

Metrology to enable rapid and accurate clinical measurements in acute management of sepsis

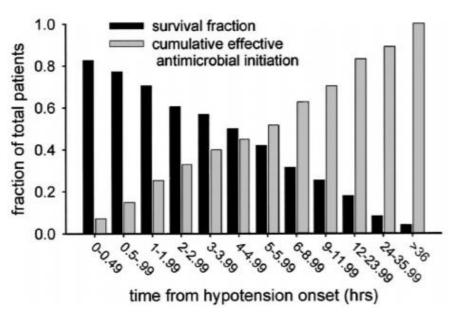
SEPTIMET: metrology developments to improve identification and treatment of sepsis – Focus on Procalcitonin activities

Dr Amandine Boeuf, LNE

SEPSIS

SEPT MET

In 2017, **WHA** and **WHO**made sepsis a global health
priority


→ resolution to improve the **prevention**, **diagnosis** and **management** of sepsis

https://www.worldsepsisday.org/

SEPSIS

SEPT MET

Patient outcomes and therapy: the sooner the better!

From Kumar et al. Crit Care Med 2006; 34: 1589=96

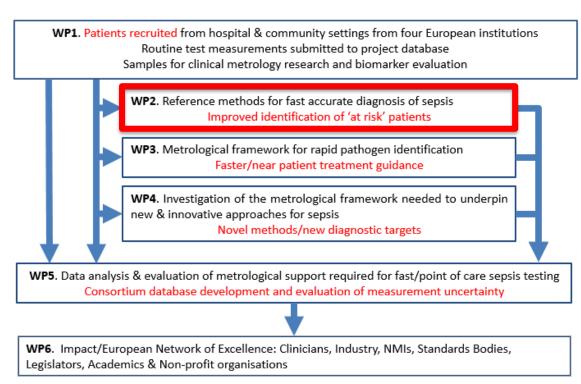
Diagnostic

≡

critical factor in managing sepsis,

but **still a challenge** for clinicians in ICU and emergency departments

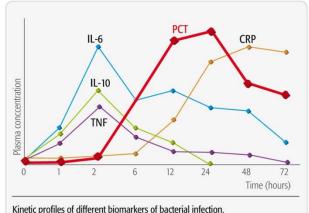
Metrology to enable rapid and accurate clinical measurements in acute management of sepsis

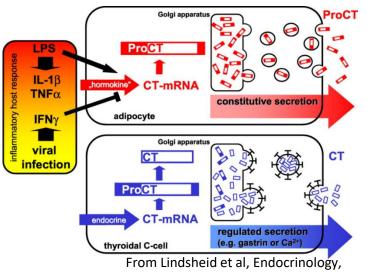


Coordinator : Jim Huggett (LGC)

Start: September 2019

Objective:


and reproducibility of diagnostic tests for the identification and treatment of sepsis


Procalcitonin (PCT)

SEPTIMET

- 116 amino acid polypeptide
- Precursor of calcitonin
- 7 when bacterial inflammation
- Peak level achieved rapidly
- \(\simega\) rapidly after end of injury

From https://www.biomerieux-diagnostics.com, Adapted from Meisner M. J Lab Med. 1999;23:263-272

2003;144(12):5578-5584

 \rightarrow PCT concentration may rise to 100 ng/mL

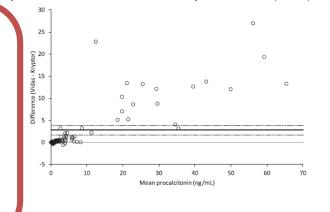
→ Low PCT concentration (0.05 ng/mL)

Specific biomarker for bacterial infection

Procalcitonin assays

SEPT MET

- Routine assays → Immunoasays
- No higher order reference measurment procedures
- No Certified Reference Materials


EQA program performed by ANSM in France in 2014 and 2015

20
18
16
16
19
19
10
10
Roche
Thermo
Roche
Thermo

→ 17-20% between–methods RSD observed

Need of standardisation?

→ Evaluate the needs and feasibility

M. Dipalo et al. / Practical Laboratory Medicine 2 (2015) 22-28

→ Good correlation at low PCT level (clinically relevant level)

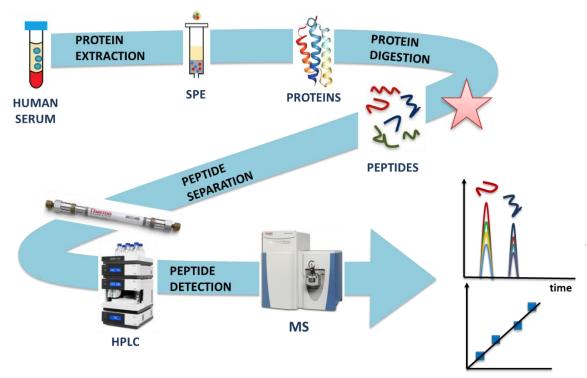
IFCC working group on PCT standardisation

Mambarahin		
Membership	Internatio of Clinical	
Name	Position and Labore	
V. Delatour	Chair	FR
A. Boeuf	Member	FR
H. Briand	Member	FR
N. Corocher	Member	IT
A.M. Dupuy	Member	FR
P. Hausfater	Member	FR
P. Kaiser	Member	DE
Q. Liu	Member	SG
B. Machetanz	Member	DE
L. Pallavicini	Member	IT
S. Pastori	Member	IT
J. Pfannkuche	Member	DE
K. Schneider	Member	DE
P. Schütz	Member	CH
C. Tsatsanis	Member	GR
C. Yuan	Member	US
P. Bryan	Member/OCD	US
M. Grimmler	Member/Diasys	DE
T. Masetto	Member/Diasys	DE
J. Odarjuk	Member/Thermo Fisher	DE
N. Parker	Member/Siemens	US
M. Patru	Member/OCD	US
K. Paulsen	Member/Beckman Coulter	DE
M. Rottmann	Member/Roche	DE
S. Ruetten	Member/Abbott	US
A. Rybin	Member/Siemens	US
L. Seaver	Member/Abbott	US

Member/Thermo Fisher

1/ Develop and validate a reference measurement procedure for PCT absolute quantification by IDMS to establish metrological traceability of results to the SI Units

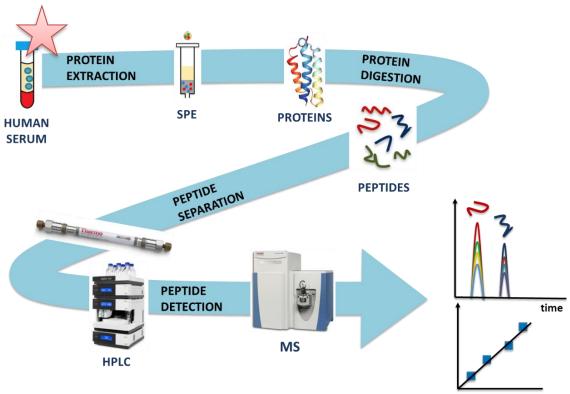
2/ Document and understand the variability of results provided by the different commercially available PCT assays


3/ Evaluate the feasibility for standardisation of PCT assays through common calibration with commutable calibrators

4/ If standardisation of PCT assays appears desirable and feasible:

- Produce commutable calibrators value assigned with the IDMS reference method
- Effectively recalibrate PCT assays
- Assess accuracy and comparability of PCT assays
- Evaluate the impact of assays recalibration

Procalcitonin



Calibrators: Synthetic peptides

POSTER P-12: Candidate reference method to establish traceable PCT measurement results
Huu Hien Huynh et al.

Procalcitonin

SEPT MET

Calibrators: **recombinant protein**, supplied in 180 aliquots of 50 μL

Characterisation of primary calibrator:

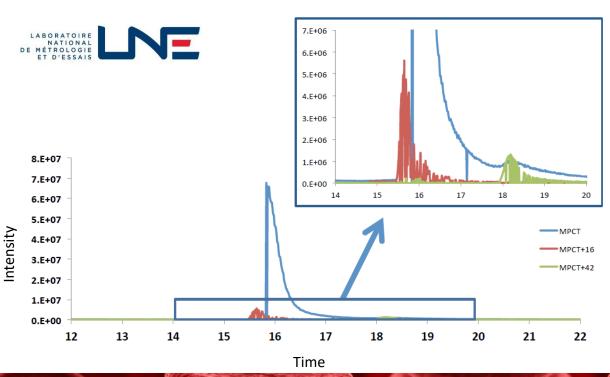
- Quantification by Amino Acid Analysis
- Impurity identification and quantification
- Correction of Amino Acid Analysis results

Amino Acid Analysis

SEPT MET

first results

(secondment of H.H. Huynh in July 2019)


	Test 1	Test 2	Test 3
	(from one aliquot)	(from two aliquots)	(from two aliquots)
Concentration (µg/mL)	865.3	721.4	789.9
Mean concentration (μg/mL)	792.2		
CV%	9.1		

→ Homogeneity study on-going

Purity analysis (LC-MS)

SEPT MET

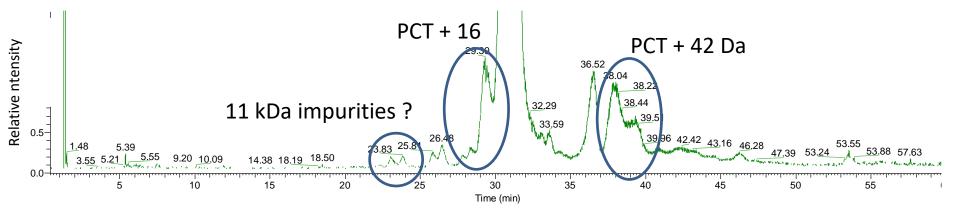
first results

U3000 / Q Exactive Focus (Thermo scientific)
Pepmap100 C18 column, 3µm, 1 x 100 mm
Mobile phase A: H2O, 0.1% Formic Acid
Mobile phase B: ACN, 0.1% Formic Acid
T column: 25°C

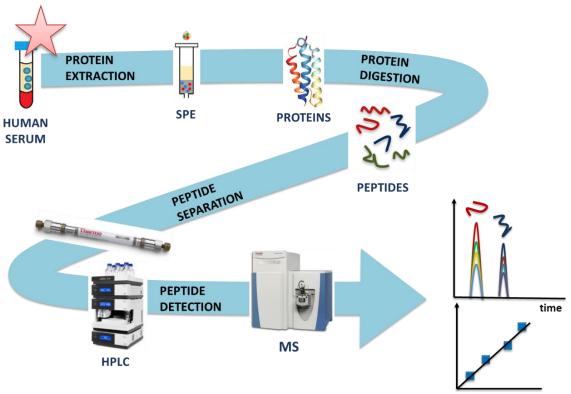
Purity analysis (LC-MS)

SEPT MET

first results



(secondment of A. Boeuf in Sept 2019)


Vanquish / Q Exactive Plus (Thermo scientific) ACE 3 C4-300, 2.1 x 100 mm

Mobile phase A: H2O, 0.1% Formic Acid Mobile phase B: ACN, 0.1% Formic Acid

T column: 25ºC

Procalcitonin

SEPT MET

Calibrators: **recombinant protein**, supplied in 180 aliquots of 50 μL

Characterisation of primary calibrator:

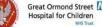
- Quantification by Amino Acid Analysis
- Impurity identification and quantification
- Correction of Amino Acid Analysis results

Acknowledgments

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

LNE Biomedical and Organic Chemistry team, especially:

Huu Hien Huynh, Maxence DERBEZ, Vincent Delatour, Hélène Vaneeckhoutte, Chiara Giangrande, Béatrice Lalere, Sophie Vaslin-Reimann



Metrology to enable rapid and accurate clinical measurements in acute management of sepsis