

Chronic Kidney Disease Implementation of Metrological Traceability

> Graham Jones Department of Chemical Pathology St Vincent's Hospital, Sydney

> > JCTLM Paris December 2019

Organisations

International Guidelines

VOLUME 3 | ISSUE 1 | JANUARY 2013

				Persister De	tegories ge	
		eie of CKD by CED	A1	A2	A3	
an	d Albu	iminuria Categories: KDIGO 2012		Normal to mildly increased	Moderately increased	Severely increased
				<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol
categories (ml/min/ 1.73 m ²) Description and range	G1	Normal or high	≥90			
	G2	Mildly decreased	60-89			
	G3a	Mildly to moderately decreased	45-59			
	G3b	Moderately to severely decreased	30-44			
	G4	Severely decreased	15-29			
GFR	G5	Kidney failure	<15			

markers of kidney disease, no CKD); Yellow: moderately increased risk; Orange: high risk; Red, very high risk.

Chronic Kidney Disease

- Diagnosis and Staging of CKD based on Glomerular Filtration Rate (GFR)
- GFR estimated using equations based on serum creatinine

- Creatinine Measurements
 - One of the most common lab tests
 - The basis of (nearly) all kidney decisions
 Acute, Chronic, Drug dosing

Creatinine

- Many assays (still) based on Jaffe reaction (1896)
- Limited analytical specificity
- Cross reacts with other components of serum
- Calibration with pure creatinine gives wrong answers
- Can be "adjusted" or enzymatic method

~2005

• Creatinine assays not standardised

• Needed fixing!

Creatinine Standardisation - NKDEP

- National Kidney Disease Education Program
- Laboratory Working Group
 - Clinicians
 - Laboratorians
 - Metrologists (JCTLM)
 - Manufacturers

2010: All major international suppliers have traceable assays

▶ Results of the search

Your search criteria produced 6 summary results.

Select one or several higher-order reference material summary descriptions amongst the following list and click on 'View' to access more information.

Select all items from the list

Sort by :	Analyte	Matrix/Material Org	janization	
Select	Analyte	Analyte category	Matrix/Material	Organization
	creatinine	metabolites and substrates	creatinine crystalline material	NIST
	creatinine	metabolites and substrates	frozen human serum	CENAM
	creatinine	metabolites and substrates	human serum	JRC
	creatinine	metabolites and substrates	human serum	LGC
	creatinine	metabolites and substrates	creatinine crystalline material	NMIJ
	creatinine	metabolites and substrates	frozen human serum	LNE

Deselect all items from the list

☑ Results of the search

Your search criteria produced 4 results.

For more information on a reference measurement method/procedure for a given Analyte/Matrix (or Material)/Measurement principle (or technique) combination, select one or more of the options below.

Select all items from the list								
Sort by :	🖲 Analyte 🗌 Mea	asurement principle/technique 🛛 🔘 M	atrix/Material					
Select	Analyte	Measurement principle/technique	Matrix/Material					
	creatinine	Isotope dilution mass spectrometry	blood plasma					
	creatinine	Isotope dilution mass spectrometry	blood serum					
	creatinine	Isotope dilution mass spectrometry	urine					
	creatinine	Isotope dilution surface enhanced raman scattering	blood serum					

Deselect all items from the list

▶ Results of the search

Your search criteria produced 14 summary results.

Select one or several reference measurement service summary descriptions amongst the following list and click on 'View' to access more information.

Select all items from the list

Sort by :
 Analyte
 Matrix or Material
 Service provider

Select	Analyte	Matrix or Material	Country	Service provider
	creatinine	blood plasma	Germany	Instand e.V.
	creatinine	blood plasma	Germany	RfB-DGKL
	creatinine	blood plasma	China	Shanghai Center for Clinical Laboratory (SCCL)
	creatinine	blood serum	Germany	Instand e.V.
	creatinine	blood serum	France	LNE
	creatinine	blood serum	China	National Center for Clinical Laboratories (NCCL)
	creatinine	blood serum	Japan	ReCCS
	creatinine	blood serum	Germany	RfB-DGKL
	creatinine	blood serum	China	Shanghai Center for Clinical Laboratory (SCCL)
	creatinine	blood serum	United Kingdom	WEQAS
	creatinine	calibration solution	France	LNE
	creatinine	calibration solution	China	National Center for Clinical Laboratories (NCCL)
	creatinine	calibration solution	Germany	RfB-DGKL
	creatinine	urine	Germany	RfB-DGKL

Deselect all items from the list

View

Standardisation for global Epidemiology

Kidney damage and associated risk fact Global Health Sub-Saharan Africa (AWI-Gen): a cross-sectional population study

Jaya A George^{*}, Jean-Tristan Brandenburg^{*}, June Fabian, Nigel J Crowther, Godfred Agongo, Marianne Alberts, Stuart Ali, Gershim Asiki, Palwende R Boua, F Xavier Gómez-Olivé, Felistas Mashinya, Lisa Micklesfield, Shukri F Mohamed, Freedom Mukomana, Shane A Norris, Abraham R Oduro, Cassandra Soo, Hermann Sorgho, Alisha Wade, Saraladevi Naicker, Michèle Ramsay as members of AWI-Gen and the H3Africa Consortium

• Has this worked?

Johanna Helmersson-Karlqvist*, Peter Ridefelt, Elisabet Eriksson Boija and Gunnar Nordin Lower creatinine concentration values and lower inter-laboratory variation among Swedish hospital laboratories in 2014 compared to 1996: results from the Equalis external quality assessment program

Traceable, Commutable EQA program

Between-lab variation: improvement over time

Clin Chem Lab Med 2019; 57(6): 656-64	Clin	Chem	Lab	Med	2019;	57(6)	: 838-8	344
---------------------------------------	------	------	-----	-----	-------	-------	---------	-----

DE GRUYTER

Johanna Helmersson-Karlqvist*, Peter Ridefelt, Elisabet Eriksson Boija and Gunnar Nordin Lower creatinine concentration values and lower inter-laboratory variation among Swedish hospital laboratories in 2014 compared to 1996: results from the Equalis external quality assessment program

ORIGINAL ARTICLE

Journal of And LABORATORY QUALITY MEDICINE ASSURANCE

임상검사와 정도관리

Accuracy-Based Proficiency Testing of Creatinine Measurement: 7 Years' Experience in Korea

Tae-Dong Jeong¹, Hye Ah Lee², Kyunghoon Lee³, and Yeo-Min Yun⁴

ORIGINAL ARTICLE

임상검사와 정도관리

Tae-Dong Jeong¹, Hye Ah Lee², Kyunghoon Lee³, and Yeo-Min Yun⁴

Accuracy-Based Proficiency Testing of Creatinine Measurement: 7 Years' Experience in Korea

Accreditation and Quality Assurance (2019) 24:3-8

Standardization and improvement program for creatinine measurement in human serum

Gasca-Aragon et al (Mexico)

Accreditation and Quality Assurance (2019) 24:3-8

Standardization and improvement program for creatinine measurement in human serum

Gasca-Aragon et al (Mexico)

Using corrected assays: 28% classified differently

Malaysia (2018)

2018 CLINICAL PRACTICE GUIDELINES MOH/P/PAK/394.18(GU)

MANAGEMENT OF CHRONIC KIDNEY DISEASE

(SECOND EDITION)

When creatinine-based equations are used, calibration of SCr should confer to the isotope dilution mass spectrophotometry method to minimise variations in results.⁹

In the Lab

SydPath: Change of Supplier

 Change in chemistry and Immunoassay Suppliers

• 116 measurands changed

Validation Documents

-	Validation-AU-BodyFluids-Amylase		Validation-AU-Serum-Urate
-	Validation-AU-BodyFluids-Bicarbonate	-	Validation-AU-Serum-Urea
-	Validation-AU-BodyFluids-Calcium	-	Validation-AU-TDM-Carbamazepine
-	Validation-AU-BodyFluids-Chloride	2	Validation-AU-TDM-Digoxin
	Validation-AU-BodyFluids-Cholesterol		Validation-AU-TDM-Gentamicin
	Validation-AU-BodyFluids-Creatinine		Validation-AU-TDM-Lithium
	Validation-AU-BodyFluids-Glucose		Validation ALLTDM Paraostamol
	Validation-AU-BodyFluids-Lactate		Validation-AU-TDM-Paracetanion
	Validation-AU-BodyFluids-LDH		Validation-AU-TDM-Phenytoin
-	Validation-AU-BodyFluids-Lipase		Validation-AU-TDM-Tobramycin
	Validation-AU-BodyFluids-Magnesium		Validation-AU-TDM-Valproate
	Validation-AU-BodyFluids-Phosphate	-	Validation-AU-TDM-Vancomycin
	Validation-AU-BodyFluids-Potassium	-	Validation-AU-UDS-Amphetamines
	Validation-AU-BodyFluids-Sodium	-	Validation-AU-UDS-Barbiturates
-	Validation-AU-BodyFluids-Triglycerides	-	Validation-AU-UDS-Benzodiazepines
	Validation-AU-BodyFluids-Urea	-	Validation-AU-UDS-Cocaine
-	Validation-AU-CSF-Albumin	2	Validation-AU-UDS-Methadone
	Validation-AU-CSF-Glucose		Validation ALLIDS-Opiates
2	Validation-AU-CSF-Protein		Validation ALLUDS Orwoodone
2	Validation-AU-Serum-ALP		Validation-AU-UDS-Oxycodone
2	Validation-AU-Serum-Act		Validation-AU-UDS-THC
2	Validation AU Sonum AST		Validation-AU-UDS-Incyclics
2	Validation-AU-Serum-Ricarbonate		Validation-AU-Urine-Albumin
	Validation-AU-Serum-Bilin Ibin-Direct		Validation-AU-Urine-Amylase
2	Validation-AU-Serum-Bilinubin-Total		Validation-AU-Urine-Calcium
3	Validation-AU-Serum-Calcium	-	Validation-AU-Urine-Chloride
2	Validation-AU-Serum-Chloride		Validation-AU-Urine-Creatinine
2	Validation-AU-Serum-Cholesterol-HDL	-	Validation-AU-Urine-Glucose
2	Validation-AU-Serum-Cholesterol-total	-	Validation-AU-Urine-Magnesium
-	Validation-AU-Serum-CK		Validation-AU-Urine-Phosphate
-	Validation-AU-Serum-Creatinine	2	Validation-AU-Urine-Potassium
	Validation-AU-Serum-CRP		Validation-All-Line-Protein
-	Validation-AU-Serum-Ethanol		Validation ALL Line. Sodium
	Validation-AU-Serum-GGT		Validation-AU-Unite-Sodium
-	Validation-AU-Serum-Glucose		Validation-AU-Unne-Urate
-	Validation-AU-Serum-Iron		Validation-AU-Urine-Urea
	Validation-AU-Serum-Lactate		Validation_DvI_AEP
	Validation-AU-Serum-LDH		Validation-DxI-Al 1
	Validation-AU-Serum-Lipase		Validation-DXI-CA125
	Validation-AU-Serum-Magnesium		Validation-DXI-CA 199
	Validation-AU-Serum-Phosphate		Validation-DxI-CEA
	Validation-AU-Serum-Potassium	-	Validation-DxI-Prolactin
	Validation-AU-Serum-Sodium	-	Validation-DxI-PSA
	Validation-AU-Serum-TotalProtein		Validation-DxI-SHBG
	Validation-AU-Serum-Transferrin	-	Validation-DxI-Testosterone
-	Validation-AU-Serum-Triglycerides		

ā....

e pdF Validation-AU-ACE e pdf Validation-AU-CSF-Bilirubin e ¤F Validation-AU-TDM-Methotrexate e ¤F Validation-Dxl-B12 e ¤F Validation-Dxl-Cortisol e ⊯f Validation-Dxl-Ferritin e ¤F Validation-Dxl-Folate-Serum e pdF Validation-DxI-FSH e ¤f Validation-Dxl-FT3 e ¤F Validation-Dxl-FT4 e ¤f Validation-Dxl-hCG e ¤F Validation-Dxl-hCG-NonPregnancy e pdF Validation-Dxl-Insulin e ¤f Validation-Dxl-LH e pdf Validation-Dxl-Progesterone e pdF Validation-Dxl-PSA e pdf Validation-DxI-PSA-free Kalidation-Dxl-RedCellFolate Validation-Dxl-Tnl 2 pdf Validation-DxI-TSH

Traceability Information

Test	Beckman	Roche	Abbott
Sodium	NIST SRM 2201	calibrators (gravimetrically from purified sa	NIST SRM
Potassium	NIST SRM 2201	calibrators (gravimetrically from purified sa	NIST SRM
Chloride	NIST SRM 2201	calibrators (gravimetrically from purified sa	NIST SRM 2202
Bicarbonate	Traceable to NIST (SRM) 351	Against a primary standard	NIST 351
Creatinine (enzymatic)	IDMS via NIST SRM 967	Against ID/MS	NIST SRM 967
Urea	NIST SRM 909b level 1	Against ID/MS	NIST SRM 912
Amylase	Traceable to a manual IFCC refe	Roche reagent/manual application	IFCC Reference Procedure (2006)4/2-chlo
Bilirubin-direct	Traceable to Beckman Coulter N	Against the Doumas method	Human Samples
Creatine Kinase	IFCC	Against the IFCC Method for Creatine Kinas	IFCC Reference Procedure (2002)6
CRP	IFCC standard CRM 470 by Immu	CRM470	ERM-DA472/IFCC
Ethanol	Traceable to Primary Gravimetri	Agaisnt NIST traceable material	>99% pure Ethanol Standard
Fructosamine	0	Against fructose polylysine standard	Glycated poly- L-lysine/14Cglucose
Glucose	Traceable to NIST SRM 965	Against ID/MS	NIST SRM 965
Iron	Traceable to Beckman Coulter N	Against a primary reference material (SRM	NIST SRM 3126
Lactate	Primary standard- gravimetric u	Against a primary standard	Reagent Grade Lactic Acid
LDH	Traceable to IFCC reference me	Against IFCC formulation	IFCC Reference Procedure (2002)8
Lipase	Traceable to Beckman Coulter N	Roche reagent/manual application	Purified Human Pancreatic Lipase (>900
Paracetamol	Traceable to a Gravimetrically p	Against USP reference standard	Acetaminophen Reference Standard (98-
Salicylate	Traceable to IVD directives 98/7	Against USP reference standard	USP grade Salicylate
Transferrin	BCR-470	Against an in-house reference preparation	ERM-DA470/IFCC
Urate	Traceable to IDMS method	Against ID/MS	NIST SRM 913
Albumin	CRM 470	Against the ref. prep. of the IRMM BCR470/	ERM-DA470
ALP	IFCC method recommendations	Against IFCC formulation	IFCC Reference Procedure (2011)3/p-nite
ALT	With P5P activation traceable to	Against IFCC formulation with PYP	IFCC Reference Procedure (2002)2
AST	With P5P activation traceable to	IFCC formulation with PYP	IFCC Reference Procedure (2002)5
Bilirubin-total	Traceable to NIST SRM 916a	Against the Doumas method	NIST SRM 916

Creatinine Method Comparison

Traceability in action!

Method Comparison – Free T4

Units: pmol/L

BECKMAN COULTER DxI VALIDATION - METHOD COMPARISON

Roche Ave 17.04 DxI Ave 13.18 Diff (units) -3.86 Ratio 0.774 Slope 0.868 Intercept -1.61 correl 0.957 Median 15.20 Min 2.90 Max 67.60 n 107 CV(est) 11.9%

Free T4

PrintDate: 11/09/2018

APS: +/-12 to 1.5 then 12 Print Date: 11/9/18

Source ([Filename]sheet): [Validation-Immunoassay-DxI-2018-MASTER-BACKUP-2018-09-11.xlsx]MethCompGroup

Changes

Significant differences

- 20 (out of 90) tests
- 4 (out of 8) calculations

Actions

- Alert clinicians
- Review reference intervals
- Change reporting (+written alert)
- Period of clinical risk

Clinical Pathology

SMITH, WILLIAM

MRN: 1234567 DoB: 01/04/1960 (M) 1 MADEUP ST, ELSEWHERE, NSW, Tel: 0555-123456

Chemical Pathology - Latest Results Sets (1 - 6 of 6)

BLOOD CHEMISTRY	30 Oct 18 11:45 TC30458937	26 Apr 17 08:00 TC30269460	19 Feb 16 11:55 TC30095462	16 Feb 16 11:00 TC30024192	14 Feb 16 10:34 TC30024474	18 Mar 15 08:05 TC30025810	Range	Units	
Range Comment	Com'nt								-
Sodium		141			142		137-146	mmol/L	×*
Sodium 13	139						135-145	mmol/L	st.
<u>Potassium</u>	4.4	4.5			4.7		3.5-5.2	mmol/L	×
Chloride	106	104			106		95-110	mmol/L	÷*
Bicarbonate	25	23			26		22-32	mmol/L	*
<u>Urea</u>		'9.8 ^{*H}			6.8		3.0-8.5	mmol/L	···· ×/ ····
<u>Urea</u>	7.8						4.5-10.0	mmol/L	*
<u>Creatinine</u>		62			59 ^{*L}		60-120	umol/L	×
Creatinine	66						60-110	umol/L	*
eGFR	85	88			>90		>60	mL/mn/1.73m2	×4
eGFR comm	Com'nt	Com'nt							×*
Uric acid	0.47	0.45					0.25-0.50	mmol/L	×*
Glucose (R)	6.2	5.9			5.2		3.0-7.8	mmol/L	*
Inorg. Phos.		1.06					0.70-1.40	mmol/L	×
Inorg. Phos.	1.17						0.70-1.50	mmol/L	*
Magnesium		0.89					0.70-1.05	mmol/L	×*
Magnesium	0.92						0.70-1.10	mmol/L	*
Calcium	2.36	2.34					2.10-2.60	mmol/L	×*
Ca alb corr	2.37	2.28					2.10-2.60	mmol/L	*
Albumin		43			44		36-52	g/L	×*
Albumin	39						33-48	g/L	*
Tot. protein		70			68		60-82	g/L	×
Tot. protein	68						60-80	g/L	×
Tot biligubin		5			0		0-19	umol/I	~

Atomic Report (HTML)

Comments on reports

LFT range com - Request No: TC11315466 -- Dec 2 2018 03:53PM

LIVER FUNCTION TESTS: From 2nd September 2018 LFT assays and reference intervals have been adjusted. AST~10% higher, ALT~10% higher, GGT~15% higher, ALP~5% higher, Bilirubin~20% higher, Albumin~3g/L lower and Protein~3 g/L lower (Dr Graham Jones).

Conclusions

- Reference measurement systems for serum creatinine have been in place for some time
- There has been sigfificant improvement in many locations
- Work remains to be done
- This requires actions by:
 - Manufacturers
 - Laboratories
 - EQA organisations
 - Professional organisations