

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin National Metrology Institute

Role of metals and metal containing biomolecules in neurodegenerative diseases such as Alzheimer's disease (15HLT02 ReMiND)

C. Swart, C. Frank, G. Köllensperger, E. del Castillo

Metrological traceability

Property of a measurement result whereby the result can be related to a reference through a documented **unbroken chain of calibrations**, each contributing to the measurement uncertainty

Advantages of results traceable to the SI

- Comparability over a longer period of time
- Comparability even between laboratories and different measurement procedures
- Enable establishing universal cut-off values
- Results not depending on one calibrator

PB Traceability in laboratory medicine

PB Requirements and challenges

Reference measurement procedures

- Only for a few peptides and proteins available yet
- Exact definition of the analyte
- Mainly immune based methods ⇒ rather harmonisation then standardisation

and/or

Certified reference materials

- Only very few commercially available
- Clear definition of the important quantity (total content, specific modifications,...)
- ⇒ Alzheimer's Association Global Biomarker Standardization Consortium (GBSC) for QC; IFCC working group CSF for standardisation of β amyoid₁₋₄₂ for development of RMP and CRM (J. Kuhlmann et al., Clin. Chim. Acta 2017, 467, 27-33)

Physiological function unknown, formation of plaques in the brain during aging, increased in Alzheimer patients

τ-protein

Stabilisation of microtubules in neurons, formation of tangles in the brain during aging, increased in Alzheimer patients

			N	Median	Ref	normal	borderline	pathological	
"T ne rel	Aß1-42 he unacce	Kit 1 ptabl	39 e lar	517 ge variatio	med. 500 n of the lab	18 oratory o	11 wn cut-off va	10 alues leads to f	alse
	gative and evance of	d false demo	entia	itive diagr marker ar	nosti <mark>c inter</mark> p alysis. "	oretations	. This ₀ quest	ions the praction	al
(R	eiber_et al tot Tau	, J Al Kit 1	zheir 42	ners Dis P 442	arkinsonisr med. 450	n 2014, 4 21	(<mark>3))</mark> 6	12	
	tot Tau	Kit 2	8	501	466	4	2	2	
	P Tau	Kit 1	40	33		40	0	0	

All concentrations given in ng/L

PB Potential markers for Alzheimer's disease

Isotope Dilution (ID)

sample x/ reference z

 $\land x$

blend bx/bz

M

- Double (inverse) isotope dilution
 no spike calibration
 no K factors needed (in most cases)
- Exact matching isotope ratio of blends near unity equal blend amounts no dead time, background, ... correction both blends share the same "fate"

05.12.2017

SERS based immuno assay for quantification of T-tau

05.12.2017

PB Determination of T-tau and P-tau

Preliminary tests:

Immunohistopathological staining of tau and phospho-tau in mouse brain DG: Dentate Gyrus

- Biochemical evaluation of antibodies
- Testing of different protein extraction and immunopurification methods

PB Determination of T-tau and P-tau

To many peptides in brain homogenate to allow identification of tau derived peptides

P-enrichement via

Al-silicate spin column (75 % recovery, S-depletion 10 %) GdO-nanoparticles (60-80 % recovery, S-depletion 20 %)

CAPEB Quantification of β-amyloid using amino acid analysis (AAA)

β-Amyloid (1-40) DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV

β-Amyloid (1-42) DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA

PB Quantification of β-amyloid using AAA

Sodium sulfate to label biomass to obtain biomass highly enriched in ³⁴S

> 95% ³⁴S Met sulf and Cys Ac⁻ For absolute protein quantification via ICP-MS

PB Total metal content and isotope ratios

Changes in biological pathways already early on in the course of disease can lead to changes in isotope ratios of elements involved

 \Rightarrow Sensitive markers as early-warning system

- Metals suspected to facilitate aggregation of β-amyloid
- Leasions in the brain caused by free and/or toxic metal ions
- Lack of essential elements can lead to brain malfunction

First results for CSF (Randox L2)

Element	Conc. / ng/g
Cu	1.3 ± 0.04
Zn	30.4 ± 0.3

Determined with double IDMS after acidic microwave digestion and detection with ICP-MS

PB Total metal content

Water reference material/ QC sample

Instrumental/procedural limits of quantification

Sector field ICP-MS

Advantage:

High resolution of interferences High sensitivity at low resolution

Disadvantage:

Large sample volumes required

 \Rightarrow Not available for CSF samples

PB Total metal content in CSF

Whole blood Fe isotope ratios reflect iron status

Serum Cu isotope ratio indicates liver problems

- Individuals with anemia of chronic disease show abberant results
- Individuals with heochromatosis show abberant results

Van Heghe et al, Metallomics, 5, 1503-1509, 2013

- Link between ⁶⁵Cu/⁶³Cu & severity of condition
 - Successful ⁶⁵Cu/⁶³Cu follow-up after liver transplantation

Costas-Rodriguez et al, Metallomics, 7,491-498, 2015

PB Traceable quantification of metalloproteins

Key Analytical Challenges

Analytical challenges

- Low concentrations of metals/ biomolecules in serum, CSF and brain tissues
- Very small samples (low µL)
- Complex matrices
- Potential species transformation?
- Unavailable well characterised calibrants/spikes

Metrological approach

- Miniaturised high resolution separation techniques (µl/nl flow rates and sample injection) and minimised interaction of the biomolecules with surfaces
 Interference-reducing ICP-MS (e.g. QQQICP-MS)
- Strategies for the production and characterisation of calibrants/spikes
- Isotope dilution calibration

PB Traceable quantification of metalloproteins

Species specific IDMS

Exchange of natural metal ions in proteins: SOD1, CER, ALB, TRF, FER

Exchange of metal containing prosthetic groups

dialysis

Recombinant production of isotopically enriched proteins and peptides: FER, P-peptides

PB Quantification of metalloproteins in CSF

HBA₀

05.12.2017

Tau-transgenic mice samples (Charité)

- L66 transgenic mice overexpress longest human tau isoform (441 AA)
- Htau40 including 2 aggregation promoting mutations, P301S & G335D

Melis, V., et al. Cellular and molecular life sciences 72.11 (2015): 2199-2222.

β-amyloid overexpressing mice samples (University of Aberdeen)

- Stakeholder workshop at kick-off meeting 2016
- Workshop at Metallomics 2017 with invited speakers
- Presentations (oral / poster) at conferences a.o.: Metallomics 2017
 Emerging Analytical Professionals Conference 2017
 14th International Conference on Nanosciences and Nanotechnologies
- Presentation at Euramet TC-MC meeting

Coordination, lead WP1 Determination of proteins using ICP-MS and Raman

Lead WP 3 Quantification of metal containing biomolecules

Lead WP4 (Impact) Quantification of potential biomarkers, provision of animal models

Multielemental and SBAM isotopic analysis Quantification of metal and provision of animal models

Quantification of metals and metalloproteins

Isotopic analysis in metalloproteins

- > INSTAND e.V.
- Sigma-Aldrich
- McGill University
- > NIST
- Biobank of the Hertie Institute for Brain research
- > NIS
- NIM China

15HLT02 ReMiND has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

