3)	89.2(13)
	3310,00 (24)	0,0000 (0)		0,100 (0)	0,00220 (1)	0,000101 (1)	3,301001 (10)	0,0211 (0)	50,2 (10)

3 Atomic Data

3.1 Ce

ω_K	:	0,910	(4)
$\bar{\omega}_L$:	$0,\!125$	(5)
n_{KL}	:	$0,\!876$	(4)
\bar{n}_{LM}	:	$1,\!57$	(3)

3.1.1 X Radiations

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$		Relative probability
X _K				
	$K\alpha_2$	$34,\!2793$		$54,\! 6$
	$K\alpha_1$	34,72		100
	$K\beta_3$	$39,\!1705$)	
	$\mathrm{K}\beta_1$	39,2578	}	30,31
	$\mathrm{K}\beta_5''$	$39,\!549$	J	
	$K\beta_2$	40,233	٦	0.9
	$\mathrm{K}\beta_4$	40,337	}	9,8
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	4,2868		
	$L\alpha$	4,822 - 4,8411		
	$\mathrm{L}\eta$	4,7274		
	$\mathrm{L}eta$	5,2625 - 5,6103		
	$L\gamma$	5,8755 - 6,3412		

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K KLL KLX KXY	27,190 - 28,828 32,392 - 34,700 37,57 - 40,40	$100 \\ 48,3 \\ 6,77$
Auger L	2,8 - 6,5	0,77

4 Electron Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Electrons (per 100 disint.)
e_{AL}	(Ce)	2,8 - 6,5		2,360(13)
e _{AK}	(Ce) KLL KLX KXY	27,190 - 28,828 32,392 - 34,700 37,57 - 40,40	}	0,206 (10)
$ec_{4,3}$ L $ec_{4,3}$ M $ec_{7,5}$ K $ec_{4,3}$ N $ec_{9,7}$ K $ec_{9,7}$ L $ec_{11,7}$ K $ec_{9,6}$ K $ec_{11,7}$ L $ec_{9,6}$ L $ec_{11,5}$ K $ec_{6,4}$ K $ec_{6,3}$ K $ec_{7,3}$ T $ec_{7,3}$ K $ec_{7,3}$ L $ec_{7,3}$ M	 (Ce) 	18,045 - 18,871 $23,159 - 23,711$ $23,686 (4)$ $24,304 - 24,594$ $28,480 (5)$ $62,374 - 63,200$ $68,974 (4)$ $90,678 (4)$ $102,868 - 103,694$ $124,572 - 125,398$ $133,103 (5)$ $201,516 (6)$ $226,111 (5)$ $288,318 - 328,741$ $288,318 - 328,741$ $288,318 (4)$ $322,212 - 323,038$ $327,326 - 327,878$		$\begin{array}{c} 0,376\ (12)\\ 0,0841\ (26)\\ 0,051\ (7)\\ 0,0178\ (6)\\ 0,226\ (7)\\ 0,0312\ (9)\\ 0,171\ (5)\\ 0,220\ (6)\\ 0,0278\ (12)\\ 0,0270\ (11)\\ 0,0366\ (16)\\ 0,0330\ (8)\\ 0,942\ (20)\\ 0,807\ (17)\\ 0,1073\ (23)\\ 0,02242\ (45)\\ \end{array}$
$\begin{array}{c} {\rm ec_{10,3\ K}}\\ {\rm ec_{3,1\ T}}\\ {\rm ec_{3,1\ K}}\\ {\rm ec_{3,1\ L}}\\ {\rm ec_{3,1\ L}}\\ {\rm ec_{3,1\ M}}\\ {\rm ec_{5,1\ K}}\\ {\rm ec_{7,1\ K}}\\ {\rm ec_{7,1\ L}}\\ {\rm ec_{11,1\ K}}\\ {\rm ec_{1,0\ K}} \end{array}$	(Ce) (Ce) (Ce) (Ce) (Ce) (Ce) (Ce) (Ce)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	ì	$\begin{array}{c} 0,0537\ (13)\\ 0,533\ (10)\\ 0,444\ (8)\\ 0,0703\ (13)\\ 0,01494\ (28)\\ 0,02068\ (42)\\ 0,0961\ (16)\\ 0,01236\ (22)\\ 0,02084\ (41)\\ 0,0645\ (10) \end{array}$
$\beta_{0,19}^{-}$ $\beta_{0,18}^{-}$	max: avg: max: avg:	$\begin{array}{ccc} 240,1 & (18) \\ 66,7 & (6) \\ 287,4 & (18) \\ 81,4 & (6) \end{array}$	}	0,011 (3) 0,052 (7)
$\beta^{0,17}$	max: avg:	$\begin{array}{ccc} 366,1 & (18) \\ 106,7 & (6) \end{array}$	}	0,020 (4)
$\beta_{0,16}^-$	max: avg:	$\begin{array}{ccc} 441,3 & (18) \\ 132,0 & (6) \end{array}$	}	0,0039 (3)
$\beta_{0,15}^-$	max: avg:	$\begin{array}{ccc} 642,5 & (18) \\ 203,7 & (7) \end{array}$	}	0,027~(1)
$\beta_{0,14}^-$	max: avg:	$\begin{array}{ccc} 760,0 & (18) \\ 248,0 & (7) \end{array}$	}	0,085~(9)

 $^{\mathbf{140}}_{57}\,\mathrm{La}_{83}$

KRI / V.P. Chechev, N.K. Kuzmenko

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$			Electrons (per 100 disint.)
$\beta_{0,13}^-$	max: avg:	861,2 287,3	(18) (7)	}	0,112~(6)
$\beta_{0,12}^-$	max: avg:	$1213,7 \\ 438,4$	(18) (7)	}	0,636~(7)
$\beta_{0,11}^-$	max: avg:	$1239,5 \\ 441,4$	(18) (8)	}	11,11 (9)
$\beta_{0,10}^-$	max: avg:	$1245,2 \\ 443,8$	(18) (8)	}	$5,\!80~(4)$
$\beta_{0,9}^-$	max: avg:	$1280,0 \\ 458,4$	(18) (8)	}	1,14(2)
$\beta_{0,8}^-$	max: avg:	$1296,8 \\ 465,6$	(18) (8)	}	$5,\!60(7)$
$\beta_{0,7}^-$	max: avg:	$1348,9 \\ 487,6$	(18) (8)	}	44.8(4)
$\beta_{0,6}^-$	max: avg:	$1411,1 \\ 518,8$	(18) (8)	}	0,262~(22)
$\beta^{0,5}$	max: avg:	$1413,0 \\ 515,0$	(18) (8)	}	5,03(12)
$\beta^{0,3}$	max: avg:	$1677,7 \\ 629,7$	(18) (8)	}	20,8~(6)
$\beta_{0,1}^-$	max: avg:	2164,7 846,4	(18) (8)	}	4,5~(6)

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Photons (per 100 disint.)		
$egin{array}{c} { m XL} \ { m XK}lpha_2 \ { m XK}lpha_1 \end{array}$	(Ce) (Ce) (Ce)	4,2868 - 6,3412 $34,2793$ $34,72$		0,343 (7) 0,591 (8) 1,082 (13)	}	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Ce) (Ce) (Ce)	39,1705 39,2578 39,549	<pre>}</pre>	0,326 (6)		${\rm K}'\beta_1$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4 \end{array}$	(Ce) (Ce)	40,233 40,337	}	0,0828 (21)		$K' \beta_2$

5.2 Gamma Emissions

	Energy	Photons
	(keV)	(per 100 disint.)
$\gamma_{4,3}(Ce)$	24.595(4)	0.000689(19)
$\gamma_{7,5}(\text{Ce})$	64,129(4)	0,014(2)
$\gamma_{9.7}(Ce)$	68,923(5)	0.077(2)
$\gamma_{11,7}(Ce)$	109.417(4)	0.217(6)
$\gamma_{9.6}(\text{Ce})$	131,121(4)	0.47(1)
$\gamma_{11.5}(\text{Ce})$	173,546(5)	0,126(5)
$\gamma_{6.4}(\text{Ce})$	241,959(6)	0,436(10)
$\gamma_{6.3}(\text{Ce})$	266,554(5)	0,492 (9)
$\gamma_{2,1}(\text{Ce})$	307,08(4)	0,022 (5)
$\gamma_{7,3}(\text{Ce})$	328,761 (4)	20,8(3)
$\gamma_{9,3}(\text{Ce})$	397,674(6)	0,075 (3)
$\gamma_{10,3}(\text{Ce})$	432,513 (8)	3,00(3)
$\gamma_{11,3}(\text{Ce})$	438,178(6)	0,017~(10)
$\gamma_{5,2}(\text{Ce})$	444,57 (4)	0,003~(1)
$\gamma_{3,1}(\text{Ce})$	487,022 (6)	46,1(5)
$\gamma_{11,2}(\text{Ce})$	618,12 (4)	0,041~(3)
$\gamma_{5,1}(\text{Ce})$	$751,\!653$ (7)	4,39(5)
$\gamma_{7,1}(\text{Ce})$	815,784~(6)	23,72 (20)
$\gamma_{8,1}(\text{Ce})$	$867,\!839\ (16)$	5,58~(7)
$\gamma_{10,1}(\text{Ce})$	$919{,}533~(10)$	2,73~(3)
$\gamma_{11,1}(\text{Ce})$	$925,\!198\ (7)$	7,04~(7)
$\gamma_{12,1}(\text{Ce})$	950,988~(20)	0,531~(7)
$\gamma_{18,9}(\text{Ce})$	$992,\!64\ (18)$	0,010~(3)
$\gamma_{17,6}(\text{Ce})$	1045,02 (9)	0,020~(4)
$\gamma_{14,2}(\text{Ce})$	1097,58 (9)	0,023~(5)
$\gamma_{13,1}(\text{Ce})$	$1303,\!34\ (7)$	0,045~(6)
$\gamma_{14,1}(\text{Ce})$	$1404,\!66$ (9)	0,062~(8)
$\gamma_{1,0}(\text{Ce})$	1596,203 (13)	$95,\!40$ (5)
$\gamma_{18,1}(\text{Ce})$	1877,33 (18)	0,041~(6)
$\gamma_{19,1}(\text{Ce})$	1924,5~(2)	0,011~(3)
$\gamma_{3,0}({ m Ce})$	2083,219(14)	0,036~(7)
$\gamma_{5,0}({ m Ce})$	2347,847 (14)	0,845~(16)
$\gamma_{8,0}({ m Ce})$	2464,031 (20)	0,0097~(13)
$\gamma_{11,0}(\text{Ce})$	2521,390(14)	3,41 (5)
$\gamma_{12,0}({\rm Ce})$	2547,180 (23)	0,102 (2)
$\gamma_{13,0}(\text{Ce})$	2899,53(7)	0,066(1)
$\gamma_{15,0}({ m Ce})$	3118,49(10)	0,026 (1)
$\gamma_{16,0}({\rm Ce})$	3319,52(24)	0,0039~(3)

6 Main Production Modes

 $\left\{ \begin{array}{l} {\rm Separation \ from \ Ba}-140 \ \& \ {\rm La}-140 \\ {\rm Possible \ impurities: \ Ba}-140 \end{array} \right.$

 $\left\{ \begin{array}{ll} {\rm La}-139({\rm n},\gamma){\rm La}-140 & \sigma:8,93~(4)~{\rm barns} \\ {\rm Possible~impurities:~La}-141 \end{array} \right.$

- H.W.Kirby, M.L.Salutsky. Phys. Rev. 93 (1954) 1051 (Half-life)
- L.YAFFE, H.G.THODE, W.F.MERRITT, R.C.HAWKINGS, F.BROWN, R.M.BARTHOLOMEW. Can. J. Chem. 32 (1954) 1017
- (Half-life)
- D.F.PEPPARD, G.W.MASON, S.W.MOLINE. J. Inorg. Nuclear Chem. 5 (1957) 141 (Half-life)
- R.G.WILLE, R.W.FINK. Phys. Rev. 118 (1960) 242 (Half-life)
- P.G.HANSEN, K.WILSKY. Nucl. Phys. 30 (1962) 405 (Gamma-ray emission probabilities)
- J.J.REIDY. Report TID-21826 (1964) (Gamma ray energies)
- P.Simonet, G.Boile, G.Simonet. Report CEA-R-2461 (1965) (Half-life)
- S.-E.KARLSSON, B.SVAHN, H.PETTERSSON, G.MALMSTEN, E.Y.DE AISENBERG. Nucl. Phys. A100 (1967) 113 (Gamma-ray emission probabilities, Gamma ray energies)
- B.S.DZHELEPOV, N.N.ZHUKOVSKII, A.G.MALOYAN, V.P.PRIKHODTSEVA. Bull. Acad. Sci. USSR, Phys. Ser. 30 (1967) 410
 - (Gamma-ray emission probabilities)
- A.Reynolds, J.F.Emery, E.I.Wyatt. Nucl. Sci. Eng. 32 (1968) 46
- (Half-life)
- R.GUNNINK, R.A.MEYER, J.B.NIDAY, R.P.ANDERSON. Nucl. Instr. Methods 65 (1968) 26 (Gamma ray energies)
- W.BAER, J.J.REIDY, M.L.WIEDENBECK. Nucl. Phys. A113 (1968) 33 (Gamma-ray emission probabilities, Gamma ray energies)
- R.GUNNINK, J.B.NIDAY, R.P.ANDERSON, R.A.MEYER. Report UCID-15439 (1969) (Gamma-ray emission intensities)
- J.KERN. Nucl. Instr. Methods 79 (1970) 233 (Gamma ray energies)
- G.KALINNIKOV, H.L.RAVN, H.G.HANSEN, N.A.LEBEDEV. Bull. Acad. Sci. USSR, Phys. Ser. 34 (1971) 815 (Gamma-ray emission probabilities, Gamma ray energies)
- R.J.GEHRKE. Report ANCR-1088 (1972) 392 (Gamma energy)
- R.L.HEATH. Report ANCR-1000-2 (1974) (Gamma-ray emission intensities)
- J.T.HARVEY, J.L.MEASON, J.C.HOGAN, H.L.WRIGHT. Nucl. Sci. Eng. 58 (1975) 431 (Gamma-ray emission intensities)
- C.-C.LIN. J. Inorg. Nucl. Chem. 38 (1976) 1409 (Gamma-ray emission probabilities)
- R.J.GEHRKE, R.G.HELMER, R.C.GREENWOOD. Nucl. Instrum. Methods 147 (1977) 405 (Gamma-ray emission probabilities)
- K.DEBERTIN, U.SCHÖTZIG, K.F.WALZ. INDC Ger-10/L+Special (1977) 83 (Half-life)
- K.DEBERTIN, U.SCHÖTZIG, K.F.WALZ. Nucl. Sci. Eng. 64 (1977) 784 (Gamma-ray emission probabilities)
- M.C.DAVIS, W.C.BOWMAN, J.C.ROBERTSON. Int. J. Appl. Radiat. Isotop. 29 (1978) 331 (Half-life)
- G.ARDISSON. Nucl. Instr. Methods 151 (1978) 505 (Gamma-ray emission probabilities, Gamma ray energies)
- H.G.BORNER, W.F.DAVIDSON, J.ALMEIDA, J.BLACHOT, J.A.PINSTON, P.H.M.VAN ASSCHE. Nucl. Instr. Methods 164 (1979) 579 (Gamma ray energies)
- J.B.OLOMO, T.D.MCMAHON. J. Phys. London G6 (1980) 367 (Half-life)
- H.HOUTERMANS, O.MILOSEVIC, F.REICHEL. Int. J. Appl. Radiat. Isotop. 31 (1980) 153 (Half-life)

- R.KAUR, A.K.SHARMA, S.S.SOOCH, P.N.TREHAN. J. Phys. Soc. Japan. 49 (1980) 2122 (Gamma ray energies, Gamma-ray emission probabilities)
- I.ADAM, N.M.ANTONEVA, V.B.BRUDANIN, M.BUDZYNSKI, TS.VYLOV, V.A.DZHASHI, A.ZHUMAMURATOV, A.I.IVANOV, V.G.KALINNIKOV, A.KUGLER, V.V.KUZNETSOV, LI ZON SIK, T.M.MUMINOV, A.F.NOVGORODOV, ET AL. Izv. Akad. Nauk SSSR, Ser. Fiz. 46 (1982) 2
- (Gamma ray energies, Gamma-ray emission probabilities)
- D.D.HOPPES, J.M.R.HUTCHINSON, F.J.SCHIMA, M.P.UNTERWEGER. report NBS-SP-626 (1982) 85 (Half-life)
- K.F.WALZ, K.DEBERTIN, H.SCHRADER. Int. J. Appl. Radiat. Isotop. 34 (1983) 1191 (Half-life)
- A.Abzouzi, M.S.Antony, V.B.Ndocko Ndongue. J. Radioanal. Nucl. Chem. 137 (1989) 381 (Half-life)
- B.CHAND, J.GOSWAMY, D.MEHTA, N.SINGH, P.N.TREHAN. Can. J. Phys. 69 (1991) 90 (Gamma-ray emission probabilities)
- M.P.UNTERWEGER, D.D.HOPPES, F.J.SCHIMA. Nucl. Instrum. Methods Phys. Res. A312 (1992) 349 (Half-life)
- B.SINGH, J.L.RODRIGUEZ, S.S.M.WONG, J.K.TULI. Nucl. Data Sheets 84 (1998) 565 (log ft systematics)
- J.Adam, A.G.Belov, R.Brandt, P.Chaloun, M.Honusek, V.G.Kalinnikov, M.I.Krivopustov, B.A.Kulakov, E.-J.Langrock, V.S.Pronskikh, A.N.Sosnin, V.I.Stegailov, V.M.Tsupko-Sitnikov, J.-S.Wan, W.Westmeier. Nucl. Instrum. Methods Phys. Res. B187 (2002) 419 (Half-life)
- M.P.UNTERWEGER. Appl. Rad. Isotopes 56 (2002) 125 (Half-life)
- I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN. At. Data Nucl. Data Tables 81 (2002) 1
- (Theoretical ICC)
- M.M.Bé, V.CHISTÉ, C.DULIEU, E.BROWNE, V.CHECHEV, N.KUZMENKO, R.HELMER, A.NICHOLS, E.SCHÖNFELD, R.DERSCH. Monographie BIPM-5, Vol.1, Bureau International des Poids et Mesures (2004) (2004) (La-140 decay data evaluation, La-140 adopted levels and gammas)
- N.NICA. Nucl. Data Sheets 108 (2007) 1287 (Decay Scheme, multipolarities, mixing ratios)
- T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (BrIcc computer program)
- M.WANG, G.AUDI, A.H.WAPSTRA, F.G.KONDEV, M.MACCORMICK, X.XU, B.PFEIFFER. Chin. Phys. C36 (2012) 1603
 - (\mathbf{Q})
- R.FITZGERALD. J. Res. Natl. Inst. Stand. Technol. 117 (2012) 80 (Half-life)
- M.P.UNTERWEGER, R.FITZGERALD. Appl. Radiat. Isot. 87 (2014) 92 (Half-life)

 γ Emission intensities per 100 disintegrations

1 Decay Scheme

Ce-144 (half-life 284.89 d) undergoes 100% beta minus decay to Pr-144m (half-life of 7.2 min) with a branching fraction of 0.0115, and Pr-144 (half-life of 17.29 min) with a branching fraction of 0.9885.

Le cérium 144 (284,89 d) se désintègre par émission bêta moins, pour 1,15 % vers le praséodyme 144m (7,2 min) et pour 98,85 % vers le praséodyme 144 (17,29 min).

2 Nuclear Data

$T_{1/2}(^{144}\text{Ce})$:	$284,\!89$	(6)	d
$T_{1/2}^{(144} \mathrm{Pr})$:	$17,\!29$	(4)	\min
$Q^{-}(^{144}{\rm Ce})$:	$318,\! 6$	(8)	keV

2.1 β^- Transitions

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	\lgft
$\begin{array}{c} \beta_{0,4}^- \\ \beta_{0,2}^- \\ \beta_{0,0}^- \end{array}$	$\begin{array}{c} 185,1 \ (8) \\ 238,5 \ (8) \\ 318,6 \ (8) \end{array}$	$\begin{array}{c} 19,2 \ (1) \\ 3,9 \ (2) \\ 76,9 \ (3) \end{array}$	1st forbidden non-unique 1st forbidden non-unique 1st forbidden non-unique	7,27 8,33 7,42

2.2 Gamma Transitions and Internal Conversion Coefficients

	$\frac{\rm Energy}{\rm (keV)}$	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}}\\ (\%) \end{array}$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$ \frac{\gamma_{4,3}(Pr)}{\gamma_{3,1}(Pr)} \\ \gamma_{4,2}(Pr) \\ \gamma_{1,0}(Pr) \\ \gamma_{2,0}(Pr) \\ \gamma_{3,0}(Pr) $	$\begin{array}{c} 33,563 \ (9) \\ 40,92 \ (3) \\ 53,395 \ (5) \\ 59,03 \ (3) \\ 80,120 \ (4) \\ 99,952 \ (9) \end{array}$	$\begin{array}{c} 1,28\ (6)\\ 1,16\ (18)\\ 0,90\ (4)\\ 1,15\ (23)\\ 4,83\ (17)\\ 0,128\ (6)\end{array}$	M1 M1 M3 M1 E2	$\begin{array}{c} 6,75 \ (10) \\ 408 \ (6) \\ 2,08 \ (3) \\ 1,214 \ (17) \end{array}$	$\begin{array}{c} 3,70 \ (6) \\ 2,06 \ (3) \\ 0,942 \ (14) \\ 618 \ (9) \\ 0,288 \ (4) \\ 0,71 \ (1) \end{array}$	$\begin{array}{c} 0,780 \ (11) \\ 0,434 \ (7) \\ 0,199 \ (3) \\ 155,0 \ (23) \\ 0,0608 \ (9) \\ 0,1599 \ (23) \end{array}$	$\begin{array}{c} 4,69 \ (7) \\ 2,61 \ (4) \\ 7,94 \ (12) \\ 1221 \ (18) \\ 2,45 \ (4) \\ 2,12 \ (3) \end{array}$
$\gamma_{4,0}(Pr)$	133,5152 (20)	17,01 (19)	M1	0,486(7)	0,0668(10)	0,01408(20)	0,571(8)

3 Atomic Data

3.1 Pr

ω_K	:	0,914	(4)
$\bar{\omega}_L$:	$0,\!132$	(5)
n_{KL}	:	$0,\!871$	(4)

3.1.1 X Radiations

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$		Relative probability
X _K				
	$K\alpha_2$	35,5506		54,8
	$K\alpha_1$	36,0267		100
	${ m K}eta_3$	40,6533		
	$K\beta_1$	40,7487	}	30,5
	$\mathrm{K}eta_5''$	41,05	J	
	$K\beta_2$	41,774)	
	$K\beta_4$	$41,\!877$	}	$7,\!8$
	$\mathrm{KO}_{2,3}$	41,968	J	
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	4,453		
	$L\alpha$	5,013 - 5,033		
	$L\eta$	4,929		
	$L\beta$	$5,\!489 - 5,\!851$		
	$ m L\gamma$	6,327 - 6,617		

3.1.2 Auger Electrons

	Energy (keV)	Relative probability
Auger K KLL KLX KXY	28,162 - 29,890 33,576 - 36,004 38,97 - 41,95	$100 \\ 49,4 \\ 6,1$
Auger L	2,90 - 4,91	1922

4 Electron Emissions

		Energy (keV)		Electrons (per 100 disint.)
e _{AL}	(Pr)	2,90 - 4,91		9,88 (10)
еак	(Pr)			0.80(4)
	KLĹ	28,162 - 29,890)	, ()
	KLX	33,576 - 36,004	Ş	
	KXY	38,97 - 41,95	J	
$ec_{4,2}$ T	(Pr)	11,404 - 53,373		0,802 (42)
$ec_{4,2}$ K	(Pr)	11,404 (5)		0,682 (35)
$ec_{1,0}$ T	(Pr)	17,04 - 59,01		1,15(23)
$ec_{1,0 K}$	(Pr)	17,04 (3)		0,38 (8)
$ec_{4,3}$ T	(Pr)	26,728 - 33,563		1,05(6)
$ec_{4.3 L}$	(Pr)	26,728 - 27,599		0,83 (5)
$ec_{4,3 M}$	(Pr)	32,052 - 32,632		0,175(10)
$ec_{4,3 N}$	(Pr)	33,259 - 33,561		0,039(2)
$ec_{3,1}$ T	(Pr)	34,09 - 40,90		0,84(13)
$ec_{3,1}$ L	(Pr)	34,09 - 34,96		0,66(10)
$ec_{2,0}$ T	(Pr)	38,129 - 80,120		3,43(18)
ес _{2.0 К}	(Pr)	38,129 (4)		2,91 (15)
$ec_{3,1}$ M	(Pr)	39,41 - 39,99		0,139(22)
$ec_{3,1 N}$	(Pr)	40,62 - 40,92		0,0311 (49)
$ec_{4,2}$ L	(Pr)	46,560 - 47,431		0,0951 (49)
$ec_{4.2}$ M	(Pr)	51,884 - 52,464		0,0201 (10)
$ec_{4,2}$ N	(Pr)	53,091 - 53,393		0,00448 (23)
$ec_{1,0}$ L	(Pr)	52,20 - 53,07		0,58(12)
$ec_{1.0 M}$	(Pr)	57,52 - 58,10		0,146(30)
$ec_{1,0}$ N	(Pr)	58,73 - 59,03		0,033(7)
$ec_{2,0}$ L	(Pr)	73,285 - 74,156		0,403 (21)
$ec_{2,0}$ M	(Pr)	78,609 - 79,189		0,085(4)
$ec_{2,0}$ N	(Pr)	79,816 - 80,118		0,019(1)
ес _{4.0 Т}	(Pr)	91,524 - 133,515		6,18(22)
ec_{40} K	(Pr)	91,524 (2)		5,26(19)
$ec_{4,0,L}$	(Pr)	126,680 - 127,551		0,723 (25)
ec_{40} M	(Pr)	132,004 - 132,584		0,152(5)
$ec_{4,0 N}$	(Pr)	133,211 - 133,513		0,0341 (12)
β^{-}	max:	185,1 (8)	۱	10.2(1)
$\rho_{0,4}$	avg:	50,29 (24)	ſ	13,2 (1)
<i>Q</i> -	max:	238,5 (8)	١	20(0)
$\rho_{0,2}$	avg:	66,24 (25)	}	3,9 (2)
<i>Q</i> -	max:	318,6 (8)	۱	760(9)
$p_{0,0}$	avg:	91,3 (3)	}	(0,9 (3)

193

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)		
XL XV	(Pr)	4,453 - 6,617	1,54(4))	
$\mathbf{X}\mathbf{K}\alpha_2$ $\mathbf{X}\mathbf{K}\alpha_1$	(Pr) (Pr)	35,5506 36,0267	$\begin{array}{c} 2,41 \ (5) \\ 4,40 \ (9) \end{array}$	}	$K\alpha$
$egin{array}{c} { m XK}eta_3\ { m XK}eta_1\ { m XK}eta_5^{\prime\prime} \end{array}$	(Pr) (Pr) (Pr)	$\begin{array}{c} 40,\!6533\\ 40,\!7487\\ 41,\!05\end{array}$	} 1,34 (3)		$\mathrm{K}'eta_1$
$\begin{array}{c} {\rm XK}\beta_2\\ {\rm XK}\beta_4\\ {\rm XKO}_{2,3} \end{array}$	(Pr) (Pr) (Pr)	$\begin{array}{c} 41,774 \\ 41,877 \\ 41,968 \end{array}$	$\left. \right\} = 0,343 \ (10)$		$\mathbf{K}' \boldsymbol{\beta}_2$

5.2 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\begin{array}{c} \gamma_{4,3}(\mathrm{Pr}) \\ \gamma_{3,1}(\mathrm{Pr}) \\ \gamma_{4,2}(\mathrm{Pr}) \\ \gamma_{1,0}(\mathrm{Pr}) \\ \gamma_{2,0}(\mathrm{Pr}) \\ \gamma_{3,0}(\mathrm{Pr}) \\ \gamma_{4,0}(\mathrm{Pr}) \end{array}$	$\begin{array}{c} 33,563 \ (9) \\ 40,92 \ (3) \\ 53,395 \ (5) \\ 59,03 \ (3) \\ 80,120 \ (4) \\ 99,952 \ (9) \\ 133,5152 \ (20) \end{array}$	$\begin{array}{c} 0,225 \ (11) \\ 0,32 \ (5) \\ 0,101 \ (5) \\ 0,00094 \ (19) \\ 1,40 \ (5) \\ 0,041 \ (2) \\ 10.83 \ (12) \end{array}$

6 Main Production Modes

 $\begin{array}{l} U-235(n,f)Ce-144\\ \\ U-238(n,f)Ce-144\\ \\ Pu-239(n,f)Ce-144 \end{array}$

7 References

- W.E. KREGER, C.S. COOK. Phys. Rev. 96 (1954) 1276 (Gamma-ray emission probabilities)
- W.S. EMMERICH, W.J. AUTH, J.D. KURBATOV. Phys. Rev. 94 (1954) 110 (Beta-particle energies, Gamma-ray energies)
- J.M. CORK, M.K. BRICE, L.C. SCHMID. Phys. Rev. 96 (1954) 1295 (Gamma-ray energies, Electron energies)
- R.P.SCHUMAN, M.E.JONES, A.C.MCWHERTER. J. Inorg. Nucl. Chem. 3 (1956) 160 (Half-life)
- I. PULLMAN, P. AXEL. Phys. Rev. 102 (1956) 1366 (Beta-particle energies, Gamma-ray energies, Electron energies)
- R.P. SCHUMAN, M.E. JONES, A.C. MCWHERTER. J. Inorg. Nucl. Chem. 3 (1956) 160 (Half-life)
- V. PARFENOVA, N.V. FORAFONTOV, V.S. SHPINEL. Izvest. Akad. Nauk SSSR, Ser. Fiz. 21 (1957) 1601 (Beta-particle energies and emission probabilities, Gamma-ray energies)
- D.F.PEPPARD, G.W.MASON, S.W.MOLINE. J. Inorg. Nucl. Chem. 5 (1957) 141 (Half-life)
- W.F. MERRITT, P.J. CAMPION, R.C. HAWKINGS. Can. J. Phys. 35 (1957) 16 (Half-life)
- R.L. НІСКОК, W.A. MCKINLEY, S.C. FULTZ. Phys. Rev. 109 (1958) 113 (Beta-particle energies and emission probabilities, ICC(K))
- A.K. SENGUPTA, R. BHATTACHARYYA, J. LAHIRI, P.N. MUKHERJEE. Indian J. Phys. 33 (1959) 388 (Beta-particle energies and emission probabilities, Gamma-ray energies and emission probabilities, ICC ratios)
- N.J. FREEMAN. Proc. Phys. Soc. (London) 74 (1959) 449 (Beta-particle energies and emission probabilities, Transition type, Gamma-ray energies, Conversion-electron energies, ICC(K), ICC(L))
- H.T. EASTERDAY, R.L. SMITH. Nucl. Phys. 20 (1960) 155 (Half-life)
- J.S. GEIGER, R.L. GRAHAM, G.T. EWAN. Nucl. Phys. 16 (1960) 1 (Conversion-electron energies and emission probabilities, Multipolarity)
- H.J. SATHOFF, T. AZUMA. Ohio State University Research Report R-35051, TID-6080, Appendix 8 (1960) (Gamma-ray energies and emission probabilities)
- J.S.GEIGER, R.L.GRAHAM, G.T.EWAN. Nucl. Phys. 16 (1960) 1 (Gamma-ray energies Conv. Elec. emission probabilities)
- J.S. GEIGER, R.L. GRAHAM, G.T. EWAN. Nucl. Phys. 28 (1961) 387 (Conversion-electron energies and emission probabilities, Electron-gamma and gamma-gamma coincidence)
- J. BURDE, M. RAKAVY, G. ENGLER. Phys. Rev. 128 (1962) 325 (Nuclear-level lifetime)
- N.V. FORAFONTOV, V.S. SHPINEL, TS. VASILEV. Nucl. Phys. 35 (1962) 260 (Auger and conversion electrons, Conversion-electron summed subshell ratios)
- J. BURDE, M. RAKAVY, G. ENGLER. Phys. Lett. 1 (1962) 147 (Nuclear-level lifetime)
- B. BLAKE, R. BOBONE, H. FRAUENFELDER, H.J. LIPKIN. Nuovo Cimento 25 (1962) 942 (Conversion electrons)
- E. CREUTZ, J. DE RAEDT, J.P. DEUTSCH, L. GRENACS, D. SIDDIQUE. Phys. Lett. 6 (1963) 329 (Ground-state spin)
- D.C.HOFFMAN. J. Inorg. Nucl. Chem. 25 (1963) 1196 (Half-life)
- U. KNEISSL, H. SCHNEIDER. Physik Verhandl. 14 (1963) 125 (Spin)
- R.M. SINGRU, R.S. RAGHAVAN, R.M. STEFFEN. Phys. Lett. 6 (1963) 319 (Multipolarity, Ground-state spin)
- M. FUJISHIRO, T. AZUMA. Annu. Rept. Radiation Center Osaka Prefect. 4 (1963) 86 (Beta-particle energies and emission probabilities, Gamma-ray energies and emission probabilities)
- W. COLLIN, H. DANIEL, S. MARGULIES, O. MEHLING, P. SCHMIDLIN, H. SCHMITT, K.S. SUBUDHI. Phys. Lett. 5 (1963) 329 (Spin)
- R. BHATTACHARYYA, S. SHASTRY. Indian J. Phys. 37 (1963) 357 (Gamma-gamma directional angular correlation, Multipolarity)

- T. IWASHITA, T. INAMURA, Y. IKEMOTO, S. KAGEYAMA. J. Phys. Soc. Japan 18 (1963) 1358 (Gamma-gamma coincidence and directional angular correlation, Nuclear-level structure, Spin)
- T. AZUMA, Y. SATO. Annu. Rept. Radiation Center Osaka Prefect. 5 (1964) 43
- (Gamma-gamma directional angular correlation, Beta transition type)
- R.E. MCADAMS, E.N. HATCH. USAEC Research and Development Report IS-1071, TID-4500 (1964) 127 (Nuclear-level lifetime)
- E.E. BERLOVICH, YU.K. GUSEV, D.M. KHAI, I. SHENAIKH. Bull. Acad. Sci. USSR, Phys. Ser. 28 (1965) 77 (Nuclear-level lifetime)
- K.F.FLYNN, L.E.GLENDENIN, E.P.STEINBERG. Nucl. Sci. Eng. 22 (1965) 416 (Half-life)
- K.F. FLYNN, L.E. GLENDENIN, E.P. STEINBERG. Nucl. Sci. Eng. 22 (1965) 416 (Half-life)
- W. REISER. Atomkernenergie 10 (1965) 307 (Spin)
- W. COLLIN, H. DANIEL, B. MARTIN, P. SCHMIDLIN, H. SCHMITT. Kolloquium uber Beta-Zerfall und Schwache Wechselwirkungen, Heidelberg (1965) 213
- (Beta-gamma correlation, Nuclear-level structure)
 H. DANIEL, G.T. KASCHL. Nucl. Phys. 76 (1966) 97 (Beta-particle energies and emission probabilities)
- H. BEER, H. SCHNEIDER. Z. Naturforsch. 21A (1966) 174 (Mixing ratio (53.4 keV), Ground-state spin)
- S.L. GUPTA, N.K. SAHA. Indian J. Phys 41 (1967) 48 (Gamma-gamma coincidence and directional correlation, Ground-state spin)
- F. LAGOUTINE, Y. LE GALLIC, J. LEGRAND. Int. J. Appl. Radiat. Isot. 19 (1968) 475 (Half-life)
- S.A. REYNOLDS, J.F. EMERY, E.I. WYATT. Nucl. Sci. Eng. 32 (1968) 46 (Half-life)
- H. DANIEL, W. COLLIN, M. KUNTZE, S. MARGULIES, B. MARTIN, O. MEHLING, P. SCHMIDLIN, H. SCHMITT. Nucl. Phys. A118 (1968) 689
- (Beta-gamma directional correlation, Ground-state spin)
- S.A.REYNOLDS, J.F.EMERY, E.I.WYATT. Nucl. Sci. Eng. 32 (1968) 46 (Half-life)
- F.LAGOUTINE, Y.LE GALLIC, J.LEGRAND. Int. J. Appl. Radiat. Isotop. 19 (1968) 475 (Half-life)
- W. GELLETLY, J.S. GEIGER. Nucl. Phys. A123 (1969) 369 (L-subshell ratios)
- R. GUNNINK, J.B. NIDAY, R.P. ANDERSON, R.A. MEYER. Lawrence Radiation Laboratory Report UCID-15439 (1969)
- (Gamma-ray energies and emission probabilities)
- P.C. MANGAL, P.N. TREHAN. J. Phys. Soc. Japan 27 (1969) 1
- (Gamma-ray emission probabilities, Gamma-gamma coincidence, Nuclear structure)
- Y.Y.BERZIN, A.E.KRUMINYA, P.T.PROKOF' EV. Izv. Akad. Nauk SSSR. Ser. Fiz. 34 (1970) 449+ (К ICC)
- Y.Y.BERZIN, A.E.KRUMINYA, P.T.PROKOF' EV. Bull. Ac. Sci. USSR. Phys. Ser. 34 (1970) 389 (K ICC)
- J.L.FASCHING, W.B.WALTERS, C.D.CORYELL. Phys. Rev. C1 (1970) 1126 (Half-life)
- J.L. FASCHING, W.B. WALTERS, C.D. CORYELL. Phys. Rev. C1 (1970) 1126 (Gamma-ray energies and emission probabilities)
- V.R. POTNIS, G.P. AGIN, C.E. MANDEVILLE. J. Phys. Soc. Japan 29 (1970) 539 (Gamma-ray emission probabilities)
- A. ANTTILA, M. PIIPARINEN. Z. Phys. 237 (1970) 126 (Gamma-ray energies and emission probabilities, ICC(K), ICC(L))
- A.ANTTILA, M.PIIPARINEN. Z. Phys. 237 (1970) 126 (Gamma-ray emission probabilities)
- H.S. SAHOTA. Curr. Sci. (India) 40 (1971) 289 (ICC (80 keV))
- L.V.GROSHEV, V.I.PELEKHOV. Bull. Ac. Sci. USSR. Phys. Ser. 35 (1971) 723 (K ICC)

- L.V.GROSHEV, V.I.PELEKHOV. Izv. Akad. Nauk SSSR. Ser. Fiz. 35 (1971) 786 (K ICC)
- M.BEHAR, Z.W.GRABOWSKI, S.RAMAN. Nucl. Phys. A219 (1974) 516 (Gamma-ray energies and emission probabilities Spin and Parity Mixing Ratio)
- C. BARGHOLTZ, S. BESHAI, L. ERIKSSON, L.E. FRÖBERG, L. GIDEFELDT. Physica Scripta 11 (1975) 363 (Mixing ratio)
- K. DEBERTIN, U. SCHÖTZIG, K.F. WALZ. H.M. WEISS. Ann. Nucl. Energy 2 (1975) 37 (134-keV gamma-ray emission probability)
- K.DEBERTIN, U.SCHÖTZIG, K.F.WALZ, H.M.WEISS. Ann. Nucl. Energy 2 (1975) 37 (Gamma-ray emission probabilities)
- B.V.N. RAO, G.N. RAO. J. Phys. Soc. Japan 40 (1976) 1 (Gamma-ray energies and emission probabilities)
- J.M.CHATTERJEE-DAS, R.K.CHATTOPZDHYAY, P.BHATTACHARYA, B.SETHI, S.K.MUKHERJEE. Radiochem. Radioanal. Letters 27 (1976) 119 (Gamma-ray energies and emission probabilities)
- J.M. CHATTERJEE-DAS, R.K. CHATTOPADHYAY, P. BHATTACHARYA, B. SETHI, S.K. MUKHERJEE. Radiochem. Radioanal. Lett. 27 (1976) 119 (Gamma-ray energies and emission probabilities)
- R.J. GEHRKE, R.G. HELMER, R.C. GREENWOOD. Nucl. Instrum. Methods 147 (1977) 405 (Gamma-ray emission probabilities)
- R.J.GEHRKE, R.G.HELMER, R.C.GREENWOOD. Nucl. Instrum. Methods 143 (1977) 405 (Gamma-ray emission probabilities)
- F.P. LARKINS. At. Data Nucl. Data Tables 20 (1977) 311 (Auger-electron energies)
- T. MORII. Nucl. Instrum. Methods 151 (1978) 489 (Gamma-ray energy)
- K.F.WALZ, M.WEISS, K.DEBERTIN. Private Communication quoted in Nucl. Data Sheets 27 (1979) 121 (Half-life)
- H.G. BORNER, W.F. DAVIDSON, J. ALMEIDA, J. BLACHOT, J.A. PINSTON, P.H.M. VAN ASSCHE. Nucl. Instrum. Methods 164 (1979) 579 (Gamma-ray energy)
- J.K.TULI. Nucl. Data Sheets 27 (1979) 97 (Half-life)
- R.G.HELMER, P.H.M.VAN ASSCHE, C.VAN DER LEUN. At. Data. Nucl. Data Tables 24 (1979) 39 (Gamma-ray energies)
- N.S.PRAVIKOFF, G.BAREI-FUNEL, G.ARDISSON. Radiochem. Radioanal. Letters 40 (1979) 123 (Gamma-ray energies and emission probabilities Spin and Parity)
- H. HOUTERMANS, O. MILOSEVIC, F. REICHEL. Int. J. Appl. Radiat. Isot. 31 (1980) 153 (Half-life)
- J.B. OLOMO, T.D. MACMAHON. Nucl. Energy 20 (1981) 237 (Gamma-ray emission probabilities)
- B. YU, F. LIU, X. LU, S. LI, C. YANG. Radiochem. Radioanal. Lett. 53 (1982) 351 (Gamma-ray energies and emission probabilities, X-ray energies and emission probabilities)
- M.R. EL-AASSER, A. ABDEL-HALIEM, P. ASFOUR, M.N.H. COMSAN. Arab J. Nucl. Sci. Appl. 16-2 (1983) 283 (Gamma-ray energies and emission probabilities)
- K.F. WALZ, K. DEBERTIN, H. SCHRADER. Int. J. Appl. Radiat. Isot. 34 (1983) 1191 (Half-life)
- J. DALMASSO, H. MARIA, A. HACHEM, G. ARDISSON. Nucl. Instrum. Methods Phys. Res. 221 (1984) 564 (Gamma-ray energies and emission probabilities)
- J.B. OLOMO. Radiat. Effects 94 (1986) 109 (Half-life)
- M.P. UNTERWEGER, D.D. HOPPES, F.J. SCHIMA. Nucl. Instrum. Methods Phys. Res. A312 (1992) 349 (Half-life)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys.Res. A369 (1996) 527
- (K- and L-shell fluorescence yields, K X-ray emission probability ratios, Auger-electron emission probability ratios)R.H. MARTIN, K.I.W. BURNS, J.G.V. TAYLOR. Nucl. Instrum. Methods Phys. Res. A390 (1997) 267
- (Half-life)
 E. SCHÖNFELD, G. RODLOFF. PTB Report PTB-6.11-98-1 (1998) (Auger electrons)

- E. SCHÖNFELD, G. RODLOFF. PTB Report PTB-6.11-1999-1 (1999) (X(K))
- E. SCHÖNFELD, H. JANSSEN. Appl. Radiat. Isot. 52 (2000) 595 (P(X), P(Ae))
- A.A. SONZOGNI. Nucl. Data Sheets 93 (2001) 599 (Nuclear levels)
- M.P. UNTERWEGER. Appl. Radiat. Isot. 56 (2002) 125 (Half-life)
- S. RAMAN, C.W. NESTOR, JR., A. ICHIHARA, M.B. TRZHASKOVSKAYA. Phys. Rev. C66 (2002) 044312 (Theoretical ICC)
- I.M. BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR, JR., P.O. TIKKANEN, S. RAMAN. At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC)
- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR, JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)
- M. WANG, G. AUDI, A.H. WAPSTRA, F.G. KONDEV, M. MACCORMICK, X. XU, B. PFEIFFER. Chin. Phys. C36 (2012) 1603 (Q-value)
- R. FITZGERALD. J. Res. Natl. Inst. Stand. Technol. 117 (2012) 80 (Half-life)
- M.P. UNTERWEGER, R. FITZGERALD. Appl. Radiat. Isot. 87 (2014) 92 (Half-life)

0

1 Decay Scheme

Pr-144 (half-life of 17.29 min) undergoes 100% beta minus decay to various excited levels and predominantly to the ground state of Nd-144.

Le praséodyme 144 (17,29 min) se désintègre à 100 % par émission bêta moins vers les niveaux excités et le niveau fondamental du néodyme 144.

2 Nuclear Data

$T_{1/2}(^{144}\mathrm{Pr})$:	$17,\!29$	(4)	\min
$T_{1/2}(^{144}\text{Nd})$:	2,3	(3)	10^{15} a
$Q^{-}(^{144}\mathrm{Pr})$:	2997,4	(24)	keV

2.1 β^- Transitions

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	$\lg ft$
$\beta_{0,12}^{-}$	254,4 (24)	0,00035~(6)	1st forbidden non-unique	8,1
$\beta_{0.11}^{-}$	321,8(24)	0,00096 (8)	1st forbidden non-unique	8
$\beta_{0,10}^{-1}$	341,9(24)	0,00018 (3)	1st forbidden non-unique	8,8
$\beta_{0,8}^{-}$	628, 6(24)	0,00027~(6)	1st forbidden unique	9,7
$\beta_{0,7}^{-}$	811,7(24)	$1,021\ (10)$	allowed	$6,\!32$
$\beta_{0.6}^{-}$	912,7(24)	0,00708~(6)	1st forbidden non-unique	8,7
$\beta_{0.5}^{-}$	924,5~(24)	0,00065~(6)	1st forbidden unique	10,2
$\beta_{0,4}^{-}$	1436,5(24)	0,0017~(3)	1st forbidden unique	10,8
$\beta_{0,1}^{-}$	2300,8(24)	1,116(3)	1st forbidden unique	$9,\!17$
$\beta_{0,0}^{\underline{-}}$	2997,4(24)	$97,852\ (10)$	1st forbidden non-unique	$6,\!53$

	Energy (keV)	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	$ \begin{array}{c} \alpha_K \\ (10^{-3}) \end{array} $	$_{(10^{-4})}^{\alpha_L}$	$ \overset{\alpha_M}{(10^{-4})} $	$ \begin{array}{c} \alpha_T \\ (10^{-3}) \end{array} $	$\overset{\alpha_{\pi}}{(10^{-4})}$
$\gamma_{7,4}(\mathrm{Nd})$	624,83(3)	0,00118 (3)	${ m E1}$	2,07(3)	2,67(4)	0,561(8)	2,41(4)	
$\gamma_{7,3}(\mathrm{Nd})$	674,88(4)	0,00301(14)	E2	4,60(7)	6,86(10)	1,465(21)	5,47(8)	
$\gamma_{1,0}(\mathrm{Nd})$	696,507 (4)	1,42(7)	E2	4,27~(6)	6,31 (9)	1,348(19)	5,07(7)	
$\gamma_{3,1}(\mathrm{Nd})$	814,310(23)	0,00331(14)	E1	1,198(17)	1,528(22)	0,321(5)	1,391(20)	
$\gamma_{4,1}(\mathrm{Nd})$	864,359(16)	0,00270(14)	M1 + 48,5% E2	3,38(14)	4,56(16)	0,96(4)	3,96(16)	
$\gamma_{12,4}(\mathrm{Nd})$	1182,07(7)	0,00006 (3)	E2	1,353(19)	1,82(3)	0,384~(6)	1,587(23)	0,0410 (6)
$\gamma_{5,1}(\mathrm{Nd})$	1376, 35 (3)	0,00041 (4)	M1+10,4%E2	1,35(3)	1,75(4)	0,368~(8)	1,61~(4)	0,398~(6)
$\gamma_{6,1}(\mathrm{Nd})$	1388, 12 (4)	0,00707~(6)	E2	0,984~(14)	1,297~(19)	0,274~(4)	1,190(17)	0,416~(6)
$\gamma_{7,1}(\mathrm{Nd})$	1489,156 (3)	0,286(3)	E1	0,397~(6)	$0,\!495~(7)$	0,1038~(15)	0,663~(10)	2,04 (3)
$\gamma_{4,0}(\mathrm{Nd})$	1560,920 (13)	0,00021 (3)	E2	0,786(11)	1,024 (15)	0,216 (3)	$1,014\ (15)$	0,981~(14)
$\gamma_{8,1}(\mathrm{Nd})$	1672,26 (4)	0,00021 (6)	M1+2,5%E2	0,892(14)	1,146(18)	0,241 (4)	1,189(18)	1,519(22)
$\gamma_{11,1}(\mathrm{Nd})$	1979,05 (8)	0,00096 (8)	E2	0,505(7)	0,647 (9)	0,1360(19)	0,868~(13)	2,81 (4)
$\gamma_{12,1}(\mathrm{Nd})$	2046, 43(7)	0,00030 (6)	E2	0,475(7)	0,607 (9)	0,1277 (18)	0,865~(13)	3,13(5)
$\gamma_{5,0}(\mathrm{Nd})$	2072,91 (3)	0,00024 (3)	E2	0,465~(7)	0,593~(9)	$0,1246\ (18)$	0,865~(13)	3,26(5)
$\gamma_{7,0}(\mathrm{Nd})$	2185,663 (5)	0,731 (10)	E1	0,213~(3)	0,264~(4)	0,0552 (8)	0,959(14)	7,12(10)
$\gamma_{8,0}(\mathrm{Nd})$	2368, 82 (4)	0,000051 (14)	E2	0,365~(6)	0,463~(7)	0,0973~(14)	0,891~(13)	4,67(7)
$\gamma_{10,0}(\mathrm{Nd})$	2655,54(3)	0,00018(3)	M1+E2					

2.2 Gamma Transitions and Internal Conversion Coefficients

3 Atomic Data

3.1 Nd

ω_K	:	0,918	(4)
$\bar{\omega}_L$:	$0,\!140$	(6)
n_{KL}	:	0,866	(4)

3.1.1 X Radiations

		$\frac{\rm Energy}{\rm (keV)}$		Relative probability
X _K				
	$K\alpha_2$	36,8478		55
	$K\alpha_1$	$37,\!3614$		100
	${ m K}eta_3$	42,167)	
	$K\beta_1$	$42,\!2717$	}	30,7
	${ m K}eta_5^{\prime\prime}$	$42,\!58$	J	
	$K\beta_2$	$43,\!335$)	
	$\mathrm{K}eta_4$	43,451	}	$7,\!9$
	$\mathrm{KO}_{2,3}$	$43,\!548$	J	
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	4,633		
	$L\alpha$	5,208 - 5,23		
	$L\eta$	$5,\!146$		
	$L\beta$	5,722 - 6,09		
	$ m L\gamma$	6,604 - 6,901		

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K KLL KLX KXY	29,154 - 30,978 34,798 - 37,340 40,42 - 43,53	$100 \\ 50 \\ 6,2$
Auger L	3,01 - 5,10	1655

4 Electron Emissions

		Energy (keV)		Electrons (per 100 disint.)
e_{AL}	(Nd)	3,01 - 5,1	.0	0,00551 (18)
e _{AK}	(Nd) KLL KLX KXY	29,154 - 30 34,798 - 37 40,42 - 43	$\left. \begin{array}{c} ,978 \\ ,340 \\ ,53 \end{array} \right\}$	0,00052 (4)
$\beta^{0,12}$	max: avg:	254,4 (24 71,05 (8)	$\left. \begin{array}{c} 1 \\ 0 \end{array} \right\}$	0,00035~(6)
$\beta^{0,11}$	max: avg:	$\begin{array}{ccc} 321,8 & (24) \\ 92,21 & (8) \end{array}$	$\left. \right\} $	0,00096 (8)
$\beta^{0,10}$	max: avg:	$\begin{array}{rrr} 341,9 & (24) \\ 98,68 & (8) \end{array}$	$\left. \right\} $	0,00018 (3)
$\beta_{0,8}^-$	max: avg:	$\begin{array}{rrrr} 628,6 & (24) \\ 213,04 & (9) \end{array}$	$\left. \begin{array}{c} 4 \\ \end{array} \right) \qquad \left. \right\}$	0,00027~(6)
$\beta_{0,7}^-$	max: avg:	$\begin{array}{ccc} 811.7 & (24) \\ 267.12 & (9) \end{array}$	$\left. \begin{array}{c} 4 \\ 0 \end{array} \right\}$	1,021 (10)
$\beta^{0,6}$	max: avg:	912,7 (24) 306,67 (10)	$\begin{array}{c} 4)\\ 0) \end{array} \right\}$	0,00708~(6)
$\beta^{0,5}$	max: avg:	924,5 (24) 322,77 (9)	$\left. \begin{array}{c} 1 \\ 0 \end{array} \right\}$	0,00065~(6)
$\beta^{0,4}$	max: avg:	$\begin{array}{rrrr} 1436,5 & (24) \\ 526,25 & (10) \end{array}$	$\begin{array}{c} 4)\\ 0) \end{array} \right\}$	0,0017~(3)
$\beta^{0,1}$	max: avg:	$\begin{array}{rrrr} 2300,8 & (24) \\ 894,90 & (11) \end{array}$	${\begin{array}{c}1\\1\end{array}} $	1,116~(3)
$\beta_{0,0}^-$	max: avg:	$\begin{array}{rrr} 2997,4 & (24) \\ 1221,990 & (1) \end{array}$	$\left. \begin{array}{c} 4 \\ 0 \end{array} \right\}$	97,852 (10)

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Photons (per 100 disint.)		
XL	(Nd)	4,633 - 6,901		0,00092 (3)		
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Nd) (Nd)	36,8478 37,3614		$0,00165 (9) \\ 0,00300 (15)$	<pre>}</pre>	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Nd) (Nd) (Nd)	$\begin{array}{c} 42,167 \\ 42,2717 \\ 42,58 \end{array}$	}	0,00092 (5)		$\mathrm{K}'eta_1$
$\begin{array}{c} {\rm XK}\beta_2\\ {\rm XK}\beta_4\\ {\rm XKO}_{2,3} \end{array}$	(Nd) (Nd) (Nd)	$\begin{array}{c} 43,335\\ 43,451\\ 43,548\end{array}$	}	0,000237 (13)		$\mathbf{K}' \boldsymbol{\beta}_2$

5.2 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\gamma_{7,4}(\mathrm{Nd})$	624,83 (3)	0,00118 (3)
$\gamma_{7,3}(\mathrm{Nd})$	674,88(4)	0,00299(14)
$\gamma_{1,0}(\mathrm{Nd})$	696,505 (4)	1,41(7)
$\gamma_{3,1}(\mathrm{Nd})$	814,308 (23)	0,00331(14)
$\gamma_{4,1}(\mathrm{Nd})$	864,356(16)	0,00269(14)
$\gamma_{12,4}(\mathrm{Nd})$	1182,06(7)	0,00006 (3)
$\gamma_{5,1}(\mathrm{Nd})$	1376, 34(3)	0,00041 (4)
$\gamma_{6,1}(\mathrm{Nd})$	1388,11 (4)	0,00706 (6)
$\gamma_{7,1}(\mathrm{Nd})$	1489,148(3)	0,286(3)
$\gamma_{4,0}(\mathrm{Nd})$	1560,911 (13)	0,00021 (3)
$\gamma_{8,1}(\mathrm{Nd})$	1672,25 (4)	0,00021 (6)
$\gamma_{11,1}(\mathrm{Nd})$	1979,04 (8)	0,00096 (8)
$\gamma_{12,1}(\mathrm{Nd})$	2046, 41(7)	0,00030 (6)
$\gamma_{5,0}(\mathrm{Nd})$	2072,89 (3)	0,00024 (3)
$\gamma_{7,0}(\mathrm{Nd})$	2185,645 (5)	0,73(1)
$\gamma_{8,0}(\mathrm{Nd})$	2368,80 (4)	0,000051 (14)
$\gamma_{10,0}(\mathrm{Nd})$	2655,51 (3)	0,00018 (3)

6 Main Production Modes

$$\begin{split} &U-235(n,f)Pr-144\\ &U-238(n,f)Pr-144\\ &Pu-239(n,f)Pr-144\\ &Ce-144(\beta^-)Pr-144 \end{split}$$

7 References

- W.E. KREGER, C.S. COOK. Phys. Rev. 96 (1954) 1276 (Gamma-ray emission probabilities)
- E.C. WALDRON, V.A. SCHULTZ, T.P. KOHMAN. Phys. Rev. 93 (1954) 254 (Nd-144 half-life)
- W. PORSCHEN, W. RIEZLER. Z. Naturforsch. 11a (1956) 143 (Nd-144 half-life)
- D.F. PEPPARD, G.W. MASON, S.W. MOLINE. J. Inorg. Nucl. Chem. 5 (1957) 141 (Half-life)
- R.L. GRAHAM, J.S. GEIGER, T.A. EASTWOOD. Can. J. Phys. 36 (1958) 1084 (Gamma-ray energies and emission probabilities, Beta-particle emission probabilities, Beta-gamma directional correlation, Beta spectral shape)
- F.T. PORTER, P.P. DAY. Phys. Rev. 114 (1959) 1286 (Beta-particle energies and emission probabilities, Gamma-ray emission probabilities)
- R.D. MACFARLANE, T.P. КОНМАN. Phys. Rev. 121 (1961) 1758 (Nd-144 half-life)
- U. KNEISSEL, H. SCHNEIDER. Physik Verhandl 14 (1963) 125, 13 (Spin)
- E. CREUTZ, J. DE RAEDT, J.P. DEUTSCH, L. GRENACS, D. SIDDIQUE. Phys. Lett. 6 (1963) 329 (Ground-state spin)
- R.M. SINGRU, R.S. RAGHAVAN, R.M. STEFFEN. Phys. Lett. 6 (1963) 319 (Ground-state spin, Multipolarity)
- W. Collin, H. Daniel, S. Margulies, O. Mehling, P. Schmidlin, H. Schmitt, K.S. Sibudhi. Phys. Lett. 5 (1963) 329
 - (Spin)
- D.C. HOFFMAN. J. Inorg. Nucl. Chem. 25 (1963) 1196
- (Half-life)
- T. IWASHITA, T. INAMURA, Y. IKEMOTO, S. KAGEYAMA. J. Phys. Soc. Japan 18 (1963) 1358
- (Gamma-gamma coincidence, Gamma-gamma directional angular correlation, Level structure, Spin)
- W. REISER. Atomkernenergie 10 (1965) 307 (Spin)
- A. ISOLA, N. NURMIA. Z. Naturforsch. 20a (1965) 541 (Nd-144 half-life)
- W. COLLIN, H. DANIEL, B. MARTIN, P. SCHMIDLIN, H. SCHMITT. Kolloquim uber Beta-Zertfall und Schwache Wechselwirkungen, Heidelberg (1965) 213
- (Beta-gamma correlation, Nuclear-level structure)
- H. BEER, H. SCHNEIDER. Z. Naturforsch. 21a (1966) 174 (Ground-state spin, Mixing ratio (53.4 keV))
- S.L. GUPTA, N.K. SAHA. Indian J. Phys. 41 (1967) 48 (Gamma-gamma coincidence, Gamma-gamma directional correlation, Ground-state spin)
- A.R. SAYRES, C.C. TRAIL. Nucl. Phys. A113 (1968) 521 (Gamma-ray energies and emission probabilities)
- S. RAMAN. Nucl. Phys. A107 (1968) 402
- (Half-life, Gamma energies and emission probabilities)
- H. DANIEL, W. COLLIN, M. KUNTZE, S. MARGULIES, B. MARTIN, O. MEHLING, P. SCHMIDLIN, H. SCHMITT. Nucl. Phys. A118 (1968) 689
- (Beta-gamma directional correlation, Ground-state spin)
- R. GUNNINK, J.B. NIDAY, R.P. ANDERSON, R.A MEYER. Lawrence Radiation Laboratory Report UCID-15439 (1969)

(Gamma-ray energies and emission probabilities)

- W. GELLETLY, J.S, GEIGER. Nucl. Phys. A123 (1969) 369 (L-subshell ratios (59.03 keV), Ground-state spin)
- P.C. MANGAL, P.N. TREHAN. J. Phys. Soc. Japan 27 (1969) 1 (Gamma-ray emission probabilities)
- J.L. FASCHING, W.B. WALTERS, C.D. CORYELL. Phys. Rev. C1 (1970) 1126 (Half-life, Gamma-ray energies and emission probabilities, Beta-particle emission probabilities)
- T. NAGARAJAN, M. RAVINDRANATH, K.V. REDDY. Nuovo Cimento 3A (1971) 699 $((0^- \to 0^+)$ beta shape factor)
- H.E. BOSCH, M. BEHAR, M.C. CAMBIAGGIO, G.G. BERMUDEZ, L. SZYBISZ. Can. J. Phys. 51 (1973) 2260 $((0^- \rightarrow 0^+) \text{ and } (0^- \rightarrow 2^+) \text{ beta shape factors})$
- M. BEHAR, Z.W. GRABOWSKI, S. RAMAN. Nucl. Phys. A219 (1974) 516 (Gamma-ray energies and emission probabilities, Mixing ratio, Branching fraction)
- K. DEBERTIN, U. SCHÖTZIG, K.F. WALZ, H.M. WEISS. Ann. Nucl. Energy 2 (1975) 37 (Gamma-ray emission probabilities)
- J.P COLLINS, C.T. WUNKER, R.L. PLACE, D.R. OBER. Bull. Am. Phys. Soc. 21 (1976) 149, D1 (Nuclear-level half-life (1314.67 keV))
- B.V.N. RAO, G.N. RAO. J. Phys. Soc. Japan 40 (1976) 1 (Gamma-ray energies and emission probabilities)
- R.J. GEHRKE, R.G. HELMER, R.C. GREENWOOD. Nucl. Instrum. Methods 147 (1977) 405 (Gamma-ray emission probabilities)
- F.P LARKINS. At. Data Nucl. Data Tables 20 (1977) 311 (Auger-electron energies)
- M.S. PRAVIKOFF, G. BARCI-FUNEL, G. ARDISSON. Radiochem. Radioanal. Lett. 40 (1979) 123 (Gamma-ray energies and emission probabilities)
- R.C. GREENWOOD, R.G. HELMER, R.J. GEHRKE. Nucl. Instrum. Methods 159 (1979) 465 (Gamma-ray energies)
- J.B. OLOMO, T.D. MACMAHON. Nucl. Energy 20 (1981) 237 (Gamma-ray emission probabilities)
- D.M. SNELLING, W.D. HAMILTON. J. Phys. G: Nucl. Phys 9 (1983) 763 (Nuclear structure, Mixing ratio)
- K.S. KRANE, S. RAMAN, F.K. MCGOWAN. Phys. Rev. C27 (1983) 2863 (Spin, Mixing ratio)
- J. DALMASSO, H. FOREST, G. ARDISSON. Phys. Rev. 32 (1985) 1006 (Gamma-ray energies and emission probabilities, Branching fraction)
- B. Al-Bataina, J. JÄNECKE. Radiochim. Acta 42 (1987) 159
- (Nd-144 half-life)
- S.L. ROBINSON, J. JOLIE, H.G. BÖRNER, P. SCHILLEBEECKX, S. ULBIG, K.P. LIEB. Phys. Rev. Lett. 73 (1994) 412
 - (Nuclear-level lifetimes)
- E.SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods. Phys. Res. A369 (1996) 527 (Fluorescence yields, X-ray emission probability ratios, Auger-electron emission probability ratios)
- E. SCHÖNFELD, G. RODLOFF. PTB Report PTB-6.11-98-1 (1998) (Auger electrons)
- S.F. HICKS, C.M. DAVOREN, W.M. FAULKNER, J.R. VANHOY. Phys. Rev. 57 (1998) 2264 (Nuclear structure, Mixing ratios)
- E. SCHÖNFELD, G. RODLOFF. PTB Report PTB-6.11-1999-1 (1999) (K-X rays)
- R.G. HELMER, C. VAN DER LEUN. Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma-ray energies)
- E. SCHÖNFELD, H. JANSSEN. Appl. Radiat. Isot. 52 (2000) 595 (P(X), Auger-electron emission probabilities)
- A.A. SONZOGNI. Nucl. Data Sheets 93 (2001) 599 (Nuclear levels)
- S. RAMAN, C.W. NESTOR JR., A. ICHIHARA, M.B. TRZHASKOVSKAYA. Phys. Rev. C66 (2002) 044312 (Theoreical ICC)
- I.M.BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR JR., P.O. TIKKANEN, S. RAMAN. At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC)

- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)
- M. WANG, G. AUDI, A.H. WAPSTRA, F.G. KONDEV, M. MACCORMICK, X. XU, B. PFEIFFER. Chin. Phys. C36 (2012) 1603 (Q-value)

 γ Emission intensities per 100 disintegrations

1 Decay Scheme

Pr-144m (half-life of 7.2 min) decays 99.94(2)% by an isomeric transition to Pr-144 and 0.06(2)% by beta minus emission to various excited levels of Nd-144.

Le praséodyme 144m (7,2 min) se désintègre à 99,94 % par transition isomérique vers le praséodyme 144 et par émission bêta moins vers trois niveaux excités du néodyme 144.

2 Nuclear Data

$T_{1/2}(^{144m}Pr)$:	7,2	(2)	\min
$T_{1/2}(^{144}\text{Nd})$:	2,3	(3)	10^{15} a
$T_{1/2}(^{144}\mathrm{Pr})$:	$17,\!29$	(4)	\min
$Q^{IT}(^{144m}Pr)$:	59,03	(3)	keV
$Q^{-}(^{144m}Pr)$:	3056,4	(24)	keV

2.1 β^- Transitions

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	$\lg ft$
$\beta_{0,13}^{-}$	110,4 (24)	0,030 (3)	(allowed)	$4,\!65$
$\beta_{0,9}^{-}$	474,1(24)	0,010~(3)	(1st forbidden non-unique)	$7,\!15$
$\beta_{0,3}^{-}$	1545,5(24)	0,02~(1)	allowed	8,7

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy (keV)	$\stackrel{\rm P_{\gamma+ce}}{(\%)}$	Multipolarity	$lpha_K$	$lpha_L$	$lpha_M$	$lpha_T$	$lpha_\pi$
$ \begin{array}{c} \gamma_{1,0}(\mathrm{Pr}) \\ \gamma_{2,1}(\mathrm{Nd}) \\ \gamma_{1,0}(\mathrm{Nd}) \\ \gamma_{3,1}(\mathrm{Nd}) \\ \gamma_{13,2}(\mathrm{Nd}) \end{array} $	$59,03 (3) \\618,108 (16) \\696,507 (4) \\814,310 (23) \\1631,37 (10) \\1885,76 (6)$	$\begin{array}{c} 99,94 (2) \\ 0,030 (3) \\ 0,06 (2) \\ 0,02 (1) \\ 0,030 (3) \\ 0,010 (3) \end{array}$	M3 E2 E2 E1	$\begin{array}{c} 408 \ (6) \\ 0,00568 \ (8) \\ 0,00427 \ (6) \\ 0,001198 \ (17) \end{array}$	618 (9) 0,000869 (13) 0,000631 (9) 0,0001528 (22)	$\begin{array}{c} 155,0 (23) \\ 0,000186 (3) \\ 0,0001348 (19) \\ 0,0000321 (5) \end{array}$	$\begin{array}{c} 1221 \ (18) \\ 0,00679 \ (10) \\ 0,00507 \ (7) \\ 0,001391 \ (20) \end{array}$	0.000255 (4)

3 Atomic Data

3.1 Nd

ω_K	:	0,918	(4)
$\bar{\omega}_L$:	$0,\!140$	(6)
n_{KL}	:	0,866	(4)

3.1.1 X Radiations

		Energy (keV)	Relative probability
$X_{\rm K}$	Koo	36 8478	54-1
	$K\alpha_2$ $K\alpha_1$	37,3614	100
	$\begin{array}{c} \mathrm{K}\beta_{3} \\ \mathrm{K}\beta_{1} \\ \mathrm{K}\beta_{5}^{\prime\prime} \end{array}$	$\begin{array}{c} 42,167 \\ 42,2717 \\ 42,58 \end{array}$	} 30,5
	$egin{array}{c} { m K}eta_2 \ { m K}eta_4 \ { m KO}_{2,3} \end{array}$	$\begin{array}{c} 43,335\\ 43,451\\ 43,548\end{array}$	} 7,73

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K KLL KLX KXY	29,154 - 30,978 34,798 - 37,340 40,42 - 43,53	$100 \\ 50 \\ 6,25$
Auger L	3,01 - 5,10	1667

3.2 Pr

ω_K	:	0,914	(4)
$\bar{\omega}_L$:	$0,\!132$	(5)
n_{KL}	:	0,871	(4)

3.2.1 X Radiations

		Energy (keV)		Relative probability
X _K				
	$K\alpha_2$	$33,\!5506$		54,8
	$K\alpha_1$	36,0267		100
	${ m K}eta_3$	40,6533)	
	$K\beta_1$	40,7487	}	30,4
	${ m K}eta_5^{\prime\prime}$	41,05	J	
	$K\beta_2$	41,774)	
	$K\beta_4$	41,877	}	$7,\!78$
	$\mathrm{KO}_{2,3}$	41,968	J	
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	$4,\!453$		
	$L\alpha$	5,013 - 5,033		
	$L\eta$	4,929		
	$L\beta$	$5,\!489 - 5,\!851$		
	$ m L\gamma$	6,327		

3.2.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K KLL KLX KXY	28,162 - 29,890 33,576 - 36,004 38,97 - 41,95	$100 \\ 49,2 \\ 6,11$
Auger L	2,90 - 4,91	3730

4 Electron Emissions

		Energy (keV)		Electrons (per 100 disint.)
e_{AL}	(Nd)	3,01 - 5,10		0,00040 (5)
e _{AK}	(Nd) KLL KLX KXY	29,154 - 30,978 34,798 - 37,340 40,42 - 43,53	}	0,000038 (8)
\mathbf{e}_{AL}	(Pr)	2,90 - 4,91		69(10)
e_{AK}	(Pr) KLL KLX KXY	28,162 - 29,890 33,576 - 36,004 38,97 - 41,95	}	2,87 (15)
$ec_{1,0}$ T $ec_{1,0}$ K $ec_{1,0}$ L $ec_{1,0}$ M $ec_{1,0}$ N $ec_{1,0}$ O	(Pr) (Pr) (Pr) (Pr) (Pr) (Pr)	17,04 - 59,01 17,04 (3) 52,20 - 53,07 57,52 - 58,10 58,73 - 59,03 58,99 - 59,01		$\begin{array}{c} 99,9 \ (21) \\ 33,4 \ (7) \\ 50,6 \ (10) \\ 12,68 \ (26) \\ 2,84 \ (6) \\ 0,411 \ (9) \end{array}$
$\beta_{0,13}^-$	max: avg:	$\begin{array}{ccc} 110,4 & (24) \\ 29,0 & (7) \end{array}$	}	0,030 (3)
$\beta^{0,9}$	max: avg:	$\begin{array}{rrr} 474,1 & (24) \\ 143,0 & (8) \end{array}$	}	0,010 (3)
$\beta_{0,3}^-$	max: avg:	$\begin{array}{rrr} 1545,5 & (24) \\ 570,0 & (11) \end{array}$	}	0,02~(1)

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Photons (per 100 disint.)		
$\begin{array}{l} {\rm XK}\alpha_2\\ {\rm XK}\alpha_1 \end{array}$	(Nd) (Nd)	36,8478 37,3614		$\begin{array}{c} 0,000119 \ (23) \\ 0,00022 \ (5) \end{array}$	}	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Nd) (Nd) (Nd)	$\begin{array}{c} 42,167 \\ 42,2717 \\ 42,58 \end{array}$	}	0,000067~(13)		$\mathrm{K}'eta_1$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Nd) (Nd) (Nd)	$\begin{array}{c} 43,335\\ 43,451\\ 43,548\end{array}$	<pre>}</pre>	0,000017 (4)		$\textbf{K}'\beta_2$

		Energy (keV)		Photons (per 100 disint.)		
XL XK α_2 XK α_1	(Pr) (Pr) (Pr)	4,453 - 6,617 33,5506 36,0267		10,5 (5) 8,66 (19) 15.8 (4)	}	Kα
$\begin{array}{c} \mathrm{XK}\beta_{3} \\ \mathrm{XK}\beta_{1} \\ \mathrm{XK}\beta_{5}^{\prime\prime} \end{array}$	(Pr) (Pr) (Pr)	$\begin{array}{c} 40,\!6533\\ 40,\!7487\\ 41,\!05\end{array}$	<pre>}</pre>	4,81 (12)	J	$\mathrm{K}'eta_1$
$egin{array}{c} XKeta_2\ XKeta_4\ XKO_{2,3} \end{array}$	(Pr) (Pr) (Pr)	$\begin{array}{c} 41,774 \\ 41,877 \\ 41,968 \end{array}$	}	1,23~(4)		$\mathrm{K}'eta_2$

5.2 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$ \begin{array}{c} \gamma_{1,0}(\mathrm{Pr}) \\ \gamma_{2,1}(\mathrm{Nd}) \\ \gamma_{1,0}(\mathrm{Nd}) \\ \gamma_{3,1}(\mathrm{Nd}) \\ \gamma_{13,2}(\mathrm{Nd}) \\ \gamma_{9,1}(\mathrm{Nd}) \end{array} $	$\begin{array}{c} 59,03 \ (3) \\ 618,107 \ (16) \\ 696,505 \ (4) \\ 814,308 \ (23) \\ 1631,36 \ (10) \\ 1885,75 \ (6) \end{array}$	$\begin{array}{c} 0,0818 \ (12) \\ 0,030 \ (3) \\ 0,06 \ (2) \\ 0,02 \ (1) \\ 0,030 \ (3) \\ 0,010 \ (3) \end{array}$

6 Main Production Modes

$$\begin{split} &U-235(n,f) Pr-144m \\ &U-238(n,f) Pr-144m \\ &Pu-239(n,f) Pr-144m \\ &Ce-144(\beta^-) Pr-144m \end{split}$$

7 References

- J.S. GEIGER, R.L. GRAHAM, G.T. EWAN. Nucl. Phys. 16 (1960) 1 (59.03-keV conversion-electron energies and emission probabilities, Multipolarity)
- S. RAMAN. Nucl. Phys. A107 (1968) 402 (Gamma-ray energies)
- A.R. SAYRES, C.C. TRAIL. Nucl. Phys. A113 (1968) 521 (Gamma-ray energies)
- W. GELLETLY, J.S. GEIGER. Nucl. Phys. A123 (1969) 369 (59.03-keV L-subshell ratios)
- A. ANTTILA, M. PIIPARINEN. Z. Phys. 237 (1970) 126 (59.03-keV gamma-ray energy and emission probability, ICC(K), ICC(L))
 J.L. FASCHING, W.B. WALTERS, C.D. CORYELL Phys. Rev. C1 (1970) 1126
- J.L. FASCHING, W.B. WALTERS, C.D. CORYELL. Phys. Rev. C1 (1970) 1120 (Half-life, Partial beta-decay branching fraction)
- M. Behar, Z.W. Grabowski, S. Raman. Nucl. Phys. A219 (1974) 516 (Gamma-ray energies)

- J.M. CHATTERJEE-DAS, R.K. CHATTOPADHYAY, P. BHATTACHARYA, B. SETHI, S.K. MUKHERJEE. Radiochem. Radioanal. Lett. 27 (1976) 119
 - (Half-life, Gamma-ray energies and emission probabilities)
- J.P. COLLINS, C.T. WUNKER, R.L. PLACE, D.R. OBER. Bull. Amer. Phys. Soc. 21 (1976) 149, D1 (1314.67-keV nuclear-level half-life)
- B.V.N. RAO, G.N. RAO. J. Phys. Soc. Japan 40 (1976) 1 (Gamma-ray energies and emission probabilities)
- F.P. LARKINS. At. Data Nucl. Data Tables 20 (1977) 311 (Auger-electron energies)
- M.S. PRAVIKOFF, G. BARCI-FUNEL, G. ARDISSON. Radiochem. Radioanal. Lett. 40 (1979) 123 (Gamma-ray energies and emission probabilities)
- R.C. GREENWOOD, R.G. HELMER, R.J. GEHRKE. Nucl. Instrum. Methods 159 (1979) 465 (Gamma-ray energies)
- J. DALMASSO, H. FOREST, G. ARDISSON. Phys. Rev. 32 (1985) 1006 (Gamma-ray energies and emission probabilities, Partial beta-decay branching fraction)
- S.L. ROBINSON, J. JOLIE, H.G. BÖRNER, P. SCHILLEBEECKX, S. ULBIG, K.P. LIEB. Phys. Rev. Lett. 73 (1994) 412

(Nuclear-level lifetimes)

- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K- and L-shell fluorescence yields, K X-ray emission probability ratios, Auger-electron emission probability ratios)
- S.F. HICKS, C.M. DAVOREN, W.M. FAULKNER, J.R. VANHOY. Phys. Rev. 57 (1998) 2264 (Nuclear structure, Mixing ratios)
- E. SCHÖNFELD, G. RODLOFF. PTB Report PTB-6.11-98-1 (1998) (Auger electrons)
- E. SCHÖNFELD, G. RODLOFF. PTB Report PTB-6.11-1999-1 (1999) (X(K))
- E. SCHÖNFELD, H. JANSSEN. Appl. Radiat. Isot. 52 (2000) 595 (P(X), Auger-electron emission probabilities)
- R.G. HELMER, C. VAN DER LEUN. Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma-ray energies)
- A.A. SONZOGNI. Nucl. Data Sheets 93 (2001) 599 (Nuclear levels)
- S. RAMAN, C.W. NESTOR JR., A. ICHIHARA, M.B TRZHASKOVSKAYA. Phys. Rev. C66 (2002) 044312 (Theoretical ICC)
- I.M. BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR JR., P.O. TIKKANEN, S. RAMAN. At. Data Nucl. Data Tables 81 (2002) 1

(Theoretical ICC)

- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)
- M. WANG, G. AUDI, A.H. WAPSTRA, F.G. KONDEV, M. MACCORMICKJ, X. XU, B. PFEIFFER. Chin. Phys. C36 (2012) 1603

(Q-value)

1 Decay Scheme

Pm-148 decays via beta minus transitions to nine excited levels and the ground state of Sm-148. Le prométhéum 148 se désintègre 100 % par émission bêta vers neuf niveaux excités et le niveau fondamental du samarium 148.

2 Nuclear Data

$T_{1/2}(^{148}\text{Pm})$:	$5,\!370$	(15)	d
$Q^{-}(^{148}\text{Pm})$:	2471	(6)	keV

2.1 β^- Transitions

	Energy (keV)	Probability (%)	Nature	$\lg ft$
$\beta_{0,10}^{-}$	157~(6)	0,0091 (15)	1st Forbidden	8,7
$\beta_{0.9}^{-}$	187~(6)	0,0965~(34)	Super Allowed Or Allowed	$7,\!9$
$\beta_{0.8}^{-}$	413(6)	1,360(22)	Allowed	$7,\!9$
$\beta_{0.7}^{-}$	549(6)	$0,0138\ (14)$	1st Forbidden	10,3
$\beta_{0.6}^{-}$	807~(6)	0,018 (3)	1st Forbidden	10,8
$\beta_{0.5}^{-}$	1006~(6)	33,3~(6)	Super Allowed Or Allowed	7,8
$\beta_{0.4}^{-}$	1017~(6)	0,093~(3)	1st Forbidden	10,4
$\beta_{0.3}^{-1}$	1047~(6)	0,236~(9)	1st Forbidden	10,1
$\beta_{0.1}^{\underline{-}}$	$1921 \ (6)$	9,3~(6)	1st Forbidden	9,5
$\beta_{0,0}^{-,-}$	2471(6)	55,5(7)	1st Forbidden	9,1

	$\frac{\rm Energy}{\rm (keV)}$	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}}\\ (\%) \end{array}$	Multipolarity	$\begin{array}{c} \alpha_K \\ (10^{-3}) \end{array}$	$ \overset{\alpha_L}{(10^{-4})} $	$ \overset{\alpha_M}{(10^{-5})} $	$ \overset{\alpha_T}{(10^{-3})} $	$\overset{\alpha_{\pi}}{(10^{-5})}$
$\gamma_{5,2}(\mathrm{Sm})$	303,592 (31)	0,0397 (47)	E2	42,3(6)	93,1~(13)	207(3)	54,2(8)	
$\gamma_{8,6}(\mathrm{Sm})$	$393,\!801$ (30)	0,0155~(22)	${ m E1}$	6,43~(9)	$^{8,62}(12)$	18,4(3)	7,52~(11)	
$\gamma_{1,0}(\mathrm{Sm})$	550,274 (17)	22,7(6)	E2	8,25~(12)	13,60(19)	29,6(5)	9,98(14)	
$\gamma_{8,5}(\mathrm{Sm})$	592,832 (29)	0,355~(10)	M1	11,98(17)	16,21 (23)	34,7(5)	14,04(20)	
$\gamma_{2,1}(\mathrm{Sm})$	611,263 (29)	1,043~(40)	E1+0,07%M2	2,39(5)	3,15~(6)	6,70(13)	2,79(5)	
$\gamma_{9,5}(Sm)$	819,276(28)	0,0134(22)	M1	5,42(8)	7,26(11)	15,51(22)	6,35~(9)	
$\gamma_{3,1}(Sm)$	874,186 (43)	0,241 (10)	E2	2,80(4)	4,06(6)	8,74(13)	3,32(5)	
$\gamma_{8,2}(Sm)$	896,424 (33)	0,984~(20)	M1 + 64% E2	3,28(8)	4,56(10)	9,77(20)	3,86(9)	
$\gamma_{4,1}(Sm)$	903,943 (29)	0,0422 (20)	M1 + 84% E2	2,87(5)	4,06(7)	8,72(14)	3,39(6)	
$\gamma_{5,1}(Sm)$	914,855 (25)	12,0(5)	E1	1,050(15)	1,354(19)	2,88(4)	1,221(17)	
$\gamma_{6,1}(Sm)$	1113,886(27)	0,0223 (23)	M1 + 24% E2	2,39(4)	3,19(5)	6,81(10)	2,79(5)	0,0565 (8)
$\gamma_{10,2}(Sm)$	1152,47(15)	0,0029(13)	E1+1%M2	0,73(13)	0,95(18)	2,0(4)	0,86(15)	0,98(3)
$\gamma_{7,1}(Sm)$	1371, 31(20)	0,0138(14)	E2	1,119(16)	1,507(22)	3,22(5)	1,347(19)	3,64(6)
$\gamma_{4,0}(Sm)$	1454,217 (23)	0,0512 (25)	E2	1,000(14)	1,338(19)	2,86(4)	1,230(18)	6,03(9)
$\gamma_{5,0}(Sm)$	1465,129(19)	22,2(5)	E1	0,449(7)	0,570(8)	1,208(17)	0,704(10)	18,3(3)
$\gamma_{8,1}(Sm)$	1507,687 (28)	0,0056 (9)	E1	0,428(6)	0,542 (8)	1,150(17)	0,711(10)	21,4(3)
$\gamma_{6,0}(\mathrm{Sm})$	1664,160(21)	0,0113(11)	E2	0,775(11)	1,024(15)	2,18(3)	1,042(15)	13,75(20)
$\gamma_{9,1}(Sm)$	1734,131(27)	0,0386(11)	E1	0,339(5)	0,428(6)	0,907(13)	0,777(11)	38,3(6)
$\gamma_{10,1}(Sm)$	1763,74(15)	0,0062(7)	M1 + 83% E2	0,732(22)	0,96(3)	2,05(6)	1,04(3)	18,3(3)
$\gamma_{9,0}(\mathrm{Sm})$	2284,405 (21)	0,0445 (24)	E1	0,219 (3)	0,274 (4)	0,581 (9)	1,027 (15)	77,4 (11)

2.2 Gamma Transitions and Internal Conversion Coefficients

3 Atomic Data

3.1 Sm

ω_K	:	0,926	(4)
$\bar{\omega}_L$:	$0,\!158$	(6)
n_{KL}	:	0,857	(4)

3.1.1 X Radiations

		$\frac{\rm Energy}{\rm (keV)}$		Relative probability
X _K				
	$K\alpha_2$	39,5229		$55,\!25$
	$K\alpha_1$	40,1186		100
	$K\beta_3$	45,289)	
	$K\beta_1$	$45,\!413$	}	31,26
	${ m K}eta_5^{\prime\prime}$	45,731	J	
	$K\beta_2$	46,575)	
	$K\beta_4$	46,705	}	8,07
	$\mathrm{KO}_{2,3}$	46,813	J	
$\mathbf{X}_{\mathbf{L}}$				
	$L\ell$	4,9909		
	$L\alpha$	5,6088 - 5,6376		
	$L\eta$	5,586		
	$\mathrm{L}eta$	6,1928 - $6,6557$		
	$\mathrm{L}\gamma$	6,9644 - 7,4871		

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K KLL KLX KXY	31,190 - 33,218 37,302 - 40,097 43,39 - 46,79	$100 \\ 50,7 \\ 6,42$
Auger L	3,27 - 7,69	

4 Electron Emissions

		Ener (keV	.gy √)		Electrons (per 100 disint.)
$e_{\rm AL}$	(Sm)	3,27 -	7,69		0,1883 (16)
e _{AK}	(Sm) KLL KLX KXY	31,190 - 37,302 - 43,39 -	33,218 40,097 46,79	<pre>}</pre>	0,0163 (10)
ес _{1,0 К} ес _{1,0 L} ес _{5,1 К}	(Sm) (Sm) (Sm)	503,440 542,537 - 868,021	(17) 543,558 (25)		$0,186 (6) \\ 0,0306 (9) \\ 0,0126 (6)$
$\beta_{0,10}^-$	max: avg:	$157 \\ 42,1$	(6) (18)	}	0,0091 (15)
$\beta_{0,9}^-$	max: avg:	$\begin{array}{c} 187 \\ 50,7 \end{array}$	(6) (18)	}	0,0965~(34)
$\beta_{0,8}^-$	max: avg:	$413 \\ 121,9$	(6) (21)	}	1,360(22)
$\beta_{0,7}^-$	max: avg:	$549 \\ 169,0$	(6) (22)	}	0,0138 (14)
$\beta_{0,6}^-$	max: avg:	$\begin{array}{c} 807\\ 264,4 \end{array}$	(6) (23)	}	0,018 (3)
$\beta_{0,5}^-$	max: avg:	$1006 \\ 342,7$	(6) (24)	}	33,3~(6)
$\beta_{0,4}^-$	max: avg:	$1017 \\ 347,1$	(6) (25)	}	0,093~(3)
$\beta^{0,3}$	max: avg:	$1047 \\ 359,1$	$(6) \\ (25)$	}	0,236~(9)
$\beta_{0,1}^-$	max: avg:	$1921 \\ 731,6$	(6) (27)	}	$9,\!3~(6)$
$\beta^{0,0}$	max: avg:	$2471 \\ 977,7$	(6) (28)	}	55,5 (7)

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Photons (per 100 disint.)		
$egin{array}{c} { m XL} \\ { m XK}lpha_2 \\ { m XK}lpha_1 \end{array}$	(Sm) (Sm) (Sm)	4,9909 - 7,4871 39,5229 40,1186		0,0363 (8) 0,0581 (16) 0,1051 (28)	}	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Sm) (Sm) (Sm)	$\begin{array}{c} 45,\!289\\ 45,\!413\\ 45,\!731 \end{array}$	<pre>}</pre>	0,0328~(10)		$\mathrm{K}'eta_1$
$egin{array}{c} XKeta_2\ XKeta_4\ XKO_{2,3} \end{array}$	(Sm) (Sm) (Sm)	46,575 46,705 46,813	<pre>}</pre>	0,00847 (30)		$\mathrm{K}'eta_2$

5.2 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\gamma_{5,2}(Sm)$	303,59(3)	0,0377~(45)
$\gamma_{8,6}(Sm)$	$393,\!80~(3)$	0,0155~(22)
$\gamma_{1,0}(Sm)$	$550,\!27$ (3)	22,5~(6)
$\gamma_{8,5}(Sm)$	$592,\!83\ (3)$	$0,\!35~(1)$
$\gamma_{2,1}(Sm)$	611,26 (3)	1,04~(4)
$\gamma_{9,5}(Sm)$	819,27~(3)	0,0133~(22)
$\gamma_{3,1}(Sm)$	874,18(3)	$0,\!24~(1)$
$\gamma_{8,2}(Sm)$	896,42 (3)	0,98~(2)
$\gamma_{4,1}(\mathrm{Sm})$	903,94(3)	0,042~(2)
$\gamma_{5,1}(\mathrm{Sm})$	914,85~(3)	12,0~(5)
$\gamma_{6,1}(Sm)$	1113,88 (3)	0,0222 (23)
$\gamma_{10,2}(Sm)$	1152,5~(2)	0,0029~(13)
$\gamma_{7,1}(\mathrm{Sm})$	1371,3(2)	0,0138~(14)
$\gamma_{4,0}(\mathrm{Sm})$	1454,21 (3)	0,0511 (25)
$\gamma_{5,0}(\mathrm{Sm})$	1465, 12 (3)	22,2~(5)
$\gamma_{8,1}(Sm)$	$1507,\!68$ (3)	0,0056 (9)
$\gamma_{6,0}(\mathrm{Sm})$	1664, 15(3)	$0,0113\ (11)$
$\gamma_{9,1}(Sm)$	1734, 12 (3)	$0,0386\ (11)$
$\gamma_{10,1}(\rm{Sm})$	1763,7(2)	0,0062~(7)
$\gamma_{9,0}(\rm{Sm})$	2284,39 (3)	0,0444~(24)

6 Main Production Modes

 $\begin{cases} {}^{148}\mathrm{Nd}(\mathrm{p},\mathrm{n})^{148}\mathrm{Pm} \\ \mathrm{Possible impurities : } {}^{148}\mathrm{Pm} \\ {}^{148}\mathrm{Nd}(\mathrm{d},2\mathrm{n})^{148}\mathrm{Pm} \\ \mathrm{Possible impurities : } {}^{148\mathrm{m}}\mathrm{Pm} \\ {}^{147}\mathrm{Pm}(\mathrm{n},\gamma)^{148}\mathrm{Pm} \quad \sigma:80 \text{ barns} \\ \mathrm{Possible impurities : } {}^{148\mathrm{m}}\mathrm{Pm} (70 \text{ barns}); {}^{149,150}\mathrm{Pm} \text{ from } {}^{148,149}\mathrm{Pm}(\mathrm{n},\gamma) \\ {}^{238}\mathrm{U}(\mathrm{p},\mathrm{f})^{148}\mathrm{Pm} \end{cases}$

Possible impurities : 148m Pm

7 References

- J.D.KURBATOV, M.L.POOL. Phys. Rev. 63 (1943) 463, 1 (Half-life, Beta transition energy)
- G.W.PARKER, P.M.LANTZ, M.G.INGHRAM, D.C.HESS JR, R.J.HAYDEN. Phys. Rev. 72 (1947) 85 (Half-life, Beta and gamma transition energies)
- G.T.SEABORG, I.PERLMAN. Rev. Mod. Phys. 20 (1948) 585 (Half-life, Beta and gamma transition energies)
- R.L.FOLGER, P.C.STEVENSON, G.T.SEABORG. Report UCRL-1195, Univ. California (1951) 22 (Half-life, Beta and gamma transition energies)
- V.KISTIAKOWSKY. Phys. Rev. 87 (1952) 859 (Half-life, Beta and gamma transition energies)
- J.K.LONG, M.L.POOL. Phys. Rev. 85 (1952) 137 (Half-life, Beta and gamma transition energies)
- R.L.FOLGER, P.C.STEVENSON, G.T.SEABORG. Phys. Rev. 98 (1955) 107 (Half-life, Beta and gamma transition energies, IT branching fraction)
- N.P.HEYDENBURG, G.M.TEMMER. Phys. Rev. 100 (1955) 150 (Sm-148 levels)
- H.MARK, G.T.PAULISSEN. Phys. Rev. 100 (1955) 813 (Sm-148 levels)
- J.A.EISELE. Thesis, Ohio State Univ. (1959) (Half-life, Beta and gamma transition energies, Sm-148 levels)
- S.K.BHATTACHERJEE, B.SAHAI, C.V.K.BABA. Nucl. Phys. 12 (1959) 356
- (Half-life, Beta and gamma transition energies and intensities, IT branching fraction, Sm-148 levels)
 C.F.SCHWERDTFEGER, E.G.FUNK, J.W.MIHELICH. Bull. Am. Phys. Soc. 5 (1960) 425, P
- (Half-life, Beta and gamma transition energies, Sm-148 levels)
- J.A.EISELE. Diss. Abst. Int. 20 (1960) 3794 (Half-life, Beta and gamma transition energies, Sm-148 levels)
- R.P.SCHUMAN, J.R.BERRETH, R.L.HEATH, C.W.REICH. Bull. Am. Phys. Soc. 5 (1960) 494, C (Beta and gamma transition energies and intensities, IT branching fraction, Sm-148 levels)
- M.K.BRICE, C.W.REICH, R.G.HELMER. Report IDO-16710 (1961) (Half-life, Gamma transition energies and intensities, ICCs and multipolarities, IT branching fraction)
- J.S.Eldridge, W.S.Lyon. Nucl. Phys. 23 (1961) 131
- (Half-life, Beta and gamma transition energies and intensities, IT branching fraction)
- R.W.GRANT, D.A.SHIRLEY. Report UCRL-10624, Univ. California (1962) (Pm-148 and Sm-148 level spins)
- C.W.REICH, R.P.SCHUMAN, J.R.BERRETH, M.K.BRICE, R.L.HEATH. Phys. Rev. 127 (1962) 192 (Half-life, Beta and gamma transition energies and intensities, IT branching fraction, Conversion electrons, Sm-148 levels)
- C.F.SCHWERDTFEGER, E.G.FUNK JR, J.W.MIHELICH. Phys. Rev. 125 (1962) 1641 (Half-life, Beta and gamma transition energies and intensities, IT branching fraction, Conversion electrons, Sm-148 levels)
- G.T.EWAN, C.V.K.BABA, J.F.SUAREZ. Bull. Am. Phys. Soc. 8 (1963) 73, VA (Beta transition energies, intensities and shape, Sm-148 levels)
- D.ALI, R.MARRUS. Bull. Am. Phys. Soc. 8 (1963) 619, S (Drn 148 lovel grip)
- (Pm-148 level spin)

- C.V.K.BABA, G.T.EWAN, J.F.SUAREZ. Phys. Lett. 3 (1963) 232 (Pm-148 and Sm-148 level spins)
- C.V.K.BABA, G.T.EWAN, J.F.SUAREZ. Nucl. Phys. 43 (1963) 264 (Beta and gamma transition energies and intensities, IT branching fraction, Conversion electrons, Pm-148 and Sm-148 levels)
- C.V.K.BABA, G.T.EWAN, J.F.SUAREZ. Nucl. Phys. 43 (1963) 285 (Sm-148 levels)
- R.W.GRANT, D.A.SHIRLEY. Phys. Rev. 130 (1963) 1100 (Pm-148 and Sm-148 level spins)
- J.W.HARPSTER, K.J.CASPER. Nucl. Phys. 52 (1964) 497 (Gamma multipolarities, Sm-148 levels)
- R.A.KENEFICK, R.K.SHELINE. Phys. Rev. 133 (1964) B25 (Sm-148 level energies)
- D.ALI. Nucl. Phys. 71 (1965) 441 (Pm-148 level spin)
- J.E.CLINE, R.L.HEATH. Report IDO-17222 (1967) (Gamma transition energies and intensities)
- L.D.Wyly, E.T.Patronis Jr, C.H.Braden. Phys. Rev. 172 (1968) 1153 (Sm-148 level spins)
- M.J.CABELL, M.WILKINS. J. Inorg. Nucl. Chem. 32 (1970) 1409 (Half-life)
- J.W.Ford Jr. Diss. Abst. Int. 31B (1970) 3631
- (Gamma transition energies and absolute intensities, Multipolarities, Sm-148 levels and spins)
- J.W.FORD JR. Thesis, Vanderbilt Univ. (1970) (Gamma transition energies and absolute intensities, Multipolarities, Sm-148 levels and spins)
- E.P.GRIGOREV, A.V.ZOLOTAVIN, V.O.SEGREEV, M.I.SOVTSOV. Program and Theses, Proc. 20th Ann. Conf. Nucl. Spectrosc. At. Nuclei, Leningrad (in Russian) (1970) 100
- (Conversion electrons, Multipolarities, Pm-148 and Sm-148 levels)
- M.J.CABELL, M.WILKINS. J. Inorg. Nucl. Chem. 33 (1971) 1957 (Half-life, Beta and gamma transition energies and absolute intensities)
- L.K.PEKER. Izv. Akad. Nauk SSSR Ser. Fiz. 34 (1970) 2214; Bull. Acad. Sci. USSR Phys. Ser. (English translation) 34 (1971) 1975
- (Pm-148 level spin)
- K.Shoda, A.Suzuki, M.Sugawara, T.Saito, H.Miyase, S.Oikawa, B.N.Sung. Phys. Rev. C3 (1971) 2006 (Pm-148 level spin)
- R.S.MOWATT, W.H.WALKER. Can. J. Phys. 49 (1971) 108 (Half-life, Beta and gamma transition energies and intensities)
- R.A.AMADORI, J.R.HORGAN JR, K.S.R.SASTRY. Proc. Nucl. Phys. Solid State Phys. Symp., Bombay, India 14B (1972) 337
- (Pm-148 level spin, Sm-148 level spins, beta transition, logft)
- W.LOURENS, V.LAKSHMINARAYANA, J.H.HAMILTON, A.V.RAMAYYA, D.R.DUNN, S.M.BRAHMAVAR, J.J.PINAJIAN. Bull. Amer. Phys. Soc. 19 (1974) 1124, FB7
- (Sm-148 levels)
- D.R.DUNN, A.V.RAMAYYA, J.W.FORD JR, J.H.HAMILTON, W.LOURENS, J.J.PINAJIAN. Bull. Am. Phys. Soc. 19 (1974) 1124, FB8
- (Gamma transition energies, Sm-148 levels)
- C.A.KALFAS. J. Phys. (London) G3 (1977) 929 (Gamma transition energies and intensities, Multipolarities, Mixing ratios, Sm-148 levels and spins)
- F.P.LARKINS. At. Data Nucl. Data Tables 20 (1977) 311 (Electron Binding Energies)
- B.S.DZHELEPOV, S.A.SHESTOPALOVA. Izv. Akad. Nauk SSSR Ser. Fiz. 43 (1979) 2261; Bull. Acad. Sci. USSR Phys. Ser. (English translation) 43 (1979) 16 (Gamma transition intensity ratio)
- V.LAKSHMINARAYANA, B.VAN NOOIJEN, W.LOURENS, A.V.RAMAYYA, J.H.HAMILTON, J.W.FORD JR, D.R.DUNN, J.J.PINAJIAN. Priv. Comm. to NNDC (unpublished report) (1984)
 (Gamma transition energies and intensities, Multipolarities, Sm-148 levels and spins)
- E.B.NORMAN, K.T.LESKO, A.E.CHAMPAGNE. Phys. Rev. C37 (1988) 860
- (Pm-148 level energies and spins, Branching fraction)
- K.T.LESKO, E.B.NORMAN, R.-M.LARIMER, J.C.BACELAR, E.M.BECK. Phys. Rev. C39 (1989) 619 (Pm-148 level energies and spins, Branching fraction)

- E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic Data)
- R.B.FIRESTONE. Table of Isotopes 8th Ed., John Wiley and Sons Inc. 2 (1996) (Electron Binding energies)
- E.SCHÖNFELD, G.RODLOFF. PTB Report 6.11-98-1 6.11 (1998) 1 (Auger electrons)
- E.SCHÖNFELD, G.RODLOFF. PTB Report 6.11-1999-1 6.11 (1999) 1 (K X-rays)
- M.R.BHAT. Nucl. Data Sheets 89 (2000) 797 (Sm-148 levels, Multipolarities, Mixing ratios)
- E.SCHÖNFELD, H.JANSSEN. Appl. Radiat. Isot. 52 (2000) 595 (X-ray and Auger Electron emission probabilities)
- C.DULIEU, M.M.BÉ, V.CHISTÉ. Proc. Int. Conf. on Nuclear Data for Science and Technology, 22-27 April 2007, Nice, France (2008) 97 (SAISINUC software)
- T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICCs)
- M.WANG, G.AUDI, A.H.WAPSTRA, F.G.KONDEV, M.MACCORMICK, X.XU, B.PFEIFFER. Chin. Phys. C36 (2012) 1603

 (\mathbf{Q})

Pm-148m decays 94.4 (5) % via beta minus emission to four excited levels of Sm-148, and via an isomeric transition of 5.6 (5) %.

Le prométhéum 148m se désintègre 94,4 (5) % par émission bêta vers quatre niveaux excités du samarium 148 et 5,6 (5) % par transition isomerique.

2 Nuclear Data

$T_{1/2}(^{148m}Pm)$:	$41,\!29$	(13)	d
$T_{1/2}^{(148} \text{Pm})$:	$5,\!370$	(15)	d
$Q^{-}(^{148m}Pm)$:	2608	(6)	keV
$Q^{IT}(^{148\mathrm{m}}\mathrm{Pm})$:	137	(3)	keV

2.1 β^- Transitions

	Energy (keV)	Probability (%)	Nature	$\lg ft$
$\beta_{0,9}^{-} \\ \beta_{0,8}^{-} \\ \beta_{0,7}^{-} \\ \beta_{0,4}^{-}$	$\begin{array}{c} 414 \ (6) \\ 513 \ (6) \\ 702 \ (6) \\ 1014 \ (6) \end{array}$	54,0 (9) 18,1 (9) 21,8 (7) 0,93 (45)	1st Forbidden 1st Forbidden 1st Forbidden Allowed	7,18 7,96 8,35 10,29

	$\frac{\rm Energy}{\rm (keV)}$	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	$lpha_K$	$lpha_L$	$lpha_M$	α_T
$\gamma_{2,1}(Pm) \\ \gamma_{1,0}(Pm) \\ \gamma_{9,8}(Sm) \\ \gamma_{8,7}(Sm)$	$\begin{array}{c} 61,30 \ (5) \\ 75,8 \ (1) \\ 98,48 \ (6) \\ 189,63 \ (6) \end{array}$	5,6 (5) 5,6 (5) 8,1 (7) 1,44 (8)	E4 M1 M1+3%E2 E2	$\begin{array}{c} 30 \ (5) \\ 2,9 \ (4) \\ 1,488 \ (21) \\ 0,1769 \ (25) \end{array}$	$\begin{array}{c} 10000 \ (4000) \\ 0,41 \ (6) \\ 0,236 \ (4) \\ 0,0565 \ (8) \end{array}$	$\begin{array}{c} 2900 \ (1200) \\ 0,088 \ (11) \\ 0,0511 \ (8) \\ 0,01284 \ (18) \end{array}$	$\begin{array}{c} 14000 \ (6000) \\ 3,4 \ (5) \\ 1,79 \ (3) \\ 0,249 \ (4) \end{array}$

	Energy (keV)	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}}\\ (\%) \end{array}$	Multipolarity	α_K	$lpha_L$	$lpha_M$	α_T
$\gamma_{9,7}(\mathrm{Sm})$	288,11 (6)	13,1(4)	M1+0,8%E2	0,0763(11)	0,01062 (15)	0,00228 (4)	0,0898 (13)
$\gamma_{9,6}(Sm)$	299,12(13)	0,14(4)	E2	0,0442(7)	0,00982(14)	0,00219(3)	0,0567 (8)
$\gamma_{7,4}(Sm)$	311,63(6)	3,82(11)	${ m E1}$	0,01141(16)	0,001546 (22)	0,000330(5)	0,01337 (19)
$\gamma_{8,5}(Sm)$	362,09(6)	0,176(13)	E2	0,0253(4)	0,00504(7)	0,001114(16)	0,0318(5)
$\gamma_{4,3}(Sm)$	414,07(6)	18,47(33)	E1+0,017%M2	0,00572 (9)	0,000766 (13)	0,000163(3)	0,00670(11)
$\gamma_{4,2}(Sm)$	432,78(6)	5,29(13)	E2	0,01544 (22)	0,00281 (4)	0,000617 (9)	0,0190(3)
$\gamma_{9,5}(Sm)$	460,57(6)	0,41(1)	E2	0,01306(19)	0,00231 (4)	0,000507(7)	0,01601 (23)
$\gamma_{8,4}(Sm)$	501,26(6)	6,62(11)	E1+0,029%M2	0,00369(7)	0,000489(9)	0,0001042 (20)	0,00431(8)
$\gamma_{1,0}(Sm)$	550,27(3)	94,4(5)	E2	0,00825(12)	0,001360(19)	0,000296(5)	0,00998(14)
$\gamma_{5,3}(Sm)$	553,24(6)	0,35(4)	M1 + 73% E2	0,0098(4)	0,00150 (4)	0,000324 (8)	0,0117(4)
$\gamma_{5,2}(Sm)$	571,95(6)	0,212(7)	${ m E1}$	0,00274 (4)	0,000361(5)	0,0000768(11)	0,00320(5)
$\gamma_{9,4}(Sm)$	599,74(6)	12,39(22)	E1+0,04%M2	0,00249(4)	0,000327~(6)	0,0000696(12)	0,00290 (5)
$\gamma_{2,1}(\mathrm{Sm})$	611,26(5)	5,6(2)	${ m E1}$	0,00237 (4)	0,000312(5)	0,0000663 (10)	0,00277 (4)
$\gamma_{3,1}(Sm)$	629,97(5)	88,4(19)	E2	0,00591 (9)	0,000932 (13)	0,000202 (3)	0,0071 (1)
$\gamma_{6,3}(Sm)$	714,69(13)	0,045~(5)	M1+E2	0,0060 (16)	0,00084 (18)	0,00018 (4)	0,0070 (18)
$\gamma_{7,3}(Sm)$	725,70(6)	32,5(6)	E2	0,00424 (6)	0,000642 (9)	0,0001389(20)	0,00506 (7)
$\gamma_{8,3}(Sm)$	915,33(6)	18,0(5)	E2	0,00254 (4)	0,000364 (6)	0,0000783(11)	0,00300(5)
$\gamma_{9,3}(\mathrm{Sm})$	1013,81(6)	19,9(4)	E2+0,06%M3	0,00206 (4)	0,000290(5)	0,0000622 (10)	0,00243 (4)
$\gamma_{6,1}(\mathrm{Sm})$	1344,66 (12)	0,057(5)	E2	0,001162 (17)	0,0001570 (22)	0,0000335(5)	0,001392 (20)

3.1 Sm

ω_K	:	0,926	(4)
$\bar{\omega}_L$:	$0,\!158$	(6)
n_{KL}	:	$0,\!857$	(4)

3.1.1 X Radiations

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$		Relative probability
Хк				
IX	$K\alpha_2$	39,5229		$55,\!25$
	$K\alpha_1$	40,1186		100
	$K\beta_3$	45,289)	
	$K\beta_1$	$45,\!413$	}	31,26
	$\mathrm{K}eta_5''$	45,731	J	
	$K\beta_2$	46,575)	
	$K\beta_4$	46,705	}	8,07
	$\mathrm{KO}_{2,3}$	46,813	J	
$\mathbf{X}_{\mathbf{L}}$				
	$L\ell$	$4,\!9909$		
	$L\alpha$	5,6088 - 5,6376		
	$\mathrm{L}\eta$	$5,\!586$		
	$L\beta$	6,1928 - $6,6557$		
	$ m L\gamma$	6,9644 - $7,4871$		

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K KLL KLX KXY Auger L	31,190 - 33,218 37,302 - 40,097 43,39 - 46,79 3,27 - 7,69	$100 \\ 50,7 \\ 6,42$

3.2 Pm

ω_K	:	0,922	(4)
$\bar{\omega}_L$:	$0,\!148$	(6)
n_{KL}	:	0,861	(4)

3.2.1 X Radiations

		$\begin{array}{c} {\rm Energy} \\ ({\rm keV}) \end{array}$		Relative probability
X _K				
	$K\alpha_2$	38,1716		55,08
	$K\alpha_1$	38,7251		100
	${ m K}eta_3$	43,713		
	$K\beta_1$	$43,\!826$	}	31
	${ m K}eta_5^{\prime\prime}$	$44,\!145$	J	
	$K\beta_2$	44,937)	
	$K\beta_4$	45,064	}	$7,\!97$
	$\mathrm{KO}_{2,3}$	45,162	J	
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	4,81		
	$L\alpha$	5,4061 - 5,4325		
	$L\eta$	$5,\!363$		
	$L\beta$	5,9552 - 6,3985		
	$ m L\gamma$	6,6814 - 7,1893		

3.2.2 Auger Electrons

	Energy (keV)	Relative probability
Auger K KLL KLX KXY	30,162 - 32,086 36,035 - 38,703 41,88 - 45,14	$100 \\ 50,3 \\ 6,32$
Auger L	3,16 - 7,38	

4 Electron Emissions

		$\frac{\rm Energy}{\rm (keV)}$	Electrons (per 100 disint.)
e_{AL}	(Sm)	3,27 - 7,69	6,23~(10)
e _{AK}	(Sm) KLL KLX KXY	31,190 - 33,218 37,302 - 40,097 43,39 - 46,79	$\left. \right\} = 0,54~(5)$
$e_{\rm AL}$	(Pm)	3,16 - 7,38	$6{,}59~(10)$
e _{AK}	(Pm) KLL KLX KXY	30,162 - 32,086 36,035 - 38,703 41,88 - 45,14	$\left. \right\} = 0,287~(23)$
$ec_{2,1\ T}$	(Pm)	16,1 - 61,3	5,6(34)
$ec_{2,1}$ K	(Pm)	16,12 (5)	0,012(5)
$ec_{1,0}$ T	(Pm)	30,6 - 75,8	4,3(9)
$ec_{1,0}$ K	(Pm)	30,6 (1)	3,7(8)
$ec_{9,8}$ K	(Sm)	$51,\!65$ (6)	4,37 (39)
ес _{9,8} т	(Sm)	$51,\!65 - 98,\!46$	5,26 (47)
$ec_{2,1}$ L	(Pm)	53,9 - 54,8	4,0 (23)
$ec_{2,1}$ M	(Pm)	59,6 - 60,3	1,2(7)
$ec_{2,1}$ N	(Pm)	61,0 - 61,3	0,24 (16)
$ec_{1,0 L}$	(Pm)	68,4 - 69,3	0,52~(11)
$ec_{1,0 M}$	(Pm)	74,1 - 74,8	0,112(22)
$ec_{1,0 N}$	(Pm)	75,5 - 75,8	$0,\!025~(5)$
$ec_{9,8 L}$	(Sm)	90,74 - 91,76	$0,\!69~(6)$
$ec_{9,8}$ M	(Sm)	96,76 - 97,40	0,150 (13)
$ec_{9,8 N}$	(Sm)	98,13 - 98,47	0,0339~(30)
$ec_{8,7\rm\ K}$	(Sm)	142,80 (6)	$0,\!205~(11)$
$ec_{8,7 L}$	(Sm)	181,89 - 182,91	0,0655~(35)
$ec_{8,7\ M}$	(Sm)	187,91 - 188,55	0,0149~(8)
$ec_{9,7\ \rm K}$	(Sm)	241,28 (6)	0,925~(31)
$ec_{9,7\ T}$	(Sm)	241,28 - 288,09	1,088 (37)

		Energy (keV)		Electrons (per 100 disint.)
		(RCV)		(per 100 disine.)
$ec_{7,4}$ K	(Sm)	264,80 (6)		0,0432(14)
ес _{9,7 L}	(Sm)	280,37 - 281,39		0,1287 (43)
$ec_{9,7 M}$	(Sm)	286,39 - 287,03		0,0276 (10)
$ec_{4,3 \text{ K}}$	(Sm)	367,24 (6)		0,1054 (22)
$ec_{4,2 \text{ K}}$	(Sm)	385,95 (6)		0,0806 (22)
$ec_{4,3 L}$	(Sm)	406,33 - 407,35		0,01408 (29)
$ec_{4,2}$ L	(Sm)	425,04 - 426,06		0,01467 (40)
$ec_{8,4 \text{ K}}$	(Sm)	$454,\!43$ (6)		0,0243~(5)
ес _{1,0 Т}	(Sm)	503,44 - 550,25		0,933 (19)
$ec_{1,0 K}$	(Sm)	503,44 (3)		0,776~(16)
$ec_{1,0 L}$	(Sm)	542,53 - 543,55		0,1280 (26)
$ec_{1,0 M}$	(Sm)	548,55 - 549,19		0,0279~(6)
ес _{9,4 К}	(Sm)	552,91 (6)		0,0310~(7)
$ec_{2,1 \text{ K}}$	(Sm)	$564,\!43$ (5)		0,0134~(5)
$ec_{3,1}$ K	(Sm)	583,14 (5)		0,522~(10)
ес _{3,1 Т}	(Sm)	$583,\!14 - 629,\!95$		0,627~(12)
$ec_{3,1 L}$	(Sm)	622,23 - 623,25		0,0823~(16)
$ec_{3,1 M}$	(Sm)	628,25 - 628,89		0,01784 (35)
$ec_{7,3}$ K	(Sm)	$678,\!87$ (6)		$0,1378\ (28)$
$ec_{7,3}$ L	(Sm)	718 - 719		0,02086 (42)
$ec_{8,3}$ K	(Sm)	868,50 (6)		0,0457~(15)
$ec_{9,3\ \rm K}$	(Sm)	966, 98 (6)		0,0411 (10)
β^{-}	max:	414 (6)	٦	54.0.(0)
$\rho_{0,9}$	avg:	122,3 (26)	}	54,0(9)
0-	max:	513 (6)	١	
$\beta_{0,8}$	avg:	156,0 (27)	}	18,1(9)
β^{-}	max:	702 (6)	١	91.9.(7)
$\rho_{0,7}$	avg:	224,7 (29)	}	21,0 (7)
ρ^{-}	max:	1014 (6)	٦	0.02.(45)
$\rho_{0,4}$	avg:	345,9 (31)	}	0,93 (45)

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Photons (per 100 disint.)		
XL	(Sm)	4,9909 - 7,4871		1,20 (4)		
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Sm) (Sm)	$39,5229 \\ 40,1186$		$1,92\ (11)\ 3,47\ (19)$	}	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Sm) (Sm) (Sm)	$\begin{array}{c} 45,\!289\\ 45,\!413\\ 45,\!731\end{array}$	<pre>}</pre>	1,09~(6)		$\mathrm{K}'eta_1$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Sm) (Sm) (Sm)	46,575 46,705 46,813	<pre>}</pre>	0,280 (17)		$\mathrm{K}'eta_2$
XL	(Pm)	4,81 - 7,1893		1,20 (4)		
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pm) (Pm)	$38,1716 \\ 38,7251$		$0,96\ (6)\ 1,75\ (11)$	<pre>}</pre>	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pm) (Pm) (Pm)	$\begin{array}{c} 43,713 \\ 43,826 \\ 44,145 \end{array}$	<pre>}</pre>	0,54 (4)		$\mathrm{K}'eta_1$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pm) (Pm) (Pm)	$\begin{array}{c} 44,937\\ 45,064\\ 45,162\end{array}$	}	0,139 (9)		$\mathrm{K}'eta_2$

5.2 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\gamma_{2,1}(\text{Pm})$	61,30(5)	0,00040 (17)
$\gamma_{1,0}(Pm)$	75,8(1)	1,27(20)
$\gamma_{9,8}(Sm)$	98,48(3)	2,92 (26)
$\gamma_{8,7}(Sm)$	189,63(3)	1,15~(6)
$\gamma_{9,7}(Sm)$	288,11 (3)	12,0 (4)
$\gamma_{9,6}(Sm)$	299,1~(2)	$0,\!13~(4)$
$\gamma_{7,4}(Sm)$	311,63(3)	3,77(11)
$\gamma_{8,5}(Sm)$	362,09(3)	0,171 (13)
$\gamma_{4,3}(Sm)$	414,07(3)	18,35 (33)
$\gamma_{4,2}(Sm)$	432,78(3)	5,19(13)
$\gamma_{9,5}(Sm)$	460,57(3)	0,40(1)
$\gamma_{8,4}(Sm)$	501,26(3)	6,59(11)
$\gamma_{1,0}(Sm)$	550,27 (3)	93,5(14)

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\gamma_{5,3}(Sm)$ $\gamma_{5,2}(Sm)$ $\gamma_{9,4}(Sm)$ $\gamma_{2,1}(Sm)$ $\gamma_{3,1}(Sm)$ $\gamma_{6,3}(Sm)$ $\gamma_{7,3}(Sm)$ $\gamma_{8,3}(Sm)$ $\gamma_{9,3}(Sm)$ $\gamma_{6,1}(Sm)$	$\begin{array}{c} 553,24 \ (3) \\ 571,95 \ (3) \\ 599,74 \ (3) \\ 611,26 \ (3) \\ 629,97 \ (3) \\ 714,7 \ (2) \\ 725,70 \ (3) \\ 915,33 \ (3) \\ 1013,81 \ (3) \\ 1344,6 \ (2) \end{array}$	$\begin{array}{c} 0,35 \ (4) \\ 0,211 \ (7) \\ 12,35 \ (22) \\ 5,6 \ (2) \\ 87,8 \ (14) \\ 0,045 \ (5) \\ 32,3 \ (6) \\ 17,9 \ (5) \\ 19,8 \ (4) \\ 0.057 \ (5) \end{array}$
, - , 、 ,	/ (/	

6 Main Production Modes

 $\begin{cases} {}^{148}\mathrm{Nd}(\mathrm{p},\mathrm{n})^{148\mathrm{m}}\mathrm{Pm} \\ \mathrm{Possible impurities : } {}^{148}\mathrm{Pm} \\ \end{cases} \\ \begin{cases} {}^{148}\mathrm{Nd}(\mathrm{d},2\mathrm{n})^{148\mathrm{m}}\mathrm{Pm} \\ \mathrm{Possible impurities : } {}^{148}\mathrm{Pm} \\ \end{cases} \\ \begin{cases} {}^{147}\mathrm{Pm}(\mathrm{n},\gamma)^{148\mathrm{m}}\mathrm{Pm} & \sigma:70 \text{ barns} \\ \mathrm{Possible impurities : } {}^{148}\mathrm{Pm} (80 \text{ barns}); {}^{149,150}\mathrm{Pm} \text{ from } {}^{148,149}\mathrm{Pm}(\mathrm{n},\gamma) \\ \end{cases} \\ \begin{cases} {}^{238}\mathrm{U}(\mathrm{p},\mathrm{f})^{148\mathrm{m}}\mathrm{Pm} \\ \mathrm{Possible impurities : } {}^{148}\mathrm{Pm} \end{cases} \end{cases}$

7 References

- R.L.FOLGER, P.C.STEVENSON, G.T.SEABORG. Report UCRL-1195, Univ California (1951) 22 (Half-life, Beta and gamma transition energies)
- V.KISTIAKOWSKY. Phys. Rev. 87 (1952) 859 (Half-life, Beta and gamma transition energies)
- J.K.LONG, M.L.POOL. Phys. Rev. 85 (1952) 137 (Half-life, Beta and gamma transition energies)
- H.MARK, G.T.PAULISSEN. Phys. Rev. 100 (1955) 813 (Sm-148 levels)
- N.P.HEYDENBURG, G.M.TEMMER. Phys. Rev. 100 (1955) 150 (Sm-148 levels)
- R.L.FOLGER, P.C.STEVENSON, G.T.SEABORG. Phys. Rev. 98 (1955) 107 (Half-life, Beta and gamma transition energies, IT branching fraction)
- J.A.EISELE. Thesis, Ohio State Univ. (1959) (Half life, Bota and gamma transition apargias, Sm 148 la
- (Half-life, Beta and gamma transition energies, Sm-148 levels)
- S.K.BHATTACHERJEE, B.SAHAI, C.V.K.BABA. Nucl. Phys. 12 (1959) 356 (Half-life, Beta and gamma transition energies and intensities, IT branching fraction, Sm-148 levels)
- C.F.SCHWERDTFEGER, E.G.FUNK, J.W.MIHELICH. Bull. Am. Phys. Soc. 5 (1960) 425, P (Half-life, Beta and gamma transition energies, Sm-148 levels)
- J.A.EISELE. Diss. Abst. Int. 20 (1960) 3794
- (Half-life, Beta and gamma transition energies, Sm-148 levels)
- R.P.SCHUMAN, J.R.BERRETH, R.L.HEATH, C.W.REICH. Bull. Am. Phys. Soc. 5 (1960) 494, C (Beta and gamma transition energies and intensities, IT branching fraction, Sm-148 levels)
- J.S.ELDRIDGE, W.S.LYON. Nucl. Phys. 23 (1961) 131 (Half-life, Beta and gamma transition energies and intensities, IT branching fraction)
- B.HARMATZ, T.H.HANDLEY, J.W.MIHELICH. Phys. Rev. 123 (1961) 1758 (Half-life, Gamma transition intensity, ICCs)

- M.K.BRICE, C.W.REICH, R.G.HELMER. Report IDO-16710 (1961) (Half-life, Gamma transition energies and intensities, ICCs and multipolarities, IT branching fraction)
- C.W.REICH, R.P.SCHUMAN, J.R.BERRETH, M.K.BRICE, R.L.HEATH. Phys. Rev. 127 (1962) 192 (Half-life, Beta and gamma transition energies and intensities, IT branching fraction, Conversion electrons, Sm-148 levels)
- C.F.SCHWERDTFEGER, E.G.FUNK JR, J.W.MIHELICH. Phys. Rev. 125 (1962) 1641 (Half-life, Beta and gamma transition energies and intensities, IT branching fraction, Conversion electrons, Sm-148 levels)
- R.W.GRANT, D.A.SHIRLEY. Report UCRL-10624, Univ California (1962) (Pm-148 and Sm-148 level spins)
- T.J.KUREY JR., R.R.ROY. Nucl. Phys. 44 (1963) 670 (Conversion electrons, Multipolarities, Sm-148 levels)
- C.V.K.BABA, G.T.EWAN, J.F.SUAREZ. Nucl. Phys. 43 (1963) 264 (Beta and gamma transition energies and intensities, IT branching fraction, Conversion electrons, Pm-148 and Sm-148 levels)
- C.V.K.BABA, G.T.EWAN, J.F.SUAREZ. Nucl. Phys. 43 (1963) 285 (Sm-148 levels)
- C.V.K.BABA, G.T.EWAN, J.F.SUAREZ. Phys. Lett. 3 (1963) 232 (Pm-148 and Sm-148 level spins)
- G.T.EWAN, C.V.K.BABA, J.F.SUAREZ. Bull. Am. Phys. Soc. 8 (1963) 73, VA (Beta transition energies, Intensities and shape, Sm-148 levels)
- R.W.GRANT, D.A.SHIRLEY. Phys. Rev. 130 (1963) 1100 (Pm-148 and Sm-148 level spins)
- J.E.CLINE, R.L.HEATH. Report IDO-17222 (1967) (Gamma transition energies and intensities)
- L.D.Wyly, E.T.Patronis Jr, C.H.Braden. Phys. Rev. 172 (1968) 1153 (Sm-148 level spins)
- E.P.GRIGOREV, A.V.ZOLOTAVIN, V.O.SEGREEV, M.I.SOVTSOV. Program and Theses, Proc. 20th Ann. Conf. Nucl. Spectrosc. At. Nuclei, Leningrad (in Russian) (1970) 100
- (Conversion electrons, Multipolarities, Pm-148 and Sm-148 levels)
- J.W.FORD JR. Thesis, Vanderbilt Univ. (1970)
 (Gamma transition energies and absolute intensities, Multipolarities, Sm-148 levels and spins)
- W.M.GREENBERG, H.J.FISCHBECK. Z. Phys. 233 (1970) 391 (Gamma transition energies and intensities)
- Z.G.GRITCHENKO, T.P.MAKAROVA, Y.T.OGANESYAN, Y.E.PENIONZHKEVICH, A.V.STEPANOV. Yadern. Fiz. 10 (1969) 929; Soviet J. Nucl. Phys. (English translation) 10 (1970) 536 (Gamma transition energies and intensities)
- J.W.Ford Jr. Diss. Abst. Int. 31B (1970) 3631
- (Gamma transition energies and absolute intensities, Multipolarities, Sm-148 levels and spins)
- R.S.MOWATT, W.H.WALKER. Can. J. Phys. 49 (1971) 108 (Half-life, Beta and gamma transition energies and intensities)
- F.W.WALKER, T.A.DEVITO, F.M.ROURKE, H.M.EILAND. J. Inorg. Nucl. Chem. 33 (1971) 1208 (Half-life)
- S.BABA, H.BABA, H.UMEZAWA, T.SUZUKI, T.SATO, H.NATSUME. Report JAERI-1211 (1971) (Half-life)
- D.R.DUNN, A.V.RAMAYYA, J.W.FORD JR, J.H.HAMILTON, W.LOURENS, J.J.PINAJIAN. Bull. Am. Phys. Soc. 19 (1974) 1124,
- (Gamma transition energies, Sm-148 levels)F.P.LARKINS. At. Data Nucl. Data Tables 20 (1977) 311
- (Electron Binding Energies)
- C.A.KALFAS. J. Phys. (London) G3 (1977) 929
- (Gamma transition energies and intensities, Multipolarities, Mixing ratios, Sm-148 levels and spins)
- V.Lakshminarayana, B.Van Nooijen, W.Lourens, A.V.Ramayya, J.H.Hamilton, J.W.Ford Jr, D.R.Dunn, J.J.Pinajian. Priv. Comm. to NNDC (unpublished report) (1984)
- (Gamma transition energies and intensities, Multipolarities, Sm-148 levels and spins)
- E.B.NORMAN, K.T.LESKO, A.E.CHAMPAGNE. Phys. Rev. C37 (1988) 860
- (Pm-148 level energies and spins, Branching fraction)
- K.T.LESKO, E.B.NORMAN, R.-M.LARIMER, J.C.BACELAR, E.M.BECK. Phys. Rev. C39 (1989) 619 (Pm-148 level energies and spins, Branching fraction)

- R.B.FIRESTONE. Table of Isotopes 8th Ed., John Wiley and Sons Inc. 2 (1996) (Electron Binding energies)
- E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic Data)
- E.SCHÖNFELD, G.RODLOFF. PTB Report 6.11-98-1 6.11 (1998) 1 (Auger electrons)
- E.SCHÖNFELD, G.RODLOFF. PTB Report 6.11-1999-1 6.11 (1999) 1 (K X-rays)
- M.R.Bhat. Nucl. Data Sheets 89 (2000) 797 (Sm-148 levels, Multipolarities, Mixing ratios)
- E.SCHÖNFELD, H.JANSSEN. Appl. Radiat. Isot. 52 (2000) 595 (X-ray and Auger Electron emission probabilities)
- C.DULIEU, M.M.BÉ, V.CHISTÉ. Proc. Int. Conf. on Nuclear Data for Science and Technology, 22-27 April 2007, Nice, France (2008) 97 (SAISINUC software)
- T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICCs)
- M.WANG, G.AUDI, A.H.WAPSTRA, F.G.KONDEV, M.MACCORMICK, X.XU, B.PFEIFFER. Chin. Phys. C36 (2012) 1603
- (\mathbf{Q})

 γ Emission intensities per 100 disintegrations

CEA/LNE-LNHB / M.A. Kellett

Le samarium 151 se désintègre par émission bêta moins principalement vers le niveau fondamental de l'europium 151.

Sm-151 decays by beta minus emission mainly to the Eu-151 ground state.

Probabilité d'ionisation interne dans la couche K, lors la désintégration bêta moins de Sm-151: Internal ionisation probability in the K shell following beta minus decay: Pk: 2,0 (2) E-4 %

et probabilité d'ionisation interne dans la couche L: and internal ionisation probability in the L shell: PL: 31 (3) E-2 %

2 Nuclear Data

 $T_{1/2}(^{151}{\rm Sm}$) : 94,7 (6) a $Q^-(^{151}{\rm Sm}$) : 76,4 (5) keV

2.1 β^- Transitions

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	\lgft
$\begin{array}{c} \beta^{-}_{0,1} \\ \beta^{-}_{0,0} \end{array}$	54,9(5) 76,4(5)	0,93 (4) 99,07 (4)	1st Forbidden 1st Forbidden	7,59

	Energy (keV)	$\stackrel{\mathrm{P}_{\gamma+\mathrm{ce}}}{(\%)}$	Multipolarity	α_L	$lpha_M$	$lpha_N$	$lpha_T$
$\gamma_{1,0}(\mathrm{Eu})$	21,541 (3)	0,93~(4)	M1+0,085(5)%E2	21,7~(4)	4,71 (8)	0,168~(3)	27,6(5)

3.1 Eu

ω_K	:	0,929	(4)
$\bar{\omega}_L$:	0,168	(7)
n_{KL}	:	0,853	(4)

3.1.1 X Radiations

		Energy (keV)
X_L	$egin{array}{c} { m L}\ell \ { m L}lpha \ { m L}\eta \ { m L}eta \ { m L}\gamma \end{array}$	5,175 5,815 - 5,846 5,815 6,436 - 6,839 7,254 - 7,791

3.1.2 Auger Electrons

	Energy (keV)	Relative probability
Auger L	3,377 - 7,786	100

4 Electron Emissions

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$	Electrons (per 100 disint.)
e_{AL}	(Eu)	3,377 - 7,786	0,581 (19)
${{\mathop{\rm ec}}_{1,0}}_{{\mathop{\rm L}}{{\mathop{\rm M}}}} \\ {{\mathop{\rm ec}}_{1,0}}_{{\mathop{\rm M}}{{\mathop{\rm M}}}}$	(Eu) (Eu) (Eu)	13,489 - 14,564 19,70 - 20,41 21,181 - 21,408	$egin{array}{c} 0,703 & (31) \ 0,153 & (7) \ 0,0348 & (15) \end{array}$
$\beta_{0,1}^-$	max: avg:	$\begin{array}{ccc} 54,9 & (5) \\ 14,0 & (2) \end{array}$	$\Big\}$ 0,93 (4)
$\beta_{0,0}^-$	max: avg:	$\begin{array}{ccc} 76,4 & (5) \\ 19,7 & (2) \end{array}$	$\Big\}$ 99,07 (4)

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)	
XL	(Eu)	5,175 - 7,791	0,121 (4)	

5.2 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\gamma_{1,0}(\mathrm{Eu})$	21,541 (3)	0,0324 (13)

6 Main Production Modes

Fission product Possible impurities: Sm - 153

 $\int \text{Sm} - 149(n,\gamma)\text{Sm} - 151 \qquad \sigma : 104 \text{ (5) barns}$ Possible impurities: Sm - 153

7 References

- M.G.INGHRAM, R.J.HAYDEN, D.C.HESS. Phys. Rev. 79 (1950) 271 (Half-life.)
- W.C.Rutledge, J.M.Cork, S.B.Burson. Phys. Rev. 86 (1952) 775 (Half-life.)
- D.G.KARRAKER, R.J.HAYDEN, M.G.INGHRAM. Phys. Rev. 87 (1952) 901 (Half-life.)
- E.A.MELAIKA, M.J.PARKER, J.A.PETRUSKA, R.H.TOMLINSON. Can. J. Chem. 33 (1955) 830 (Half-life.)
- W.T.ACHOR, W.E.PHILLIPS, J.I.HOPKINS, S.K.HAYNES. Phys. Rev. 114 (1959) 137 (Half-life)
- K.F.FLYNN, L.E.GLENDENIN, E.P.STEINBERG. Nucl. Sci. Eng. 22 (1965) 416 (Half-life)
- M.P.Avotina, E.P.GRIGOREV, A.V.ZOLOTAVIN, V.O.SERGEEV, J.VRZAL, J.LIPTAK, N.A.LEBEDEV, Y.URBANETS. Bull. Acad. Sci. USSR, Phys. Ser. 30 (1966) 1362 (Mixing ratio)
- S.A.REYNOLDS, J.F.EMERY, E.I.WYATT. Nucl. Sci. Eng. 32 (1968) 46 (Half-life)
- E.P.GRIGOREV, A.V.ZOLOTAVIN, V.O.SERGEEV, M.I.SOVTSOV, J.VRZAL, N.A.LEBEDEV, J.LIPTAK, J.URBANETS, P.P.DMITRIEV, N.N.KRASNOV, Y.G.SEVASTYANOV. Bull. Acad. Sci. USSR, Phys. Ser. 32 (1969) 723 (Mixing ratio)
- J.W.Ford, A.V.Ramayya, J.J.Pinajian. Nucl. Phys. A146 (1970) 397 (ICC)
- S.Antman, H.Pettersson, Z.Zehlev, I.Adam. Z. Phys. 237 (1970) 285 (Mixing Ratio)
- J.L.CAMPBELL, L.A.MCNELLES, J.LAW. Can. J. Phys. 49 (1971) 3142 (X-ray emission probabilities Gamma-ray emission probabilities)

- J.LAW, J.L.CAMPBELL. Phys. Rev. C12 (1975) 984 (Internal ionisation)
- M.S.FREEDMAN, D.A.BEERY. Phys. Rev. Lett. 34 (1975) 406 (Gamma-ray emission probabilities)
- V.R.Veluri, P. Venugopala Rao. Z. Physik A280 (1977) 317 (ICC)
- C.E.LAIRD, PARL C.HUMMEL, HSING-CHUNG LIU. Phys. Rev. C21 (1980) 723 (Gamma-ray emission probabilities PK)
- K.P.ARTAMONOVA, N.B.GRACHEV, E.P.GRIGOREV, A.V.ZOLOTAVIN, V.O.SERGEEV. Bull. Acad. Sci. USSR, Ser. Phys. 45,1 (1981) 93 (Mixing ratio)
- I.J.UNUS, P.A.INDIRA, P.VENUGOPALA RAO. J. Phys. (London) G7 (1981) 1683 (X-ray emission probabilities L X-ray emission probabilities PK PL)
- T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICCs)
- MING HE, G.SHI, X.YIN, W.TIAN, S.JIANG. Phys. Rev. C80 (2009) 064305 (Half-life)
- M.Wang, G.Audi, A.H.Wapstra, F.G.Kondev, M.MacCormick, X.Xu, B.Pfeiffer. Chin. Phys. C36 (2012) 1603
- (Q)
- M.M.BÉ, ET AL.. To be published in RadioChimica Acta (2015) (Half-life.)

L'erbium 169 se désintègre par émission bêta moins vers les niveaux excités ou le niveau fondamental de thulium 169.

Er-169 disintegrates by beta minus emissions to Tm-169.

2 Nuclear Data

 $\begin{array}{rrrr} T_{1/2}(^{169}{\rm Er}~) &:& 9{,}38 & (2) & {\rm d} \\ Q^-(^{169}{\rm Er}~) &:& 353{,}0 & (12) & {\rm keV} \end{array}$

2.1 β^- Transitions

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	$\lg ft$
$\beta_{0,2}^-$	234,8 (12)	$\sim 0,016$	Unique 1st Forbidden	9,5
$\beta_{0,1}^{-}$	344,6(12)	44(5)	1st Forbidden	6,5
$\beta_{0,0}^{-}$	$353,0\ (12)$	56(5)	1st Forbidden	6,3

	$\frac{\rm Energy}{\rm (keV)}$	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	α_K	α_L	$lpha_M$	$lpha_N$	α_O	α_T
$ \begin{array}{c} \gamma_{1,0}(\mathrm{Tm}) \\ \gamma_{2,1}(\mathrm{Tm}) \\ \gamma_{2,0}(\mathrm{Tm}) \end{array} $	$\begin{array}{c} 8,4102 \ (1) \\ 109,77930 \ (14) \\ 118,1895 \ (1) \end{array}$	$\begin{array}{c} 44 \ (6) \\ 0,0152 \ (30) \\ 0,0013 \end{array}$	$\begin{array}{c} M1{+}0{,}094\%(E2)\\ M1{+}2{,}17\%E2\\ E2 \end{array}$	$1,96 (3) \\ 0,70 (1)$	$0,316 (5) \\ 0,721 (10)$	$\begin{array}{c} 199 \ (8) \\ 0,0710 \ (12) \\ 0,1759 \ (25) \end{array}$	$\begin{array}{c} 45,8 \ (18) \\ 0,017 \ (1) \\ 0,040 \ (1) \end{array}$	$\begin{array}{c} 6,1 \ (2) \\ 0,0024 \ (1) \\ 0,0047 \ (1) \end{array}$	$\begin{array}{c} 251 \ (10) \\ 2,37 \ (4) \\ 1,642 \ (23) \end{array}$

3.1 Tm

ω_K	:	0,945	(4)
$\bar{\omega}_L$:	0,227	(9)
$\bar{\omega}_M$:	0,0127	(12)
n_{KL}	:	0,835	(4)

3.1.1 Auger Electrons

	Mean Energy (keV)	Relative probability
Auger MNO		
M	0,70	$36,\!69$
Ν	$0,\!10$	$57,\!11$
О	0,02	$6,\!20$
Auger total	0,32	100

4 Electron Emissions

		Energy (keV)	Electrons (per 100 disir	nt.)
e _{ATotal}	(Tm) avg M avg N avg O	$0,70 \\ 0,10 \\ 0,02$	} 203,3	
$ec_{1,0 M} ec_{1,0 N} ec_{1,0 O} ec_{2,1 T}$	(Tm) (Tm) (Tm) (Tm)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccc} 25 & & 34,8 \ (44) \\ 49 & & 8 \ (1) \\ 79 & & 1,07 \ (13) \\ 7470 & & 0,0107 \ (21) \end{array}$	
$\beta_{0,2}^-$	max: avg:	$\begin{array}{ccc} 234,8 & (12) \\ 73,0 & (5) \end{array}$	$\Big\}$ 0,016	
$\beta_{0,1}^-$	max: avg:	$\begin{array}{rrr} 344.6 & (12) \\ 96.5 & (5) \end{array}$	$\left.\right\} \qquad 44 (5)$	
$\beta_{0,0}^-$	max: avg:	$\begin{array}{rrr} 353,0 & (12) \\ 99,1 & (5) \end{array}$	$\bigg\} \qquad 56 (5)$	

5 Photon Emissions

5.1 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\gamma_{1,0}(\mathrm{Tm})$ $\gamma_{2,1}(\mathrm{Tm})$ $\gamma_{2,0}(\mathrm{Tm})$	$\begin{array}{c} 8,4102 \ (1) \\ 109,77930 \ (14) \\ 118,1895 \ (1) \end{array}$	$\begin{array}{c} 0,174 \ (21) \\ 0,0045 \ (9) \\ 0,0005 \end{array}$

6 Main Production Modes

Er - 168(d,p)Er - 169Possible impurities: Er - 165, Er - 171

Er - 170(n,2n)Er - 169Possible impurities: Ho - 167

 $\text{Er} - 168(n,\gamma)\text{Er} - 169$ $\sigma : 2,0$ (1) barns Possible impurities: Er - 165, Er - 171

7 References

- В.Н.КЕТЕLLE, W.C.PEACOCK. Phys. Rev. (Minutes of the meeting at Chicago, Dec. 29-31, 1947.) 73,10 (1948) 1269

(Half-life)

- A.BISI, S.TERRANI, L.ZAPPA. Nuovo Cimento 4 (1956) 758 (Half-life)
- F.I.PAVLOTSKAIA, A.K.LAVRUKHINA. Soviet Phys. JETP 7 (1958) 732 (Half-life)
- K.N.SHLIAGIN, P.S.SAMOILOV. Soviet Phys. JETP 7 (1958) 20 (Mixing ratio)
- G.CHARPAK, F.SUZOR. J. Phys. Radium 20 (1959) 513 (Beta emission intensities, M ICC, N ICC)
- R.G.WILLE, R.W.FINK. Phys. Rev. 118 (1960) 242 (Half-life)
- S.BJORNHOLM, H.L.NIELSEN, O.B.NIELSEN, G.SIDENIUS, O.SKILBREID, A.SVANHEDEN. J. Inorg. Nucl. Chem. 21 (1961) 193 (Half-life)
- Z.GRABOWSKI, J.E.THUN, B.LINDSTROM. Z. Phys. 169 (1962) 303 (K ICC, M ICC, Gamma-ray energies, Gamma-ray emission intensities)
- R.E.MC Adams, G.W.Eakins, E.N.Hatch. Phys. Lett. 6 (1963) 219 (Half-life isomeric level)
- G.V.S.RAYUDU, L.YAFFE. Can. J. Chem. 41 (1963) 2544 (Half-life)
- Е.Канкеleit, F.Boehm, R.Hager. Phys. Rev. 134В (1964) 747 (Т ICC)
- J.C.DUPERRIN, A.GIZON-JUILLARD. Compt. Rend. Ac. Sci. (Paris) 261B (1965) 98 (Beta emission intensities)
- M.I.MARQUES, M.T.RAMOS. Compt. Rend. Ac. Sci. (Paris) 265 B
 (1967) 1209 $(\mathrm{M/N},\,\mathrm{N/O})$
- T.A.CARLSON, P.ERMAN, K.FRANSSON. Nucl. Phys. A111 (1968) 371 (Gamma-ray energies)

- F.E.WAGNER. Z. Physik 210 (1968) 361 (ICC)
- R.P.SHARMA, H.L.NIELSEN, P.G.HANSEN. Nucl. Phys. A152 (1970) 225 (Beta emission intensities)
- M.I.MACIAS-MARQUES. Thèse Univ. Orsay FRNC-TH136 (1971) 36 (M/N, N/O)
- W.A.MYERS. J. Inorg. Nucl. Chem. 39 (1977) 925 (Half-life)
- A.KOVALIK, E.A.YAKUSHEV, A.F.NOVGORODOV, V.M.GOROZHANKIN, M.MAHMOUD. Proc. 51st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Sarov (2001) 177 (Mixing ratio)
- M.-M.Bé, E.SCHÖNFELD, J.MOREL. Appl. Radiat. Isotopes 56 (2002) 181 (Gamma-ray emission intensity ratio)
- I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN. At. Data. Nucl. Data Tables 81 (2002) 1
 - (Theoretical ICC)
- M.-M.Bé, V.CHISTÉ, C.DULIEU, E.BROWNE, V.CHECHEV, N.KUZMENKO, R.HELMER, A.NICHOLS, E.SCHÖNFELD, R.DERSCH. Monographie BIPM-5, Vol.2, Bureau International des Poids et Mesures (2004) (2004) (Mixing ratio)
- H.Schrader. Appl. Radiat. Isotopes 60 (2004) 317 (Half-life)
- T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)
- C.M.BAGLIN. Nucl. Data Sheets 109 (2008) 2033 (Spin and Parity)
- X.MOUGEOT, M.-M.BÉ, C.BISCH, M.LOIDL. Phys. Rev. A86 (2012) 042506 (Mean Beta energies)
- M.Wang, G.Audi, A.H.Wapstra, F.G.Kondev, M.MacCormick, X.Xu, B.Pfeiffer. Chin. Phys. C36 (2012) 1603
- (Q)
 B.Q.LEE, T.KIBÉDI, A.E.STUCHBERY, K.A.ROBERTSON. Comput.Math.Meth.Med. 651475 (2012) (Auger electrons)
- X.MOUGEOT, M.-M.BÉ, C.BISCH, M.LOIDL. Nucl. Data Sheets 120 (2014) 129 (Mean Beta energies)
- A.KH.INOYATOV, A.KOVALIK, D.V.FILOSOFOV, M.RYSAVY, L.L.PEREVOSHCHIKOV, YU.B.GUROV. Eur. Phys. J. A51 (2015) 65 (Mixing ratio)

Au-198 decays via beta minus transitions to two excited levels and the ground state of Hg-198. L'or 198 se désintègre 100 % par émission bêta vers deux niveaux excités et le niveau fondamental du mercure 198.

2 Nuclear Data

 $\begin{array}{rrrr} T_{1/2}(^{198}\mathrm{Au}~) &:& 2{,}6943 & (3) & \mathrm{d} \\ Q^-(^{198}\mathrm{Au}~) &:& 1372{,}8 & (5) & \mathrm{keV} \end{array}$

2.1 β^- Transitions

	Energy (keV)	Probability (%)	Nature	$\lg ft$
$\beta_{0,2}^{-}$	285,1(5)	0,985~(5)	1st Forbidden	7,6
$\beta_{0,1}^{-}$	961,0 (5)	98,99~(6)	1st Forbidden	$7,\!37$
$\beta_{0,0}^{-}$	1372,8(5)	$0,\!025~(5)$	Unique 1st Forbidden	$12,\!4$

	$\frac{\rm Energy}{\rm (keV)}$	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ (\%) \end{array}$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$\begin{array}{c} \gamma_{1,0}(\mathrm{Hg}) \\ \gamma_{2,1}(\mathrm{Hg}) \\ \gamma_{2,0}(\mathrm{Hg}) \end{array}$	$\begin{array}{c} 411,80250 \ (17) \\ 675,8849 \ (5) \\ 1087,6874 \ (5) \end{array}$	$\begin{array}{c} 99,82 \ (9) \\ 0,825 \ (5) \\ 0,1599 \ (21) \end{array}$	E2 M1+E2 E2	$\begin{array}{c} 0,0300 \ (5) \\ 0,0216 \ (17) \\ 0,00414 \ (6) \end{array}$	$0,01055 (15) \\ 0,00389 (24) \\ 0,000751 (11)$	$\begin{array}{c} 0,00263 \ (4) \\ 0,00091 \ (6) \\ 0,0001766 \ (25) \end{array}$	0,0439 (7) 0,0267 (20) 0,00512 (8)

3.1 Hg

3.1.1 X Radiations

		$\frac{\rm Energy}{\rm (keV)}$		Relative probability
X _K				
	$K\alpha_2$	$68,\!895$		$58,\!99$
	$K\alpha_1$	70,82		100
	$K\beta_3$	79,823)	
	$K\beta_1$	$80,\!254$	}	$33,\!94$
	${ m K}eta_5^{\prime\prime}$	80,762	J	
	$K\beta_2$	82,435)	
	$K\beta_4$	82,776	}	$9,\!94$
	$\mathrm{KO}_{2,3}$	83,028	J	
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	8,7226		
	$L\alpha$	9,8981 - 9,9886		
	$L\eta$	$10,\!6473$		
	$L\beta$	11,4835 - 12,5471		
	$L\gamma$	13,4081 - 14,2672		

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K KLL KLX KXY	53,178 - 58,277 64,594 - 70,811 75,98 - 83,09	$100 \\ 55,2 \\ 7,62$
Auger L	5,16 - 14,82	

$\mathbf{4}$ **Electron Emissions**

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$		Electrons (per 100 disint.)
e_{AL}	(Hg)	5,161 - 14,822		2,156 (24)
e_{AK}	(Hg) KLL KLX KXY	53,178 - 58,277 64,594 - 70,811 75,98 - 83,09	}	0,110 (12)
$ec_{1,0} T$ $ec_{1,0} K$ $ec_{1,0} L$ $ec_{1,0} M$ $ec_{1,0} N$ $ec_{2,1} K$	(Hg) (Hg) (Hg) (Hg) (Hg) (Hg)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$\begin{array}{c} 4,20\ (7)\\ 2,869\ (48)\\ 1,009\ (14)\\ 0,2515\ (38)\\ 0,0626\ (10)\\ 0,0174\ (14)\end{array}$
$eta_{0,2}^{-}$ $eta_{0,1}^{-}$	max: avg: max:	$\begin{array}{ccc} 285,1 & (5) \\ 79,5 & (2) \\ 961,0 & (5) \\ 314,7 & (2) \end{array}$	}	0,985 (5) 98,99 (6)
$\beta_{0,0}^{-}$	avg. max: avg:	$\begin{array}{ccc} 314,1 & (2) \\ 1372,8 & (5) \\ 467,3 & (2) \end{array}$	}	0,025~(5)

$\mathbf{5}$ **Photon Emissions**

X-Ray Emissions 5.1

		Energy (keV)		Photons (per 100 disint.)		
XL	(Hg)	8,7226 - 14,2672		1,203~(22)		
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	$\begin{array}{c} (\mathrm{Hg}) \\ (\mathrm{Hg}) \end{array}$	$68,895 \\ 70,82$		$0,807 (15) \\ 1,369 (24)$	<pre>}</pre>	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Hg) (Hg) (Hg)	79,823 80,254 80,762	<pre>}</pre>	0,465~(11)		$\mathrm{K}'eta_1$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	$\begin{array}{c} (\mathrm{Hg}) \\ (\mathrm{Hg}) \\ (\mathrm{Hg}) \end{array}$	82,435 82,776 83,028	}	0,136 (4)		$K' \beta_2$

5.2 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\gamma_{1,0}(\mathrm{Hg})$ $\gamma_{2,1}(\mathrm{Hg})$ $\gamma_{2,0}(\mathrm{Hg})$	$\begin{array}{c} 411,80205 \ (17) \\ 675,8836 \ (7) \\ 1087,6842 \ (7) \end{array}$	$95,62 (6) \\ 0,804 (5) \\ 0,1591 (21)$

6 Main Production Modes

 $\begin{cases} Au - 197(n,\gamma)Au - 198 \\ Possible impurities: Au - 199 \end{cases}$

7 References

- E. AMALDI, O.D. AGOSTINO, E. FERMI, B. PONTECORVO, F. RASETTI, E. SEGRE. Proc. Roy. Soc. (London) 149A (1935) 522
- (Half-life)
- M.L. Pool, J.M. Cork, R.L. Thornton. Phys. Rev. 52 (1937) 239 (Half-life)
- E. MCMILLAN, M. KAMEN. Phys. Rev. 52 (1937) 531 (Half-life)
- R. Sherr, K.T. Bainbridge, H.H. Anderson. Phys. Rev. 60 (1941) 473 (Half-life)
- C. DIEMER, H. GROENDIJK. Physica 11 (1946) 396 (Half-life)
- L. SEREN, H.N. FRIEDLANDER, S.H. TURKEL. Phys. Rev. 72 (1947) 888 (Half-life)
- D. SAXON. Phys. Rev. 73 (1948) 811 (Half-life)
- R.M. STEFFEN, O. HUBER, F. HUMBEL. Helv. Phys. Acta 22 (1949) 167 (Half-life)
- D. SAXON, R. HELLER. Phys. Rev. 75 (1949) 909 (Half-life)
- L.M. SILVER. Can. J. Phys. 29 (1950) 59 (Half-life)
- P.E. CAVANAGH, J.F. TURNER, D.V. BOOKER, H.J. DUNSTER. Proc. Phys. Soc. (London) 64A (1951) 13 (Half-life, Gamma-ray emission probabilities)
- W.K. SINCLAIR, A.F. HOLLOWAY. Nature 167 (1951) 365 (Half-life)
- M. HUBERT. Comp. Rend. Acad. Sci. (Paris) 232 (1951) 2201 (Gamma-ray emission probabilities)
- A. BROSI, B. KETELLE, H. ZELDES, E. FAIRSTEIN. Phys. Rev. 84 (1951) 586 (Gamma-ray emission probabilities)
- E.E. LOCKETT, R.H. THOMAS. Nucleonics 11 (1953) 14 (Half-life)
- D. SCHIFF, F.R. METZGER. Phys. Rev. 90 (1953) 849 (Multipolarities 676 keV)
- C.D. SCHRADER. Phys. Rev. 92 (1953) 928 (Multipolarities 676 keV)
- R.E. Bell, L. YAFFE. Can. J. Phys. 32 (1954) 416 (Half-life)
- L.G. ELLIOTT, M.A. PRESTON, J.L. WOLFSON. Can. J. Phys. 32 (1954) 153 (Gamma-ray emission probabilities, Conv. Elec. emission probabilities, Beta emission probabilities)

- D. MAEDER, R. MUELLER, V. WINTERSTEIGER. Helv. Phys. Acta 27 (1954) 3 (Gamma-ray emission probabilities)
- J. TOBAILEM. J. Phys. Radium 16 (1955) 48 (Half-life)
- B.S. DZHELEPOV, N.N. ZHUKOVSKI, V.P. PRIKHODTSEVA, IU.V. KHOLNOV. Bull. Acad. Sci. USSR 19 (1955) 247 (Gamma-ray emission probabilities)
- L.G. ELLIOTT, M.A. PRESTON, J.L. WOLFSON. Can. J. Phys. 33 (1955) 607 (Beta emission probabilities, Conv. Elec. emission probabilities)
- J.VOLPE, G.HINMANN. Phys. Rev. 104 (1956) 753 (Multipolarities 676 keV)
- C. SASTRE, G. PRICE. Nucl. Sci. Eng. 1 (1956) 325 (Half-life)
- K.-E. JOHANSSON. Ark. Fysik 10 (1956) 247 (Half-life)
- J.P. KEENE, L.A. MACKENZIE, C.W. GILBERT. Phys. Med. Biol. 2 (1958) 360 (Half-life)
- J. ROBERT. J. Phys. Radium 21 (1960) 808 (Half-life)
- S.V. STARODUBTSEV, R.B. BEGZHANOV, S.L. RAKOVITSKII. Izv. Akad. Nauk Uz. SSR, Ser. Fiz.-Mat. Nauk 7 (1963) 44
- (Half-life)
 W.H.G. LEWIN, B. VAN NOOYEN, C.W.E. VAN EIJK, A.H. WAPSTRA. Nucl. Phys. 48 (1963) 159 (Beta emission probabilities)
- K.-E. BERGKVIST, S. HULTBERG. Ark. Fysik 26 (1964) 239 (Experimental ICC)
- M. Sakai, M. Nozawa, H.I. Kegami, T. Yamazaki. Nucl. Phys. 53 (1964) 529 (Multipolarities)
- W.J. KEELER, R.D. CONNOR. Nucl. Phys. 61 (1965) 513 (Beta emission probabilities, Conv. Elec. emission probabilities, Gamma-ray emission probabilities)
- S.C. ANSPACH, L.M. CAVALLO, S.B. GARFINKEL, J.M.R. HUTCHINSON. NBS Misc. Publ. 260-9, NP-15663 (1965) (Half-life)
- H. PAUL. Nucl. Phys. 72 (1965) 326 (Beta emission probabilities)
- B.-G. Pettersson, L. Holmberg, T.R. Gerholm. Nucl. Phys. 65 (1965) 454 (Experimental ICC)
- K.-E. BERGKVIST, S. HULTBERG. Ark. Fysik 27 (1965) 321 (Experimental ICC)
- M. Uhl, H. WARHANEK. Oesterr. Akad. Wiss., Math.-Naturw. Kl., Sitzber., Abt. II 175 (1966) 77 (Multipolarities 676 keV)
- J. KOCH, F. MÜNNICH, U. SCHÖTZIG. Nucl. Phys. A103 (1967) 300 (Multipolarities 676 keV)
- H.E. BOSCH, E. SZICHMAN. Bull. Am. Phys. Soc. 12 (1967) 598 (Conv. Elec. emission probabilities, Gamma-ray emission probabilities)
- I.W. GOODIER. Int. J. Appl. Radiat. Isotop. 19 (1968) 823 (Half-life)
- S.A. REYNOLDS, J.F. EMERY, E.I. WYATT. Nucl. Sci. Eng. 32 (1968) 46 (Half-life)
- F. LAGOUTINE, Y. LE GALLIC, J. LEGRAND. Int. J. Appl. Radiat. Isotop. 19 (1968) 475 (Half-life)
- R. BERAUD, I. BERKES, J. DANIERE, R. HAROUTUNIAN, M. LEVY, G. MAREST, R. ROUGNY. Phys. Rev. 188 (1969) 1958
 (Multipolarities 676 keV)
- M.J. CABELL, M. WILKINS. J. Inorg. Nucl. Chem. 31 (1969) 1229 (Half-life)
- A. VUORINEN, E. KALOINEN. An. Acad. Sci. Fenn., Ser. A VI 310 (1969) (Half-life)
- M.M. COSTA PAIVA, E. MARTINHO. Int. J. Appl. Radiat. Isotop. 21 (1970) 40 (Half-life)

- R. BERAUD, I. BERKES, R. HAROUTUNIAN, G. MAREST, M. MEYER-LEVY, R. ROUGNY, A. TRONCY, A. BAUDRY, V. LOPAC. Phys. Rev. C4 (1971) 1829 (Multipolarities 676 keV)
- A. Pakkanen. Nucl. Phys. A172 (1971) 193 (Multipolarities 676 keV)
- I.W. GOODIER, M.J. WOODS, A. WILLIAMS. Proc. Int. Conf. Chemical Nucl. Data, Canterbury, M.L. Hurrell, Ed. (1971) 175
- (Half-life)
- V.K. DEBERTIN. Atomkernergie 17 (1971) 97 (Half-life)
- T. NAGARAJAN, M. RAVINDRANATH, K. VENKATA REDDY. J. Phys. (London) A5 (1972) 1395 (Conv. Elec. emission probabilities, Beta emission probabilities)
- K. VENKATA RAMANA RAO, V. LAKSHMINARAYANA. Nuovo Cim. 8A (1972) 298 (Multipolarities 676 keV)
- M.S. EL-NESR, M.G. MOUSA. Atomkernenergie 21 (1973) 207 (Experimental ICC)
- M. KAWAMURA, T. TOMIYAMA. J. Phys. Soc. Jpn. 36 (1974) 27 (Multipolarities 676 keV)
- T.S. REDDY. Thesis, Andhra Univ., Waltair, India (1976) (Conv. Elec. emission probabilities)
- Y. IWATA, Y. YOSHIZAWA. Nucl. Instrum. Methods 175 (1980) 525 (Gamma-ray emission probabilities, Conv. Elec. emission probabilities)
- A.R. RUTLEDGE, L.V. SMITH, J.S. MERRITT. NBS-SP-626 (1982) 5 (Half-life)
- D.D. HOPPES, J.M.R. HUTCHINSON, F.J. SCHIMA, M.P. UNTERWEGER. NBS-SP-626 (1982) 85 (Half-life)
- B. CHAND, J. GOSWAMY, D. MEHTA, N. SINGH, P.N. TREHAN. Nucl. Instrum. Methods Phys. Res. A284 (1989) 393
- (Gamma-ray emission probabilities, X-ray emission probabilities)
- A. Abzouzi, M.S. Antony, A. Hachem, V.B. Ndocko Ndongue. J. Radioanal. Nucl. Chem. 144 (1990) 359 (Half-life)
- M.A. HAMMED, I.M. LOWLES, T.D. MACMAHON. Nucl. Instrum. Methods Phys. Res. A312 (1992) 308 (Gamma-ray emission probabilities)
- M.P. UNTERWEGER, D.D. HOPPES, F.J. SCHIMA. Nucl. Instrum. Methods Phys. Res. A312 (1992) 349 (Half-life)
- E.P. MIGNONSIN. Appl. Radiat. Isot. 45 (1994) 17 (Half-life)
- I.M. BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR JR., P.O. TIKKANEN, S. RAMAN. At. Data Nucl. Data Tables 81 (2002) 1
 - (Theoretical ICC)
- M.P. UNTERWEGER. Appl. Radiat. Isot. 56 (2002) 125 (Half-life)
- M.P. UNTERWEGER, R.M. LINDSTROM. Appl. Radiat. Isot. 60 (2004) 325 (Half-life)
- M.-M. BÉ, V. CHISTÉ, C. DULIEU, E. BROWNE, V. CHECHEV, N. KUZMENKO, R. HELMER, A. NICHOLS, E. SCHÖNFELD, R. DERSCH. Table of Radionuclides (Vol. 2 A = 151 to 242), BIPM (2004) 121 (Au-198 decay data evaluation)
- R.M. LINDSTROM, M. BLAAUW, M.P. UNTERWEGER. J. Radioanal. Nucl. Chem. 263 (2005) 311 (Half-life)
- D. NOVKOVIC, L. NADDERD, A. KANDIC, I. VUKANAC, M. DURASEVIC, D. JORDANOV. Nucl. Instrum. Methods Phys. Res. A566 (2006) 477 (Half-life)
- J.R. GOODWIN, V.V. GOLOVKO, V.E. IACOB, J.C. HARDY. Eur. Phys. J. A34 (2007) 271 (Half-life)
- T. SPILLANE, F. RAIOLA, F. ZENG, H.W. BECKER, L. GIALANELLA, R. KUNZE, C. ROLFS, M. ROMANO, D. SCHURMANN, F. STREIDER. EUR. Phys. J. A31 (2007) 203 (Half-life)
- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (BrIcc computer program)

- V. KUMAR, M. HASS, Y. NIR-EL, G. HAQUIN, Z. YUNGRIESS. Phys. Rev. C77 (2008) 051304 (Half-life)
- G. RUPRECHT, C. VOCKENHUBER, L. BUCHMANN, R. WOODS, C. RUIZ, S. LAPI, D. BEMMERER. Phys. Rev. C77 (2008) 065502
- (Half-life)
- Huang Xiaolong. Nucl. Data Sheets 110 (2009) 2533
- (Decay Scheme, Hg-198 adopted levels and gammas, multipolarities, mixing ratio for 676 keV gamma-ray)
- K. FORTAK, R. KUNZ, L. GIALANELLA, H.-W. BECKER, J. MEIJER, F. STRIEDER. Eur. Phys. J. A46 (2010) 161 (Half-life)
- D.S. MOREIRA, M.F. KOSKINAS, M.S. DIAS, I.M. YAMAZAKI. Appl. Radiat. Isot. 68 (2010) 1566 (Gamma-ray emission probabilities)
- J.R. GOODWIN, N. NICA, V.E. IACOB, A. DIBIDAD, J.C. HARDY. Phys. Rev. C82 (2010) 044320 (Half-life)
- R.M. LINDSTROM, E. FISCHBACH, J.B. BUNCHER, G.L. GREENE, J.H. JENKINS, D.E. KRAUSE, J.J. MATTES, A. YUE. Nucl. Instrum. Methods Phys. Res. A622 (2010) 93 (Independence of half-life on the source shape)
- J. CHEN, S.D. GERAEDTS, C. OUELLET, B. SINGH. Appl. Radiat. Isot. 69 (2011) 1064 (Evaluation of Au-198 half-life by different statistical procedures)
- R. M. LINDSTROM, E. FISCHBACH, J.B. BUNCHER, J. H. JENKINS, A. YUE. Nucl. Instrum. Methods Phys. Res. A659 (2011) 269 (Half-life)
- J.C. HARDY, J.R. GOODWIN, V.E. IACOB. Appl. Radiat. Isot. 70 (2012) 1931 (Half-life)
- M. WANG, G. AUDI, A.H. WAPSTRA, F.G. KONDEV, M. MACCORMICK, X. XU, B. PFEIFFER. Chin. Phys. C36 (2012) 1603
 (Q)
- R. FITZGERALD. J. Res. Natl. Inst. Stand. Technol. 117 (2012) 80 (Half-life)
- M.P. UNTERWEGER, R. FITZGERALD. Appl. Radiat. Isot. (2014) (Half-life, Conv. Elec. emission probabilities)

Reproduction Service 30, Boulevard Verd de Saint-Julien 92190 MEUDON

Achevé d'imprimer : novembre 2016 Imprimé en France

ISBN-13 978-92-822-2264-5 (Vol. 8)