
# Overview and update of ICSH activities in haematology standardization

# JCTLM meeting, Paris 2<sup>nd</sup> December 2019

Dr. Paul Harrison, University of Birmingham ICSH Board Member & JCTLM representative

## What is the ICSH?

- The International Council for Standardization in Haematology (ICSH) was initiated as a standardization committee by the European Society of Haematology (ESH) in 1963 and officially constituted by the International Society of Hematology (ISH) and the ESH in Stockholm in 1964.
- The ICSH is recognised as a Non-Governmental Organisation with official relations to the World Health Organisation (WHO).
- The ICSH is a not-for-profit organisation that aims to achieve reliable and reproducible results in laboratory analysis in the field of diagnostic haematology.
- The ICSH coordinates Working Groups of experts to examine laboratory methods and instruments for haematological analyses, to deliberate on issues of standardization and to stimulate and coordinate scientific work as necessary towards the development of international standardization materials and guidelines.
- The ICSH has published 25 Publications and guidelines since reforming in 2007 seven more in draft form



### **Current ICSH Management Board**

| Chair        | Samuel J. Machin | UK        | Chair                    |
|--------------|------------------|-----------|--------------------------|
| Vice-Chair   | Szu-Hee Lee      | Australia | Website &<br>Haematology |
| Vice-Chair   | Steve Kitchen    | UK        | Haemostasis Chair        |
| ic Socratary | Gina 7ini        | Italy     | Haamatalagy              |

| Scientific Secretary Gina Zini It | taly Haematolog | У |
|-----------------------------------|-----------------|---|
|-----------------------------------|-----------------|---|

| Treasurer Alexander Kratz USA Finances | & |
|----------------------------------------|---|
|----------------------------------------|---|

Haematology

Member Paul Harrison UK Platelets and Flow

cytometry

Member Wendy Erber Australia Haematology &

Molecular

Member Kees Harteveld Netherlands Haemoglobinopathies

Member Bob Gosselin USA Haemostasis

Member Richard McCafferty Ireland Haematology

Administrator Terry Fawcett Australia Administration

## ICSH General Assembly Meetings

- 2007 Amsterdam Netherlands
- 2008 Sydney Australia
- 2009 Rome Italy
- 2010 Bangor USA
- 2011 Montpellier France
- 2012 Chicago USA
- 2013 Gerrards Cross UK
- 2014 San Francisco USA
- 2015 Shenzhen China
- 2016 Lucerne Switzerland
- 2017 Kobe Japan
- 2018 Miami USA
- 2019 Lund Sweden
- 2020 Singapore



## INTERNATIONAL COUNCIL FOR STANDARDIZATION IN HAEMATOLOGY

### **AFFILIATE ORGANIZATIONS**

### **NCCL CHINA SCCL CHINA**







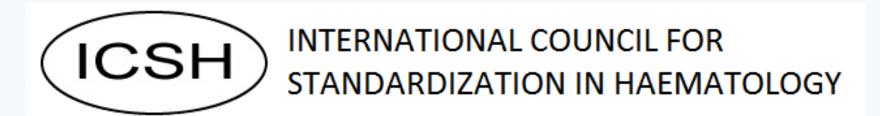























## **Corporate Members**



































## ICSH Recent Publications (2016 - 2019) http://icsh.org/archives/

### **ICSH GUIDELINES & RECOMMENDATIONS**

### 2019 - Digital morphology analyzers in Hematology Review: ICSH review and recommendations

Kratz A, Lee SH, Zini G, Reidl J, Hur M, Machin S Int J Lab Hematol. 2019;1–11.

https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijlh.13042

### 2018 - Laboratory Measurement of Direct Oral Anticoagulants (DOACS)

Gosselin RC, Adcock DM, Bates SM, Douxfils J, Favaloro EJ, Gouin-Thibault I, Guillermo C, Kawai Y, Lindhoff-Last E, Kitchen S. International Council for Standardization in Haematology (ICSH) Recommendations for Laboratory Measurement of Direct Oral Anticoagulants. Thromb Haemost. 2018 Mar;118(3):437-450

https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0038-1627480.pdf

### 2017 - ESR Methods Guideline

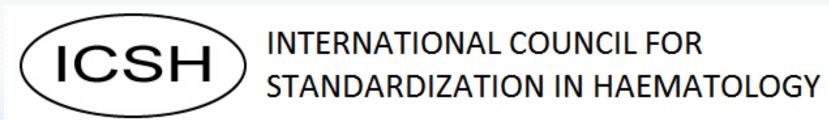
Kratz A, Plebani M, Peng M, Lee YK, McCafferty R, Machin SJ and on behalf of the International Council for Standardization in Haematology (ICSH). ICSH recommendations for modified and alternate methods measuring the erythrocyte sedimentation rate. Int J Lab Hematol. 2017 Oct;39(5):448-57.

http://onlinelibrary.wiley.com/doi/10.1111/ijlh.12693/full

### 2016 - Haematology Reporting

Brereton M, McCafferty R, Marsden K, Kawai Y, Etzell J, Ermens A; International council for standardization in haematology. Recommendation for standardization of haematology reporting units used in the extended blood count. Int J Lab Hematol. 2016 Oct;38(5):472-82.

http://onlinelibrary.wiley.com/doi/10.1111/ijlh.12563/full


## ICSH List of Current Haematology Projects

| Project                                 | Project Lead          | Status                                  | Completion     |
|-----------------------------------------|-----------------------|-----------------------------------------|----------------|
| JCTLM Traceability                      | Dr Paul Harrison      | Ongoing                                 | Ongoing        |
| Immunoplatelet - JCTLM                  | Dr Paul Harrison      | Ongoing                                 | Ongoing        |
| Digital Morphology                      | Dr Alexander Kratz    | Paper accepted                          | May 2019       |
| Immunodifferential                      | Dr Brent Wood         | Multi-centre trial                      | September 2019 |
| Internal QC for analyzers               | Mr Richard McCafferty | First Draft done                        | September 2019 |
| MPV Standardization                     | Dr Paul Harrison      | Retesting new material                  | May 2020       |
| IRF Standardization                     | Dr Amrom Obstfeld     | Retesting new material                  | May 2020       |
| CD34 IHC Standardization                | Dr Emina Torlakovic   | First draft                             | September 2019 |
| HbA2 Standard                           | Dr Kees Hartveld      | In conjunction with IFCC                | Uncertain      |
| HbA Standard                            | Mr. Terry Fawcett     | Need to retest old<br>Eurotrol standard | December 2019  |
| WCC Standardization by flow cytometry** | Mr. Vuong Nguyen      | Evaluation of candidate methods         | September 2019 |
| WHO Liaison                             | Dr Gina Zini          | Ongoing                                 | Ongoing        |

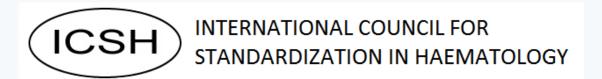
## ICSH List of Current Haemostasis Projects

| Project                                    | Project Lead        | Status                | Completion     |
|--------------------------------------------|---------------------|-----------------------|----------------|
| Preanalytical Variables Guideline          | Dr Steve Kitchen    | Draft near completion | December 2109  |
| FVIII/FIX Inhibitors Guideline             | Dr Piet Meijer      | Draft near completion | December 2019  |
| Mixing Studies Guideline                   | Dr Dot Adcock       | Draft near completion | December 2019  |
| POC Guideline                              | Dr Dave Fitzmaurice | Draft near completion | May 2020       |
| ADAMST13 guideline                         | Dr Ian Mackie       | Draft near completion | September 2019 |
| DOACS guideline update                     | Mr Bob Gosselin     | Draft near completion | January 2020   |
| Critical Results in Haemostasis            | Mr Bob Gosselin     | Just published        | September 2019 |
| Coagulation Analyzers Evaluation Guideline | Dr Chris Gardiner   | Project has started   | October 2020   |
| Coagulation Reagents Evaluation Guideline  | Mr Bob Gosselin     | Project approved      | October 2020   |

# ICSH and JCTLM (Joint Committee for Traceability in Laboratory Medicine)

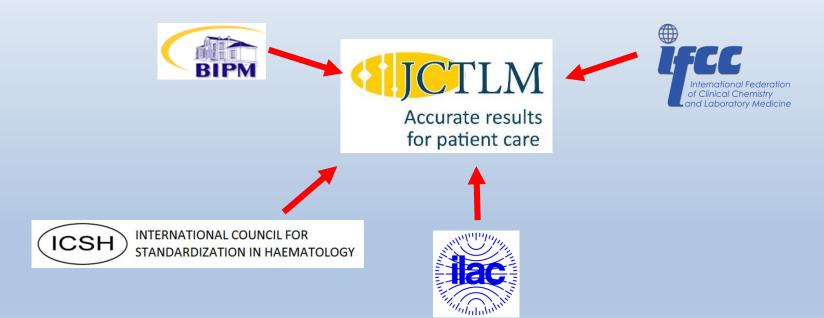




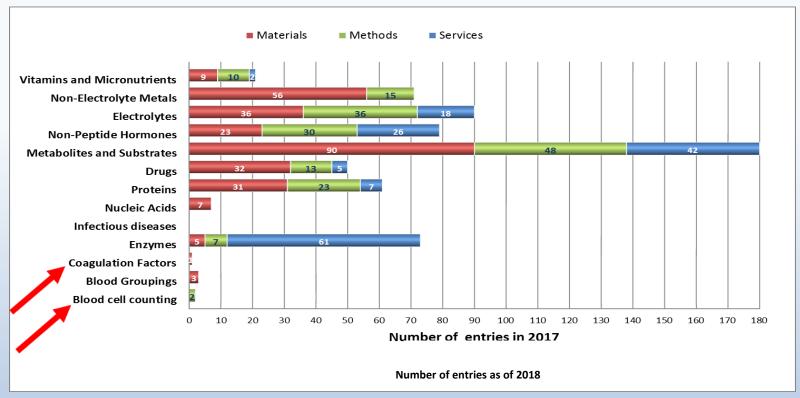

- Important Collaboration
- Very few Laboratory Haematology entries in JCTLM Database
- Both organizations have identified the need to collaborate



- > Expand JCTLM Executive Member organizations to include other disciplines in laboratory medicine
- > Outreach to ICSH as peer Lab Haem organization
  - Reps from JCTLM and ICSH met 22 June 2015 @ EuroMedLab Paris
  - Sam Machin gave a Webex presentation @ 2015 JCTLM Members & Stakeholders Meeting
  - Graham Beastall attended ICSH General Assembly, 26 October 2016
     Lucerne
  - Bruce Davis & George Cembrowski attended 2017 JCTLM Members & Stakeholders Meeting, BIPM
  - JCTLM and ICSH convened a meeting 14-15 May 2018, BIPM
  - Gary Myers attended 2018 ICSH General Assembly, Miami USA
  - ICSH Submitted Reference Method for Platelet Counting in 2018




- ICSH accepted as Executive Member in January 2019
- Ian Young attended 2019 ICSH General Assembly, Lund, Sweden
- Dr Paul Harrison, UK, appointed ICSH Board Member liaising with JCTLM




### **JCTLM Structure - 2019**

In 2019. the Joint Committee for Traceability in Laboratory Medicine accepted ICSH as an executive member of JCTLM. ICSH will assist with Haematology and Haemostasis traceability. This will encompass the sciences of metrology, laboratory medicine and laboratory quality management to help the IVD industry meet traceability requirements of the EC IVD Directive



### **JCTLM Database: Entries as of March 2018**



26 measurands with complete reference systems

293 Certified Reference Materials

184 RMPs that represent 83 different measurands

in 9 categories

161 reference measurement services delivered by

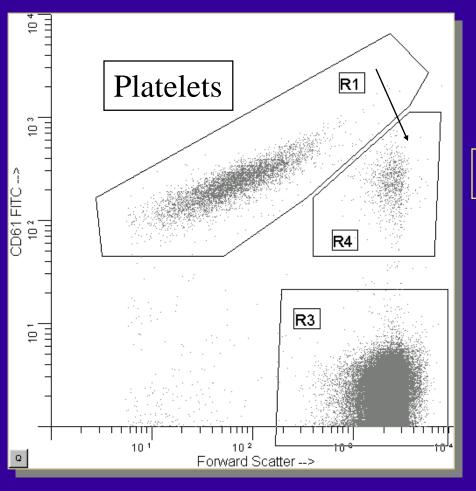
17 reference labs

NOTE – VERY SMALL NUMBER OF BLOOD CELL COUNTING AND HAEMOSTASIS ENTRIES – HENCE NEED FOR ICSH LIAISON WITH JCTLM

## Immuno-platelet counting

ICSH/ISLH (Late 1990's) - proposed that the immunocount derived from the platelet:RBC ratio should become the new reference method

• Requirements of Platelet:RBC ratio method


Optimal resolution of platelets from noise and other cells
Antibody must specifically recognise all platelets
Elimination of Coincidence events (platelet:RBC or RBC:RBC) by optimisation of dilution
Sufficient platelets must be counted for accuracy

Main Advantage

Independent of pipetting and dilution artefacts

## PLATELET/RBC RATIO

For full method see Harrison et al, 2001, AJCP, 115, 448-59 & ICSH/ISLH, 2001, AJCP, 115, 460-4



Plt/RBC Coincidence

RBC

## INTERNATIONAL STANDARD

ISO 15193

Second edition 2009-05-01

In vitro diagnostic medical devices — Measurement of quantities in samples of biological origin — Requirements for content and presentation of reference measurement procedures

Dispositifs médicaux de diagnostic in vitro — Mesurage des grandeurs dans des échantillons d'origine biologique — Exigences relatives au contenu et à la présentation des procédures de mesure de référence

Immunhämatologie/Immunohematology

Redaktion: A. Ru

## Reference measurement procedures for the accurate determination of cell concentrations: present status and future developments

Referenzmessverfahren für die genaue Bestimmung von Zellkonzentrationen: Status und zukünftige Entwicklungen

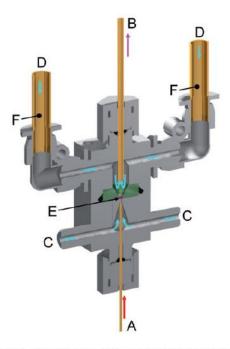



Figure 1 Schematic view of the measuring cell for impedance counting used in the PTB reference particle counter. (A) Sample inlet, (B) outlet to waste container, (C) front sheath flow, (D) rear sheath flow, (E) measuring orifice ( $\not$ 0 40  $\mu$ m or 60  $\mu$ m), (F) electrodes.

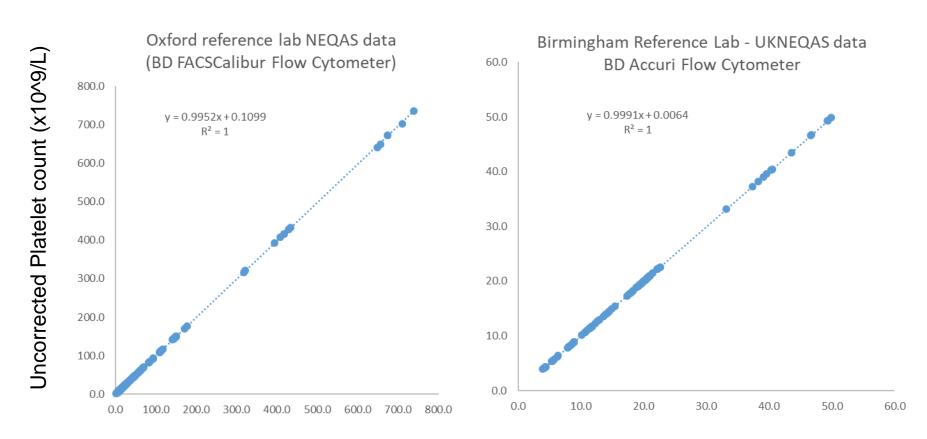
### Martin Kammel, Andreas Kummrow and Jörg Neukammer\*

Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany

#### Abstract

Accurate determination of cell concentrations serves as a valuable tool to support medical diagnosis and therapy control, e.g., in haematology, immunology and transfusion medicine. Intra- and inter-laboratory comparability of measurement results is essential for patient safety. To derive the so-called "conventional quantity value" of a measurand as target value for intra- or inter-laboratory quality assurance and to establish a traceability chain to the international System of Units (SI), a primary reference measurement procedure is needed, defined as a procedure which includes a complete analysis of influence quantities and perturbing factors and a complete description of measurement uncertainties. We describe a primary reference measurement procedure for the determination of erythrocyte concentration, based on flow cytometric cell counting by impedance measurements. To correct for instrumentand sample-dependent counting loss due to random coincidences, dilution series are prepared. The reference quantity value of the cell concentration is derived by extrapolation to vanishing volume fraction of the sample in the measurement suspension. Typically, for erythrocyte and leucocyte concentrations respective uncertainties of approximately 0.75% and 2% are reached. Future developments concern the extension of the procedures validated for erythrocyte and leucocyte counting by including immunological staining and microscopic techniques.




#### List of reference measurement methods/procedures

This file was created on 27 April 2018 from the JCTLM-DB website (<a href="https://www.bipm.org/ictlm/">https://www.bipm.org/ictlm/</a>)
Your search criteria: Reference measurement methods/procedures; Analyte: thrombocyte; Analyte category: -; Matrix category: -

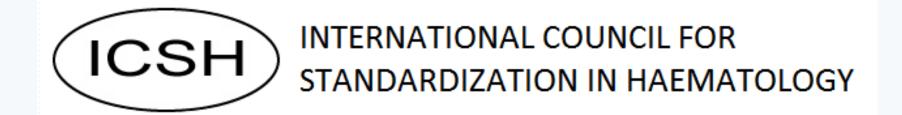
| in whole blood                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ting                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| fresh whole blood                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Flow cytometry, cell differentiation by fluorescence detection<br>of antibody stained platelets and light scattering, coincidence<br>correction by dilution series                                                                                                                                                                                                                                                                          |
| Particle concentration                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 30 nl <sup>-1</sup> to 1500 nl <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 % relative                                                                                                                                                                                                                                                                                                                                                                                                                               |
| J. Lab. Med., 2012, 36(1), 25-35<br>German National Standard DIN 58932-5                                                                                                                                                                                                                                                                                                                                                                    |
| Validation of the reference method described in DIN 58932-5 is                                                                                                                                                                                                                                                                                                                                                                              |
| Procedures used to derive the thrombocyte concentration by determining the platelet / erythrocyte ratio (Am. J. Clin. Pathol., 2001, 115, 480-484 and references therein) are not suited as primary reference procedure, since coincidence correction has not been proved to yield correct results for particle subpopulations exhibiting dramatically different concentrations (e.g. 10 platelets / nl compared to 4000 erythrocytes / nl) |
| GSPOWING SO                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ting (for lower particle concentration)                                                                                                                                                                                                                                                                                                                                                                                                     |
| fresh whole blood                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Flow cytometry, cell differentiation by fluorescence detection<br>of antibody stained platelets and light scattering, coincidence<br>correction by dilution series                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Particle concentration                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Particle concentration 0 nl <sup>-1</sup> to 30 nl <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0 ni <sup>-1</sup> to 30 ni <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## UKNEQAS PH Reference Lab Data (2001 – 2019) With and Without Coincidence Correction at 1:1000 final dilution

N = 480 (160 in triplicate) Platelet counts  $1.4 - 738 \times 10^9/L$ RBC counts  $1.83-5.75 \times 10^12/L$  N = 90 (30 in triplicate) Platelet counts  $4 - 50 \times 10^9/L$ RBC counts 2.04-3.98 x10^12/L



Corrected Platelet count (x10^9/L)


## **ICSH Platelet Counting Reference Method – Ongoing work**

Reference Method papers sent to JCTLM for feedback/approval?

 Update ICSH method to be compliant with new ISO standard and after JCTLM feedback

Attend JCTLM meeting in Paris in December

Possible comparison with the PTB method?



### ICSH & JCTLM - In Summary

- Traceability in laboratory medicine is a requirement of the IVD Regulation
- JCTLM has been established to provide global support to IVD manufacturers and regulators on traceability in lab medicine
- Currently there are very few haematology entries in the JCTLM database
- ICSH is the organization producing standards and guidelines in Laboratory Haematology
- ICSH and JCTLM are collaborating on Haematology Projects
- ICSH has been accepted as an Executive Member of JCTLM
- Dr Paul Harrison is the ICSH Liaison Officer to JCTLM



## INTERNATIONAL COUNCIL FOR STANDARDIZATION IN HAEMATOLOGY



UNIVERSITY<sup>OF</sup> BIRMINGHAM

Sam Machin Terry Fawcett



Ian Young
Gary Myers