CIRME

Università degli Studi di Milano

Centre for Metrological Traceability in Laboratory Medicine (CIRME)

Director: Prof. Mauro Panteghini

site: http://users.unimi.it/cirme

Importance of measurement uncertainty estimate in medical laboratories

> Federica Braga Research Centre for Metrological Traceability in Laboratory Medicine (CIRME)

Accurate Results for Patient Care Workshop 2019 A JCTLM Members' and Stakeholders' meeting

2-3 December 2019, BIPM

CERTAINTY IS AN ILLUSION

Medicine is a science of uncertainty and an art of probability.

William Osler

MEASUREMENT UNCERTAINTY (MU) DEFINITION

Parameter characterizing the dispersion of the quantity values being attributed to a measurand

quantity value

CIRME

The value of the measurand is assumed to lie within the interval x - u to x + u units, with a stated level of confidence.

UNIVERSITÀ DEGLI STUDI DI MILANO

[International Vocabulary of Metrology Basic and general concepts and associated terms (VIM). 3rd ed. 2012]

"...In general use, the word uncertainty relates to the general concept of doubt... [however] uncertainty of measurement does not imply doubt about the validity of a measurement; on the contrary, knowledge of the uncertainty implies increased confidence in the validity of a measurement result... "

[Ellison SLR, Williams A, eds. (2012). Eurachem Guide: Quantifying Uncertainty in Analytical Measurement, Eurachem, 3rd ed.]

If I measure my uncertainty of measurement it is no longer an uncertainty. It is now the confidence limit within which the result will fall.

Laboratory users (i.e., doctors and patients) expect laboratory results to be equivalent and interpreted in a reliable and consistent manner

STANDARDIZATION

to achieve metrological traceability of patient results to higher-order references

Unbroken traceability chain

Definition of higher order references to implement the appropriate trueness transfer process to commercial calibrators and patient results

CIRME

Università degli Studi di Milano

Measurement uncertainty

With definition of allowable limits for clinical application of the measurements

Post-market surveillance

Survey the suitability of IVDs for clinical use and of laboratory performance in using them

To become *equivalent*, results must be traceable to higher-order references

UNIVERSITÀ DEGLI STUDI DI MILANO

Assumption behind the *uncertainty concept*: the bias should be appropriately eliminated

for the accreditation of medical laboratories

Certainty of MU

- You must calculate MU, and many labs do
- Most labs do nothing with MU after that

www.westgard.com/mu-global-survey.htm

Università degli Studi di Milano Special Issue: Measurement Uncertainty in Medical Laboratories: Friend or Foe? Guest Editors: Federica Braga and Mauro Panteghini

Editorial Foreword Mauro Panteghini

Opinion Piece

Measurement uncertainty: Friend or foe? **Ilenia Infusino, Mauro Panteghini** Defining permissible limits for the combined uncertainty budget in the implementation of metrological traceability **Federica Braga, Mauro Panteghini** Performance specifications and six sigma theory: Clinical chemistry and industry compared **Wayne P. Oosterhuis, Michel J. Severens**

Reviews

What information on measurement uncertainty should be communicated to clinicians, and how? **Mario Plebani, Laura Sciacovelli, Daniela Bernardi, Ada Aita, Giorgia Antonelli, Andrea Padoan** The role of external quality assessment in the verification of in vitro medical diagnostics in the traceability era **Federica Braga, Sara Pasqualetti, Mauro Panteghini**

Opinion Piece

Sources and performance criteria of uncertainty of reference measurement procedures **Andrea Mosca, Renata Paleari** Deriving proper measurement uncertainty form Internal Quality Control data: An impossible mission? **Ferruccio Ceriotti**

Original Research

Measurement uncertainty in laboratory reports: A tool for improving the interpretation of test results **Andrea Padoan, Laura Sciacovelli, Ada Aita, Giorgia Antonelli, Mario Plebani** Ensuring suitable quality of clinical measurements through design **Anthony Orzechowski, Victoria Petrides, Richard Scopp** Different top-down approaches to estimate measurement uncertainty of whole blood tacrolimus mass concentration values **Raül Rigo-Bonnin, Aurora Blanco-Font, Francesca Canalias**

Short Communication

Random uncertainty of photometric determination of hemolysis index on the Abbott Architect c16000 platform Elena Aloisio, Assunta Carnevale, Sara Pasqualetti, Sarah Birindelli, Alberto Dolci, Mauro Panteghini

Volume 57, July 2018

11th International Scientific Meeting

MEASUREMENT UNCERTAINTY

IN MEDICAL LABORATORIES:

FRIEND OR FOE?

AULA MAGNA - LITA SEGRATE Via Fratelli Cervi, 93 - Segrate, Milano

How to calculate MU in laboratory

1. "Bottom-up" approach

Originally proposed by JCGM in GUM*

• Based on a comprehensive dissection of the measurement, in which each potential source of uncertainty is identified, quantified and combined to generate a combined uncertainty of the result using statistical propagation rules.

2. "Top-down" approach

• It estimates MU of laboratory results by using internal quality control data to derive the random components of uncertainty and commercial calibrator information.

Università degli Studi di Milano *Evaluation of measurement data – Guide to the expression of uncertainty in measurement (GUM). JCGM 100:2008

How to calculate MU in laboratory

1. "Bottom-up" approach

Originally proposed by JCGM in GUM
Based on a comprehensive dissection of the measurement, in which each potential source of uncertainty is identified, quantified and combined to generate a combined uncertainty of the result using statistical propagation rules.

2. "Top-down" approach

• It estimates MU of laboratory results by using internal quality control data to derive the random components of uncertainty and commercial calibrator information.

"BOTTOM-UP" APPROACH

DI MILANO

Infusino I, Schumann G, Ceriotti F, Panteghini M. CCLM 2010;48:301

Example of uncertainty budget for ALT reference measurement procedure

DI MILANO

EXAMPLE: CALCULATION OF COMBINED MU FOR ALT MEASUREMENT WITH IFCC REFERENCE PROCEDURE

Parameter	Declared uncertainty		Reference	Distribution of uncertainty	Type of uncertainty	Standard uncertainty	Coefficient of sensitivity	Pro		Relative standard uncertainty
wavelenght	0,1	nm	manufacturer's specification	rectangular	В	0,06	0,14	1	nm	0,01
absorbance	0,3	%	manufacturer's specification	rectangular	В	0,17	1	1	%	0,17
pH	0,05	pH	IFCC-document	rectangular	В	0,03	0,14	0,05	pH	0,08
temperature	0,1	°C	IFCC-document	rectangular	В	0,06	4,14	1	°C	0,24
reagent concentration	1,5	%	IFCC-document	rectangular	В	0,87	0,26	1	%	0,23
lot of reagent volume fraction of	1,5	%	IFCC-document	rectangular	В	0,87	1	1	%	0,87
sample	0,4	%	data basis	rectangular	В	0,22	1	1	%	0,22
time	0,03	%	experiment	rectangular	В	0,02	1	1	%	0,02
evaporation	0,1	%	experiment	rectangular	В	0,06	1	1	%	0,06
aging of specimen	0,5	%	IFCC-document	rectangular	В	0,29	1	1	%	0,29
linearity	0,6	%	experiment	normal	В	0,30	1	1	%	0,30
mean of the means	0.8	U/L	result of the RMV investigation	normal	A	0,40	1	1	U/L	0,40

Combined standard uncertainty = square root of the sum of the variances (calculated from the standard uncertainty components)

 $[u_c]^2 = u(wl)^2 + u(abs)^2 + u(pH)^2 + u(temp)^2 + u(reag)^2 + u(lot)^2 + u(vol)^2 + u(time)^2 + u(evap)^2 + u(aging)^2 + u(lin)^2 + u(mean)^2 = 1.3$ $[u_c] = 1.14 \%$

The appropriate coverage factor should be applied to give an expanded uncertainty (U): $U = k \ge u_c$. The choice of the factor k is based on the desired level of confidence:

 $U(k=1.96) = \pm 2.23\%$

How to calculate MU in laboratory

1. "Bottom-up" approach

Originally proposed by JCGM in GUM

• Based on a comprehensive dissection of the measurement, in which each potential source of uncertainty is identified, quantified and combined to generate a combined uncertainty of the result using statistical propagation rules.

2. "Top-down" approach

• It estimates MU of laboratory results by using internal quality control data to derive the random components of uncertainty and commercial calibrator information.

SOURCES OF MU WITH THE 'TOP-DOWN' APPROACH

MU must be defined across the entire traceability chain,

→ starting with the provider of reference materials,
 → extending through the IVD manufacturers and
 their processes for assignment of calibrator values,
 and

→ ultimately to the final result reported to clinicians by end users (i.e. clinical laboratories).

Patient result

UNIVERSITÀ DEGLI STUDI

DI MILANO

* Although independent in the tasks, their performances contribute together to the total MU budget

[Braga F, Panteghini M. Clin Biochem 2018;57:7]

Adapted from Infusino I, Panteghini M. Clin Biochem 2018;57:3

TRACEABILITY CHAINS AVAILABLE FOR IVD MANUFACTURERS FOR PLASMA GLUCOSE

UNIVERSITÀ DEGLI STUDI

DI MILANO

Braga F & Panteghini M, Clin Chim Acta 2014;432:55 Pasqualetti S, Braga F, Panteghini M, Clin Biochem 2017; 50:587.

Abbott Architect ND Multiconstituent calibrator 2.70% IDMS NIST SRM 965 A Beckman AU Hexokinase System calibrator ND ND NIST SRM 965 A Synchron Hexokinase Synchron multicalibrator ND ND NIST SRM 917a D Roche Cobas c Hexokinase C.f.a.s. 0.84% IDMS ND B Integra Hexokinase C.f.a.s. 0.62% IDMS ND B Siemens Advia Hexokinase C.f.a.s. 0.84% IDMS ND B Siemens Advia Hexokinase C.f.a.s. 0.84% IDMS ND B	Company Platform		Principle of commercial method	Calibrator	Declared standard uncertainty ^a	Higher-order reference employed		Type of traceability chain used ^b	Combined standard uncertainty associated with the used chain	
Abbott Architect ND Multiconstituent calibrator 2.70% IDMS NIST SRM 965 A Beckman AU Hexokinase System calibrator ND ND NIST SRM 965 A Synchron Hexokinase Synchron multicalibrator ND ND NIST SRM 917a D Roche Cobas c Hexokinase C.f.a.s. 0.84% IDMS ND B Integra Hexokinase C.f.a.s. 0.62% IDMS ND B Modular Hexokinase C.f.a.s. 0.84% IDMS ND B Siemens Advia Hexokinase C.f.a.s. 0.84% IDMS ND B Siemens Advia Hexokinase C.f.a.s. 0.84% IDMS ND B Siemens Advia Hexokinase C.f.a.s. 0.84% IDMS ND B					Method	Material				
Beckman AU Hexokinase System calibrator ND ND NIST SRM 965 A Synchron Hexokinase Synchron multicalibrator ND ND NIST SRM 917a D Roche Cobas c Hexokinase C.f.a.s. 0.84% IDMS ND B Integra Hexokinase C.f.a.s. 0.62% IDMS ND B Modular Hexokinase C.f.a.s. 0.84% IDMS ND B Siemens Advia Hexokinase Chemistry calibrator 1.30% Hexokinase NIST SRM 917a C	Abbott	Architect	ND	Multiconstituent calibrator	2.70%	IDMS	NIST SRM 965	A	1.22-1.45% ^d	
Synchron Hexokinase Synchron multicalibrator ND ND NIST SRM 917a D Roche Cobas c Hexokinase C.f.a.s. 0.84% IDMS ND B Integra Hexokinase C.f.a.s. 0.62% IDMS ND B Modular Hexokinase C.f.a.s. 0.84% IDMS ND B Siemens Advia Hexokinase C.f.a.s. 0.84% IDMS ND B Siemens Advia Hexokinase C.f.a.s. 0.84% IDMS ND B	Beckman	AU	Hexokinase	System calibrator	ND	ND	NIST SRM 965	A	1.22-1.45% ^d	
Roche Cobas c Hexokinase C.f.a.s. 0.84% IDMS ND B Integra Hexokinase C.f.a.s. 0.62% IDMS ND B Modular Hexokinase C.f.a.s. 0.62% IDMS ND B Siemens Advia Hexokinase C.f.a.s. 0.84% IDMS ND B Siemens Advia Hexokinase Chemistry calibrator 1.30% Hexokinase NIST SRM 917a C		Synchron	Hexokinase	Synchron multicalibrator	ND	ND	NIST SRM 917a	D	1.60-3.00% ^e	
Integra Modular Hexokinase C.f.a.s. 0.62% IDMS ND B Modular Hexokinase C.f.a.s. 0.84% IDMS ND B GOD C.f.a.s. 0.84% IDMS ND B Siemens Advia Hexokinase Chemistry calibrator 1.30% Hexokinase NIST SRM 917a	Roche	Cobas c	Hexokinase	C.f.a.s.	0.84%	IDMS	ND	В	1.70%	
Modular Hexokinase GOD C.f.a.s. 0.84% IDMS ND B Siemens Advia Hexokinase C.f.a.s. 0.84% IDMS ND B Columna Chemistry calibrator 1.30% Hexokinase NIST SRM 917a C		Integra	Hexokinase	C.f.a.s.	0.62%	IDMS	ND	В	1.70%	
GOD C.f.a.s. 0.84% IDMS ND B Siemens Advia Hexokinase Chemistry calibrator 1.30% Hexokinase NIST SRM 917a C		Modular	Hexokinase	C.f.a.s.	0.84%	IDMS	ND	В	1.70%	
Siemens Advia Hexokinase Chemistry calibrator 1.30% Hexokinase NIST SRM 917a C			GOD	C.f.a.s.	0.84%	IDMS	ND	В	1.70%	
COD Charlister allienter 0.000 Unrelience NUCT CDM 017- C	Siemens	Advia	Hexokinase	Chemistry calibrator	1.30%	Hexokinase	NIST SRM 917a	С	1.88-3.26% ^f	
GOD Chemistry calibrator 0.80% Hexokinase NIST SKM 917a C			GOD	Chemistry calibrator	0.80%	Hexokinase	NIST SRM 917a	с	1.88-3.26% ^f	

The quality of glucose measurement may be dependent on the type of traceability chain selected for trueness transferring, sometimes making difficult (e.g., chain C) to achieve the suitable limits for MU on clinical samples

Clinical Chemistry 65:3 473-483 (2019)

Trueness Evaluation and Verification of Interassay Agreement of 11 Serum IgA Measuring Systems: Implications for Medical Decisions

Federica Braga,^{1*} Ilenia Infusino,¹ Erika Frusciante,¹ Ferruccio Ceriotti,² and Mauro Panteghini¹

					Bias vs	· · · · · · · · · · · · · · · · · · ·	
Measuring system	Calibrator type	Stated traceability	Standard uncertainty associated with reference material, %	Calibrator standard uncertainty, % ^b	ERM-DA470k/ IFCC target value (1.8 g/L), % ^c	Method CV, % ^d	Mean combined uncertainty on patient pools, %
Architect c4000	Specific proteins multiconstituent calibrator	CRM 470	1.02	0.75 (the same for 5 levels from 1.05 to 7.00 g/L)	Not significant	1.24	3.54
AU 480	Serum protein multicalibrator 1	CRM 470	1.02	1.21-3.06 ^f (5 levels, from 0.49 to 6.22 g/L)	4.17	1.81	9.57 ⁹
Immage 800	Serum protein multicalibrator 1	CRM 470	1.02	1.25-2.22 ^f (5 levels, from 0.45 to 6.21 g/L)	7.50	2.99	16.34 ^h
Optilite	IgA calibrator	ERM-DA470k/IFCC	1.39	3.00 (1 level, 0.64 g/L)	Not significant	2.07	7.29
Cobas c702	C.f.a.s. proteins	CRM 470	1.02	0.55 (1 level, 4.02 g/L)	Not significant	1.53	3.84
Mindray BS480	Specific proteins calibrator	ERM-DA470k/IFCC	1.39	3.57-3.91 ^f (5 levels, from 0.42 to 6.30 g/L)	5.56	1.08	13.67 ⁱ
ADVIA XPT	Liquid specific protein calibrators	CRM 470	1.02	0.60-0.81 ^f (2 levels, from 0.62 to 2.49 g/L)	4.78	0.85	9.99 ^j
Dimension Vista	PROT1 CAL	CRM 470	1.02	1.77 (1 level, 2.03 g/L)	10.3	3.59	22.10
Taurus	Proteins calibrators	ERM-DA470k/IFCC	1.39	0.41-5.75 ^f (5 levels, from 0.69 to 6.94 g/L)	Not significant	1.54	5.36 ^k
ILab 650	Proteins calibrators	ERM-DA470k/IFCC	1.39	0.41-5.75 ^f (5 levels, from	Not significant	1.46	5.28 ^k

 $2* \sqrt{(u_{cal}^2 + u_{bias}^2 + u_{imp}^2)} = U$

The manufacturer's internal quality specifications to validate the calibrator traceability to higher-order references are not established on the basis of suitable APS

Abbott Diagnostics in a document released on August 2014 informed customers that the internal release specification for CAL was ±5% from the target value of NIST SRM 967a Level 1

But APS for MU of creatinine measurement on clinical samples are:

Biological variation model

- ≤0.75 x CV₁ (minimum) = <u>3.3%</u>
- $\leq 0.50 \times CV_1$ (desirable) = 2.2%
- $\leq 0.25 \times CV_1$ (optimum) = <u>1.1%</u>

And an and a second sec	SRM 967a level 1	SRM 967a Ievel 2	From MILAN APS MODEL 2
Multigent Clin Chem Calibrator lot no. 40043Y600	0.47%	0.40%	3 3% minimum
$\frac{\text{Riss}(u_{RW})}{\text{Riss}(u_{RW})}$	2.57%	0.40%	1
Relative combined standard uncertainty $[u_c = (u_{bias}^2 + u_{Rw}^2)^{0.5}]$	3.60%	7.06%	2.2% desirable
Expanded uncertainty ($U = k \times u_c$)	7.20%	<mark>14.12</mark> %	<u>1.1%</u> optimum

Our study shows that this validation criterion for traceability of different CAL lots adopted by the manufacturer is however too large to comply with the U goal for creatinine measurements in biological samples with an acceptable confidence.

Letter to the Editor

The calibrator value assignment protocol of the Abbott enzymatic creatinine assay is inadequate for ensuring suitable quality of serum measurements

Pasqualetti S et al. CCA 2015;450:125

Beckman Coulter in their technical bulletin released on 2011 informed customers that the internal release specification for CAL was ±10% from the target value of WHO IS 03/178.

Accuracy to WHOFifty-four (54) measurements were made using multiple reagent pack and calibrator lots on theInternationalAccess 2 Immunoassay system. The mean Folate assay result was accurate within ±10% of theStandard 03/178WHO International Standard 03/178 assigned value of 5.33 ng/mL.

N	lean	Tar	get	Diffe	rence	Two-Sided 95% CL ^a		0/_
(ng/mL)	(nmol/L)	(ng/mL)	(nmol/L)	(ng/mL)	(nmol/L)	(ng/mL)	(nmol/L)	Difference
5.05	11.44	5.33	12.08	-0.28	-0.063	4.44 - 5.65	10.06 - 12.08	-5.3%

Letter to the Editor

Simona Ferraro*, Andrew W. Lyon, Federica Braga and Mauro Panteghini

Definition of analytical quality specifications for serum total folate measurements using a simulation outcome-based model

CIRME

Università degli Studi di Milano

Plots of the fraction of population misclassification rate [in terms of false negatives] as a function of assay bias and imprecision at mean folate of 4.0 μ g/L

Table 3. Mean relative combined measurement uncertainty (expanded by a coverage factor of 2) on patient pools for each evaluated totalfolate measuring system.

Measuring	Calibrator type	Calibrator standard	Bias vs WHO IS 03/178	Method CV, % ^c	Mean combined
system		uncertainty, %ª	target value (5.33 μg/L),		uncertainty on patient
			% 0 b		pools, % ^d
Alinity i	Folate calibrators	0.33-0.23 ^e (5 levels, from	5.07	3.31	12.12 ^f
		1.5 to 20.0 µg/L)			
Dxl Access	Access Folate	2.02-1.69 ^e (5 levels, from	9.01	1.60	18.61 ^g
	calibrators	1.24 to 24.8 μg/L)			
Cobas e801	CalSet Folate	6.31-1.45 (2 levels, 1.75	-8.26	3.58	18.24 ^h
		and 15.8 µg/L)	101		
Advia Centaur	FOL calibrators	5.25-2.75 (2 levels, 2.7	8.26	2.05	17.89 ⁱ
		and 16.5 µg/L)	ľ O _b		

^aExcept for Advia Centaur, not combined with uncertainty of corresponding higher-order reference material. ^b Data from this study.

^c The mean imprecision of measuring systems was obtained from duplicate measurements of 6 clinical sample pools with serum total concentrations between 3.0 and 7.0 μ g/L.

^d Expanded by multiplying the standard uncertainty by a coverage factor of 2 (95.45% level of confidence). For suitable clinical application of serum total folate measurements, the expanded measurement uncertainty at the patient sample level should remain within $\pm 5.0\%$.

te

Università degli Studi di Milano [Braga F et al., submitted]

Infusino I, Braga F, Mozzi R, Valente C, Panteghini M Clinica Chimica Acta 412 (2011) 791–792

ELSEVIER

Contents lists available at ScienceDirect

Clinica Chimica Acta

journal homepage: www.elsevier.com/locate/clinchim

Letter to the Editor

Is the accuracy of serum albumin measurements suitable for clinical application of the test?

Table 1

Relative standard uncertainties for each contributing factor in determination of serum albumin with Roche Tina-quant immunoturbidimetric assay on Cobas c 501 platform. Data obtained by measurements of ERM-DA 470k/IFCC Human Serum Proteins reference material (certified value \pm expanded uncertainty, 37.2 g/L \pm 1.2 g/L).

Factor	Result
Imprecision (u_{Rw})	1.88%
Bias (u _{bias})	6.42%
Relative combined standard uncertainty $[u_c = (u_{bias}^2 + u_{Rw}^2)^{0.5}]$	6.69%

CIRME

2017 State of Harmonization of Serum Albumin Measurements

[Bachmann LR et al. Clin Chem 2017;63:770]

CIRME

HbA1c reference system and associated combined standard uncertainty

[Braga F & Panteghini M, Clin Chem Lab Med 2013;51:1719]

Federica Braga* and Mauro Panteghini Standardization and analytical goals for glycated hemoglobin measurement

Clin Chem Lab Med 2013;51:1719-26

Further advances are needed to:
1. reduce uncertainty associated with higher-order metrological references (reference materials and procedures)
2. decrease the imprecision (i.e. random

uncertainty) of commercial HbA1c

assays

Letter to the Editor

Dominika Szőke*, Assunta Carnevale, Sara Pasqualetti, Federica Braga, Renata Paleari and Mauro Panteghini

More on the accuracy of the Architect enzymatic assay for hemoglobin A_{1c} and its traceability to the IFCC reference system

MU is useful for a number of reasons

- Giving objective information about quality of individual laboratory performance
- Serving as management tool for the clinical laboratory and IVD manufacturers, forcing them to investigate and eventually fix the identified problem
- Helping those manufacturers that produce superior products and measuring systems to demonstrate the superiority of those products
- Identifying analytes that need analytical improvement for their clinical use and ask IVD manufacturers to work for improving the quality of assay performance
- Abandonment by users (and consequently by industry) of assays with demonstrated insufficient quality

Thank you for your kind attention!

F. Braga

Università degli Studi di Milano Centro per la Riferibilità Metrologica in Medicina di Laboratorio (CIRME)

https://sites.unimi.it/cirme/

Ospedale Luigi Sacco Polo UNIVERSITARIO

Sistema Socio Sanitario

Regione Lombardia

ASST Fatebenefratelli Sacco

Dipartimento di Medicina di Laboratorio **UOC Patologia Clinica**

UNIVERSITÀ DEGLI STUDI DI MILANO