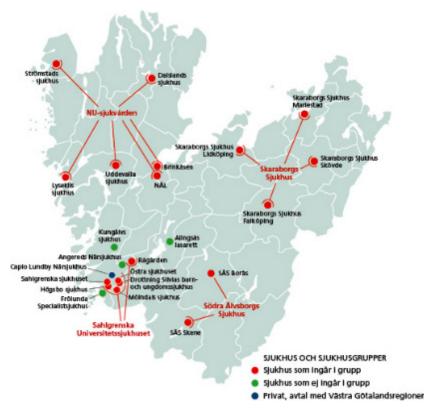
Reference measurement procedure for Aβ1-42 in CSF



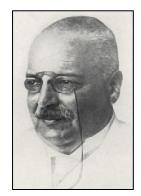
"Highest level of expertise and a firm focus on the patient" Sahlgrenska University Hospital

On the health care map

- One of the largest hospitals in Europe
- A specialist hospital for the Västra Götaland Region
- Seven national specialised medical care assignments
- Pioneering research conducted in collaboration with the Sahlgrenska Academy, Chalmers University of Technology, industry and other bodies

One single day at the hospital

- 30 deliveries
- 550 emergency visits
- 3 400 outpatient visits
- 17 000 laboratory analyses


Clinical Chemistry Laboratory

- This laboratory is accredited in accordance with the International Standards
 - ISO 15189:2012 Medical laboratories -Requirements for quality and competence
 - ISO 22870:2006 Point-of-care testing -Requirements for quality and competence
- First hospital laboratory in Sweden to be accredited (1992).

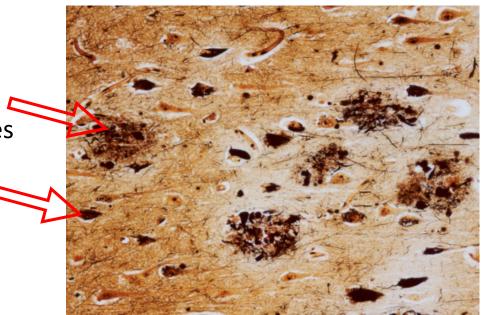
Alzheimer's disease (AD)

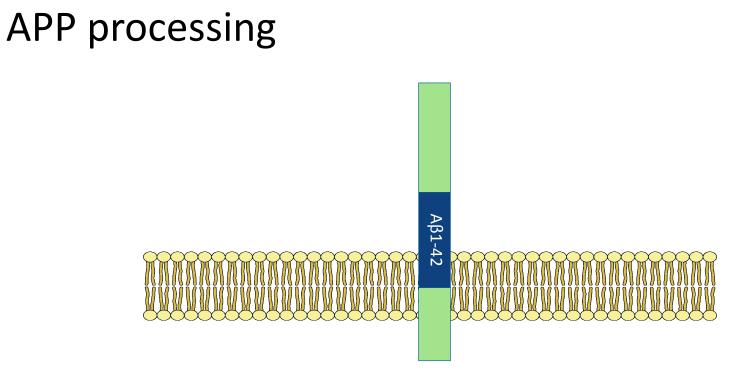
- The most common cause of dementia
 - Accounts for 60-80% of all cases of dementia
- > 40 million people worldwide affected
- First described in 1906 by Alois Alzheimer

Alois Alzheimer Image: public domain

Alois Alzheimer's patient Auguste Deter in 1902 Image: public domain

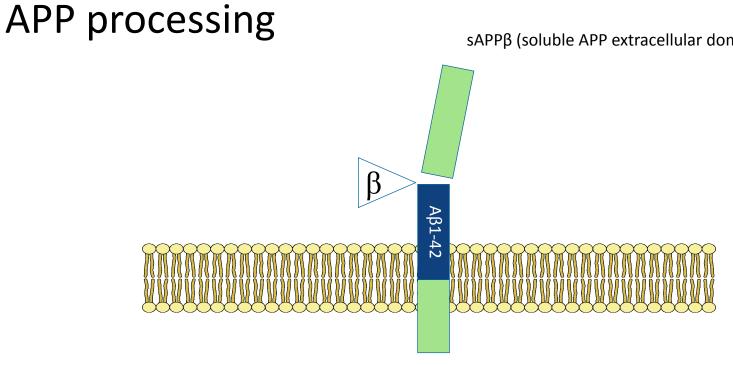
Characteristic clinical symptoms


- Impaired episodic memory
- aphasia
 - disturbance in formulation and comprehension of language
- apraxia
 - loss of the ability to execute or carry out learned purposeful movements


agnosia

- loss of ability to recognize objects, persons, sounds, shapes, or smells
- general cognitive symptoms
 - impaired judgment, decisionmaking and orientation

Neuropathology


- Deposits of extracellular plaques
 - mainly Aβ peptides
- Intracellular neurofibrillary tangles
 - phosphorylated tau protein

APP

- Aβ peptides natural metabolic products of the transmembrane glycoprotein APP.
- Generated through the amyloidogenic pathway by consecutive actions of β & γ -secretase.

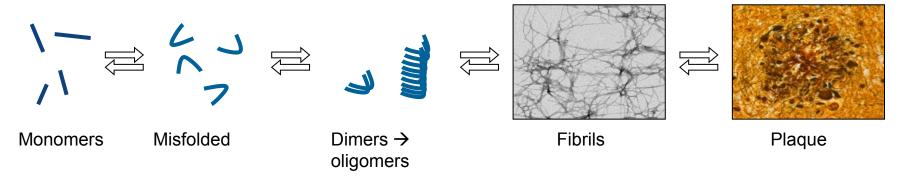


sAPPβ (soluble APP extracellular domain Beta)

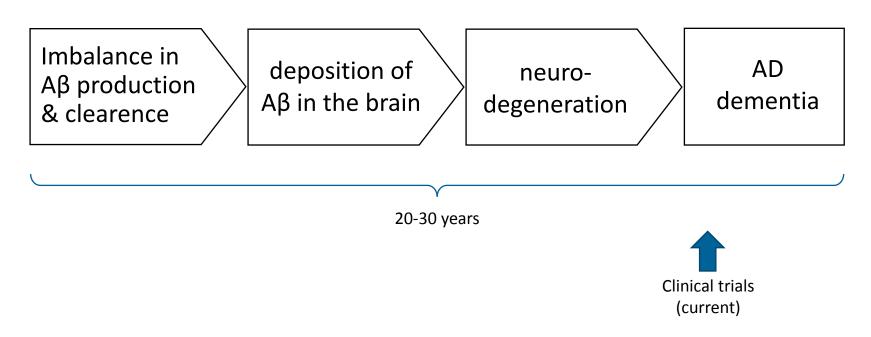
APP

- Aβ peptides natural metabolic products of the transmembrane glycoprotein APP. •
- Generated through the amyloidogenic pathway by consecutive actions of β & γ -secretase. ٠

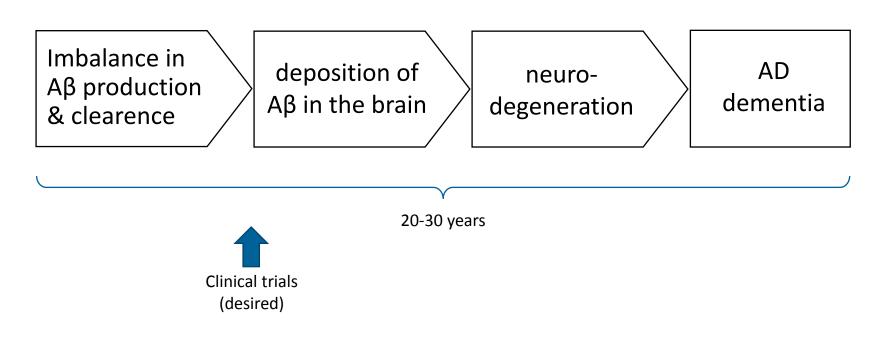
APP processing



ΔTEβ (amyloid precursor protein intracellular domain)


- Aβ peptides natural metabolic products of the transmembrane glycoprotein APP.
- Generated through the amyloidogenic pathway by consecutive actions of β & γ -secretase.

Aβ misfolding and oligomerisation


- A conformational change of Aβ into high β-sheet content is believed to increase its propensity to self-aggregate.
- Which of these forms that are neurotoxic is still uncertain, but
 - levels of soluble Aβ dimers and oligomers has been shown to correlate with clinical symptoms and synaptic loss
 - Fibrils have been shown to induce neuronal loss

The amyloid cascade hypothesis

The amyloid cascade hypothesis

Diagnosis

- Medical history, cognitive tests and mental state exams
- Post mortem neuropathological examination required for definitive diagnosis
- Ongoing process of including biomarkers
 - The International Working Group (IWG)-2 criteria for typical AD now include
 - increased tracer retention on amyloid PET
 - decreased $A\beta_{1-42}$ together with increased tau in CSF

Biomarkers

Туре	Biomarker	r Change in AD		
CSF	$A\beta_{1-42}$	\downarrow concentration		
CSF	$A\beta_{1-42}/A\beta_{1-40}$ ratio	↓ ratio		
CSF	T-tau	↑ concentration		
CSF	P-tau	\uparrow concentration		
ImagingStructural MRIImagingFunctional MRI		↓ volume		
		↓ functional connectivity		
Imaging	FDG-PET	↓ glucose metabolism		
ImagingAmyloid PETImagingTau PET		$\uparrow A\beta$ retention		
		↑ intracellular tau		

Туре	Biomarker	Change in AD	
CSF	Αβ ₁₋₄₂	↓ concentration	

- ~50% lower concentration of A β_{1-42} in CSF in AD patients compared to healthy controls
- Peptide accumulation in plaques in the brain \rightarrow less in CSF

Туре	Biomarker	Change in AD
CSF	$A\beta_{1-42}$	↓ concentration
CSF	T-tau	\uparrow concentration
CSF	P-tau	\uparrow concentration

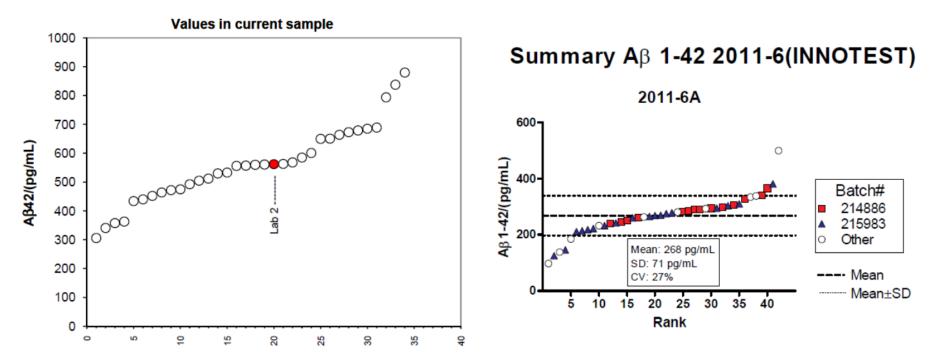
Combined with the microtubule-stabilizing tau protein \rightarrow high diagnostic accuracy of AD

- t-tau cortical axonal degeneration
- p-tau tangle pathology

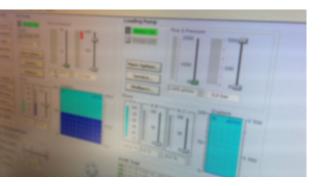
Туре	Biomarker	Change in AD
CSF	$A\beta_{1-42}$	↓ concentration
CSF	T-tau	↑ concentration
CSF	P-tau	↑ concentration
CSF	$A\beta_{1-42}/A\beta_{1-40}$ ratio	↓ ratio

Low & high A β producers

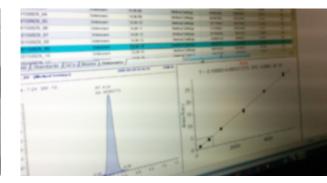
- When using only $A\beta_{1-42}$
 - Low producers might be false positive for AD
 - High producers might be false negative for AD
- Using the ratio of $A\beta_{1-42}/A\beta_{1-40}$ improve diagnostic accuracy
 - $A\beta_{1-40}$ levels in CSF are realatively unchanged in AD compared to controls


Schoonenboom, N. S. et al. Ann Neurol. 2005;58(1):139-42. Wiltfang J et al. J Neurochem. 2007;101(4):1053-9. Hansson O et al. Dement Geriatr Cogn Disord. 2007;23(5):316-20.

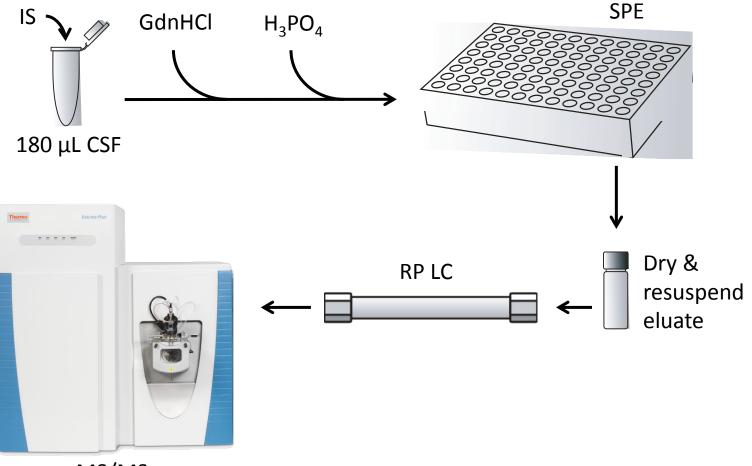
Treatment

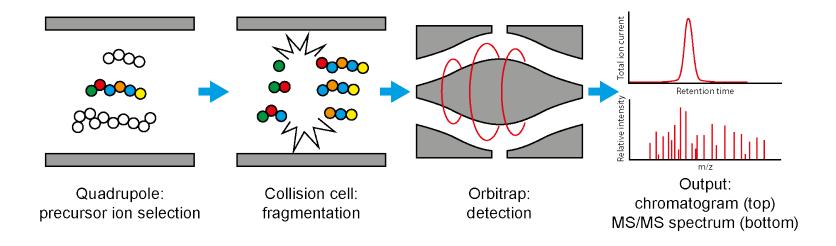

- Existing drugs temporarily improve symptoms
- There is no therapy that slows or stops the progression of AD
- Treatment strategies currently evaluated
 - Active immunotherapy: immunization with Aβ peptides
 - Passive immunotherapy: treatment with anti-Aβ antibodies
 - Inhibition of the β-secretase BACE1

BACE1 = *beta-site amyloid precursor protein cleaving enzyme 1*


AD QC program

Rank




Methods & results

MS/MS

Quadrupole-orbitrap hybrid MS - parallel reaction monitoring (PRM)

Round Robin study

- Perform an inter-laboratory study involving other laboratories using similar LC-MS methods
- Determine the inter-laboratory variation using these methods
- Examine if these methods are suitable to set the level of a certified reference material.

Alzheimer's

Alzheimer's & Dementia 12 (2016) 55-59

Featured Article

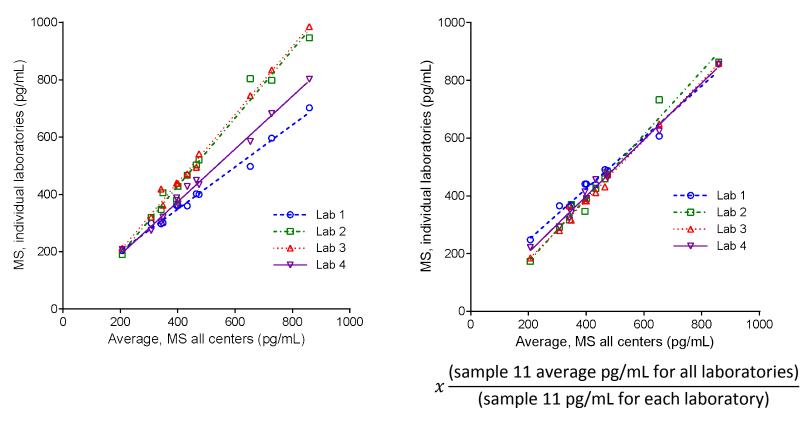
Round robin test on quantification of amyloid-β 1–42 in cerebrospinal fluid by mass spectrometry

Josef Pannee^a,*, Johan Gobom^a, Leslie M. Shaw^b, Magdalena Korecka^b, Erin E. Chambers^c, Mary Lame^c, Rand Jenkins^d, William Mylott^d, Maria C. Carrillo^e, Ingrid Zegers^f, Henrik Zetterberg^{a,g}, Kaj Blennow^a, Erik Portelius^a

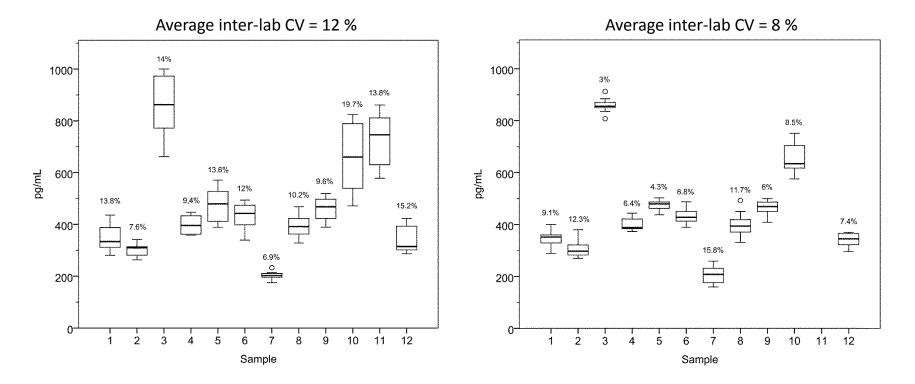
^aDepartment of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Salgrenska Academy, University of Gothenburg, Mölndal, Sweden ^bDepartment of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ^cWaters Corporation, Milford, MA, USA ^dChromatographic Sciences Department, PPD Laboratories, Richmond, VA, USA ^cMedical & Scientific Relations Division, Alcheimer's Association, Chicago, IL, USA ^fInstitute for Reference Materials and Measurements (IRMM), Joint Research Centre, European Commission, Geel, Belgium ^sUCL Institute of Neurology. London, UK

Abstract

Introduction: Cerebrospinal fluid (CSF) amyloid-β 1–42 (Aβ₄₂) is an important biomarker for Alzheimer's disease, both in diagnostics and to monitor disease-modifying therapies. However, there is a great need for standardization of methods used for quantification. To overcome problems associated with immunoassays, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a critical orthogonal alternative.


 $\label{eq:methods: We compared results for CSFA\beta_{42} quantification in a round robin study performed in four laboratories using similar sample preparation methods and LC-MS instrumentation.$

Procedures for participating laboratories


Procedure	Waters	PPD	U. Penn.	U. Got.
IS concentration, ng/mL	1	2	2	1.6
CSF volume, µL	200	100	250	200
Calbrator matrix	aCSF with 5% rat plasma	aCSF with 4 mg/mL HSA + IgG, glucose	aCSF with 4 mg/mL BSA	Human CSF
LC System	ACQUITY, 1D	ACQUITY; 2D trapping/ eluting	ACQUITY; 2D trapping/ eluting	Accela 1250
Dilution (injection)	50 μ L + 25 μ L H ₂ O (10 μ L)	50 μL + 50 μL H ₂ O (30 μL)	50 μ L + 50 μ L H ₂ O (50 μ L)	None. Dried eluate resuspended in 25 μL 79:20:1 H ₂ O/ACN/ NH ₄ OH (20 μL)
LC mobile phases	A: 0.3% NH ₄ OH B: 90:10 ACN/MP A	A: 0.3% NH ₄ OH B: 90:5:5 ACN/TFE/H ₂ O	A: 0.1% NH ₄ OH B: 75:25:5 ACN/MeOH/ TFE	A: 0.1% NH ₄ OH, 5% ACN B: 0.03% NH ₄ OH, 95% ACN
Column	Waters BEH 300 2.1 × 150 mm, 1.7 μm, 50°C	Waters BEH 300 2.1 × 150 mm, 1.7 μm, 50°C	Waters BEH 300 2.1 × 50 mm, 1.7 μm, 60°C	Thermo ProSwift RP-4H $1 \times 250 \text{ mm}, 50^{\circ}\text{C}$
Flow rate, µL/min	200	300	200	300
MS	Waters Xevo TQ-S	Waters Xevo TQ-S	ABSciex API 5000	Thermo TSQ Vantage
Transitions, m/z	1129.0→1078.5	1129.0→1078.5	1129.0→1078.5	$1129.58 \rightarrow 1054.03, 1078.79, \\1107.06$
Run time	8.5 minutes	8.5 minutes	12 minutes	14 minutes

Twelve pools of human CSF were analyzed at four different laboratories.

Using sample 11 as a reference, the measurements for the other samples were adjusted

Interlab CV%

Conclusions

- A good agreement was seen between the laboratories, with an average inter-laboratory CV of 12.2%
 - despite the different methods and instrumentations used
- Using a common reference sample significantly decreased the average inter-laboratory CV (to 8.3%)

Clinical Chemistry 60:7 987–994 (2014) **Proteomics and Protein Markers**

Mass Spectrometry–Based Candidate Reference Measurement Procedure for Quantification of Amyloid- β in Cerebrospinal Fluid

Andreas Leinenbach,¹⁺ Josef Pannee,²⁺ Thomas Dülffer,¹ Andreas Huber,¹ Tobias Bittner,¹ Ulf Andreasson,² Johan Gobom,² Henrik Zetterberg,^{2,3} Uwe Kobold,¹ Erik Portelius,² and Kaj Blennow²⁺ on behalf of the

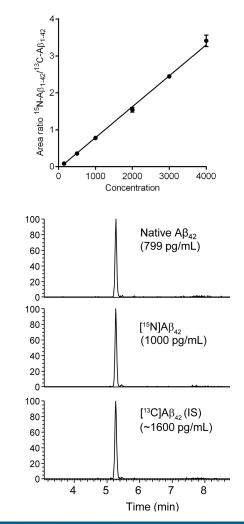
IFCC Scientific Division Working Group on CSF proteins

			_	
Isotope dilution mass spectrometry methods for amyloid beta 1-42 in other				Ι
	> 2D-UPLC-tandem mass spectrometric method for analysis of amyloid beta 1-42 in human CSF			
	Applicable matrice(s)	frozen human cerebrospinal fluid (CSF)		A
BACKGROUND: Cer	Full description of technique(s)	Liquid chromatography tandem mass spectrometry, solid phase extraction	$A\beta_4$	
$(A\beta_{42})$ is a well- ϵ	Quantity	Mass concentration		
disease. Several in	Applicable range	100 pg/mL to 3000 pg/mL	nical	
in absolute concer	Expected uncertainty (level of confidence 95%)	14.3 pg/mL to 355.2 pg/mL		
interference, there	Reference(s)	Qualification of a surrogate matrix-based absolute		
parisons and the with the IFCC W		quantification method for Amyloid β_{42} in human cerebrospinal fluid using 2D UPLC-Tandem Mass Spectrometry, <u>Korecka M et al., <i>Journal of Alzheimer's</i> <i>Disease (JAD)</i>, 2014, 41(2), 441-451</u>	F) ⁴ -ami	
developed a cand dure (RMP) for A		Clinical comparison with immunoassay as cited in: Korecka M et al., JAD, 2014, 41 (2), 441-451 Round robin test on quantification of amyloid-β-1-42 in cerebrospinal fluid by mass spectrometry, <u>Pannee J et</u> al., Alzheimer's and Dementia. 2016, 12 (1), 55-59	mer 1al c laqu	
метнорs: The an	Comment(s)	The reference measurement method, C12RMP1, for	al se	
was based on se		quantification of Aβ42 in cerebrospinal fluid was developed and validated by the Biomarker Research		
dilution LC-MS/N		Laboratory of Perelman School of Medicine, University of Pennsylvania	ese i	
ently stable isotoj	JCTLM DB identification number	C12RMP1	Ľ.,	
tion in human CSr, an important aspect since there				

	Isotope dilution mass spectrometry methods for amyloid beta 1-42 in other				
	 Mass spectrometry-based candidate reference measurement procedure for quantification of Aβ42 in cerebrospinal fluid 				
4	Applicable matrice(s)	human cerebrospinal fluid			
1	Full description of technique(s)	Isotope dilution mass spectrometry			
,	Quantity	Mass concentration			
1	Applicable range	150 pg/ml to 4000 pg/ml			
-	Expected uncertainty (level of confidence 95%)				
ni er	Reference(s)	Mass spectrometry-based candidate reference measurement procedure for quantification of A β 42 in cerebrospinal fluid, A. Leinenbach et al. on behalf of the IFCC Scientific Division Working Group on CSF proteins (<u>WG-CSF</u>) <u>Clin. Chem.</u> , 2014, 60 (7), 987-994			
u	Comparability assessment study(ies)	See reference cited above for comparability assessment study			
e l ur	Comment(s)	The reference measurement procedure, C11 RMP9, for quantification of A β 42 in cerebrospinal fluid was developed and validated by Roche Diagnostics GmbH in collaboration with the University of Gothenburg			
ł	JCTLM DB identification number	C11RMP9			

JC|LIVI approved 2015-10-21

tion in human CSF, an important aspect since there was no analyte-free matrix available. Because no CSF

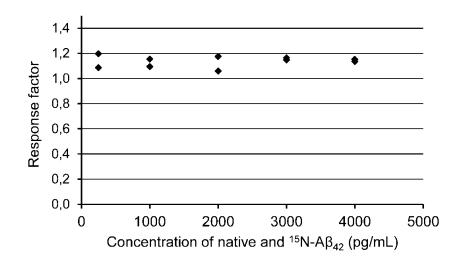

trix effects (2, 3). The broadscale use of immunoassays

Calibration in human CSF

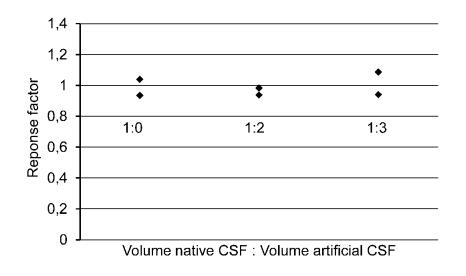
- Surrogate matrix such as artificial CSF might lead to low recoveries of the analyte → sensitivity issue
- Calibrators were prepared in human CSF using the surrogate analyte approach

Surrogate analyte approach

- ${}^{15}N-A\beta_{1-42}$ was used as a surrogate for the native $A\beta_{1-42}$ for calibration.
- $^{13}\text{C-A}\beta_{1\text{-}42}$ was used as IS in both calibrators and unknowns.
- A response factor (f) for $^{15}N-A\beta_{1-42}$ to native $A\beta_{1-42}$ was determined in artificial CSF
- When determining the concentration of endogenous $A\beta_{1-42}$ in unknown CSF samples, the concentration of $^{15}N-A\beta_{1-42}$ used in the calibration curve was multiplied by *f*, which was measured before and after each set of unknown samples


Imprecision	Imprecision	Intra-assay	Inter-assay
	250 pg/mL	5.0%	6.4%
 ¹⁵N-Aβ₁₋₄₂ LLOQ: 150 pg/mL 	1000 pg/mL	2.2%	5.6%

- Truenesss: 100%±15%*
- No matrix-dependent ion suppression


Native $A\beta_{1\text{-}42}$ in CSF

• Interassay imprecision for endogenous $A\beta_{1-42} < 5.6\%$ (6 different CSF pools over 6 days)

*Use of spiking and recovery

Response factor of native $A\beta_{1-42}$ and ¹⁵N- $A\beta_{1-42}$ in artificial CSF at different concentrations (150–4000 pg/mL, n=2 at each concentration).

Relative response of endogenous $A\beta_{1-42}$ and ${}^{15}N-A\beta_{1-42}$ in human CSF as well as human CSF diluted with artificial CSF (volume CSF : artificial CSF)

CSF A β_{1-42} – an excellent but complicated Alzheimer's biomarker – a route to standardisation

CrossMark

Julia Kuhlmann ^a, Ulf Andreasson ^{b,c}, Josef Pannee ^{b,c}, Maria Bjerke ^{b,c}, Erik Portelius ^{b,c}, Andreas Leinenbach ^d, Tobias Bittner ^d, Magdalena Korecka ^e, Rand G. Jenkins ^f, Hugo Vanderstichele ^g, Erik Stoops ^g, Piotr Lewczuk ^{h,i}, Leslie M. Shaw ^e, Ingrid Zegers ^a, Heinz Schimmel ^a, Henrik Zetterberg ^{b,c,j}, Kaj Blennow ^{b,c,*}, on behalf of the IFCC Working Group on Standardization of CSF proteins (WG-CSF)

^a European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Geel, Belgium

^b Inst. of Neuroscience and Physiology Dept. of Psychiatry and Neurochemistry The Sahlgrenska Academy at University of Gothenburg Mölndal, Sweden

^c Clinical Neurochemistry LaboratorySahlgrenska University Hospital, MölndalSE-431 80 Mölndal Sweden

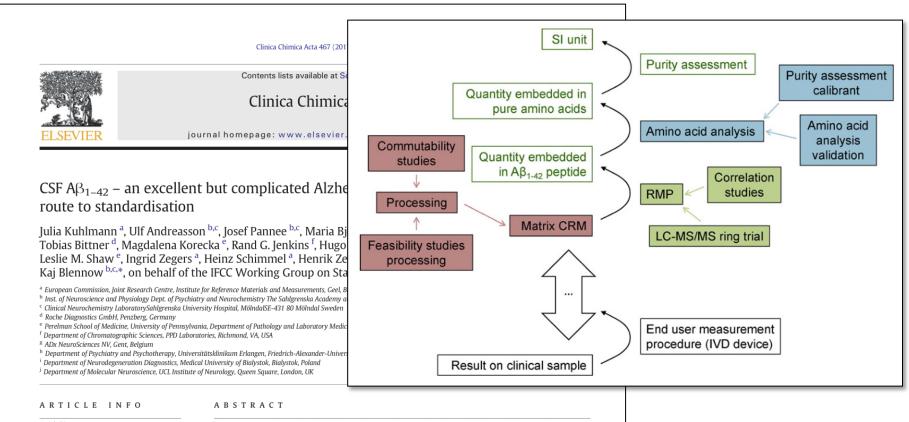
^d Roche Diagnostics GmbH, Penzberg, Germany

e Perelman School of Medicine, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, PA, USA

f Department of Chromatographic Sciences, PPD Laboratories, Richmond, VA, USA

g ADx NeuroSciences NV, Gent, Belgium

^h Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany


¹ Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland

^j Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK

ARTICLE INFO

ABSTRACT

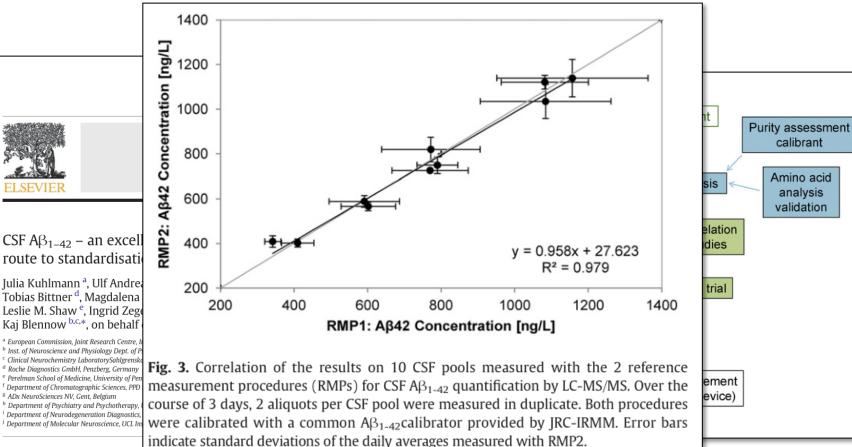
Article history: Received 16 December 2015 The 42 amino acid form of amyloid β (A β_{1-42}) in cerebrospinal fluid (CSF) has been widely accepted as a central

Article history: Received 16 December 2015 The 42 amino acid form of amyloid β (A β_1 -42) in cerebrospinal fluid (CSF) has been widely accepted as a central

 $r_{\rm s}$

CSF A β_{1-42} – an excell route to standardisati

Julia Kuhlmann^a, Ulf Andrea Tobias Bittner^d, Magdalena Leslie M. Shaw^e, Ingrid Zege Kaj Blennow ^{b,c,*}, on behalf


^a European Commission, Joint Research Centre, J ^b Inst. of Neuroscience and Physiology Dept. of I ^c Clinical Neurochemistry LaboratorySahlgrenski ^d Roche Diagnostics GmbH, Penzberg, Germany e Perelman School of Medicine, University of Per ^g ADx NeuroSciences NV. Gent. Belgium ^h Department of Psychiatry and Psychotherapy. ⁱ Department of Neurodegeneration Diagnostics ^j Department of Molecular Neuroscience, UCL I

ABSTRAC

ARTICLE INFO

Received 16 December 2015

Article history:

The 42 amino acid form of amyloid β (A β_1 -42) in cerebrospinal fluid (CSF) has been widely accepted as a central

The certification of Amyloid β₁₋₄₂ in CSF in ERM[®]-DA480/IFCC, ERM[®]-DA481/IFCC and ERM[®]-DA482/IFCC

Julia Kuhlmann¹, Sébastien Boulo¹, Ulf Andreasson², Maria Bjerke², Josef Pannee², Jean Charoud-Got¹, Guy Auclair¹, Stéphane Mazoua¹, Stefanie Trapmann¹, Heinz Schimmel¹, Hendrik Emons¹, Doris Florian¹, Milena Quaglia³, Erik Portelius², Magdalena Korecka⁴, Leslie M. Shaw⁴, Mary Lame⁵, Erin Chambers⁶, Hugo Vanderstichele⁶, Erik Stoops⁶, Andreas Leinenbach⁷, Tobias Bittner⁷, Rand G. Jenkins⁸, Vesna Kostanjavecki⁹, Piotr Lewczuk¹⁰, Henrik Zetterberg², Ingrid Zegers¹, Kaj Blennow²

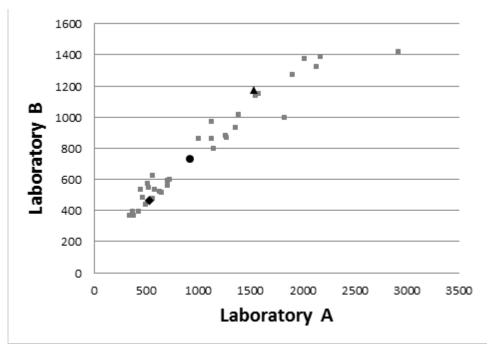
CRM released 1/DEC/2017

High, middle and low concentrations

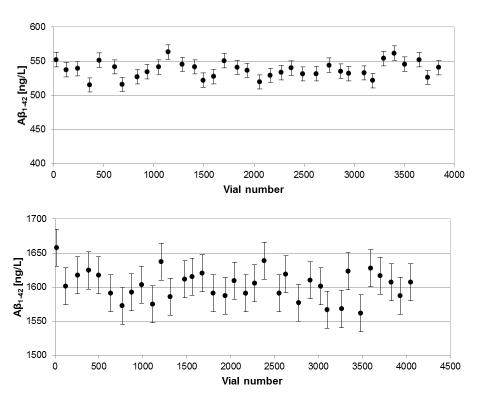
Amyloid β ₁₋₄₂ peptide in human CSF ¹⁾	Mass concentration			
	Certified value ²⁾ [µg/L]	Uncertainty ³⁾ [µg/L]		
ERM-DA480/IFCC	0.45	0.07		
ERM-DA481/IFCC	0.72	0.11		
ERM-DA482/IFCC	1.22	0.18		

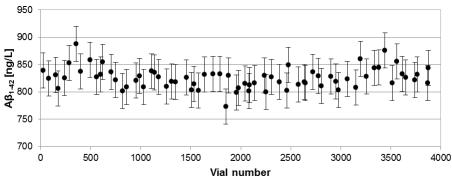
¹⁾ As obtained by solid phase extraction and subsequent quantification by liquid chromatography with mass spectrometry detection, according to the reference methods (Leinenbach *et al.* Clin. Chem. 60 (2014) 987-94; Korecka *et al.* J. Alzheimers Dis. 41 (2014) 441-451) [5,6].

²⁾ Certified values are values that fulfil the highest standards of accuracy and represent the unweighted mean value of the means of 5 accepted sets of data, each set being obtained in a different laboratory. The certified value and its uncertainty are traceable to the International System of Units (SI).

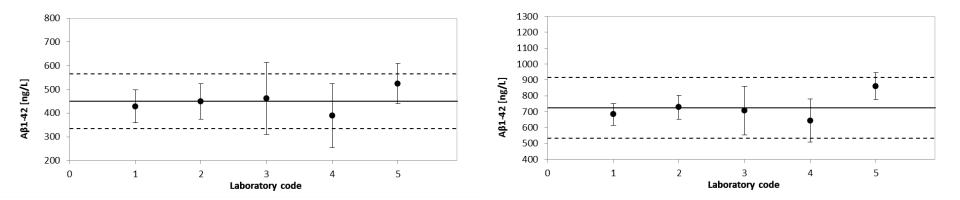

³⁾ The uncertainty is the expanded uncertainty of the certified value with a coverage factor k = 2 corresponding to a level of confidence of about 95 % estimated in accordance with ISO/IEC Guide 98-3, Guide to the Expression of Uncertainty in Measurement (GUM:1995), ISO, 2008 [4].

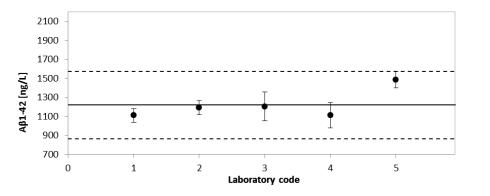
Commutability


"A property of a reference material, demonstrated by the equivalence of the mathematical relationships among the results of different measurement procedures for a reference material and for representative samples of the type intended to be measured."


Three commutability studies show good commutability of the three materials

- Bjerke M et al. Clin Chem Lab Med 2016 (I & II)
- Manuscript in preparation (III)


Homogeneity



Averages / vial number and their 95 % CI

based on the within-group standard deviation as derived from a one-way ANOVA of all data grouped by vial number after correction of the analysis trend.

Average A β 1-42 concentrations in CSF the three CRMs as measured with the RMPs.

Bars = laboratory means \pm 2s. Full line = mean of the means Dotted lines = the mean of the means \pm 2s.

Next steps

Concordance between CSF Aß & amyloid PET

doi:10.1093/brain/aww160

A IOURNAL OF NEUROLOGY

Research

JAMA Neurology | Original Investigation

Concordance Between Different Amyloid Immunoassays and Visual Amyloid Positron Emission Tomographic Assessment

Shorena Janelidze, PhD; Josef Pannee, PhD; Alvydas Mikulskis, PhD; Ping Chiao, PhD; Henrik Zetterberg, MD, PhD; Kaj Blennow, MD, PhD; Oskar Hansson, MD, PhD

Supplemental content

IMPORTANCE Visual assessment of amyloid positron emission tomographic (PET) images has been approved by regulatory authorities for clinical use. Several immunoassays have been developed to measure β -amyloid (A β) 42 in cerebrospinal fluid (CSF). The agreement between CSF A β 42 measures from different immunoassays and visual PET readings may influence the use of CSF biomarkers and/or amyloid PET assessment in clinical practice and trials.

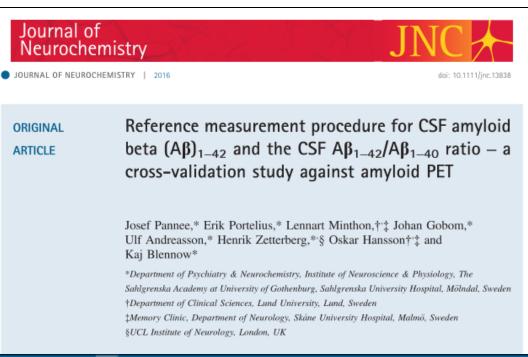
DESIGN, SETTING, AND PARTICIPANTS The study included 262 patients with mild cognitive impairment or subjective cognitive decline from the Swedish BioFINDER (Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably) cohort (recruited from September 1, 2010, through December 31, 2014) who had undergone flutemetamol F 18 ([¹⁸F]flutemetamol)-labeled PET. Levels of CSF Aβ42 were analyzed using the classic INNOTEST and the newer modified INNOTEST, fully automated Lumipulse (FL), EUROIMMUN (EI), and Meso Scale Discovery (MSD) assays. Concentrations of CSF Aβ were assessed using an antibody-independent mass spectrometry-based reference measurement procedure.

MAIN OUTCOMES AND MEASURES The concordance of CSF A β 42 levels and A β 42:A β 40 and A β 42:tau ratios with visual [¹⁸F]flutemetamol PET status.

Pittsburgh compound B imaging and cerebrospinal fluid amyloid- β in a multicentre European memory clinic study

Brain Advance Access published July 7, 2016

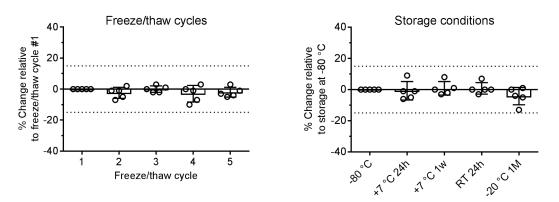
Antoine Leuzy,¹ Konstantinos Chiotis,¹ Steen G. Hasselbalch,² Juha O. Rinne,^{3,4} Alexandre de Mendonça,⁵ Markus Otto,⁶ Alberto Lleó,^{7,8} Miguel Castelo-Branco,^{9,10} Isabel Santana,^{11,12} Jarkko Johansson,⁴ Sarah Anderl-Straub,⁶ Christine A. F. von Arnim,⁶ Ambros Beer,¹³ Rafael Blesa,^{7,8} Juan Fortea,^{7,8} Sanna-Kaisa Herukka,¹⁴ Erik Portelius,¹⁵ Josef Pannee,¹⁵ Henrik Zetterberg,^{15,16} Kaj Blennow¹⁵ and Agneta Nordberg^{1,17}


The aim of this study was to assess the agreement between data on cerebral amyloidosis, derived using Pittsburgh compound B positron emission tomography and (i) multi-laboratory INNOTEST enzyme linked immunosorbent assay derived cerebrospinal fluid concentrations of amyloid- β_{42} ; (ii) centrally measured cerebrospinal fluid amyloid- β_{42} using a Meso Scale Discovery enzyme linked immunosorbent assay; and (iii) cerebrospinal fluid amyloid- β_{42} centrally measured using an antibody-independent mass spectrometry-based reference method. Moreover, we examined the hypothesis that discordance between amyloid biomarker measurements may be due to interindividual differences in total amyloid-ß production, by using the ratio of amyloid-B42 to amyloid-B40. Our study population consisted of 243 subjects from seven centres belonging to the Biomarkers for Alzheimer's and Parkinson's Disease Initiative, and included subjects with normal cognition and patients with mild cognitive impairment, Alzheimer's disease dementia, frontotemporal dementia, and vascular dementia. All had Pittsburgh compound B positron emission tomography data, cerebrospinal fluid INNOTEST amyloid- β_{a2} values, and cerebrospinal fluid samples available for reanalysis. Cerebrospinal fluid samples were reanalysed (amyloid-B42 and amyloid-B40) using Meso Scale Discovery electrochemiluminescence enzyme linked immunosorbent assay technology, and a novel, antibody-independent, mass spectrometry reference method. Pittsburgh compound B standardized uptake value ratio results were scaled using the Centiloid method. Concordance between Meso Scale Discovery/mass spectrometry reference measurement procedure findings and Pittsburgh compound B was high in subjects with mild cognitive impairment and Alzheimer's disease, while more variable results were observed for cognitively normal and non-Alzheimer's disease groups. Agreement between Pittsburgh compound B classification and Meso Scale Discovery/mass spectrometry reference measurement procedure findings was further improved when using amyloid-B42

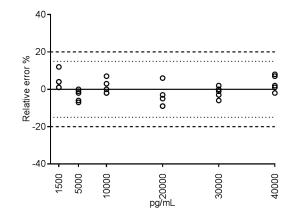
Sahlgrenska University Hospital

BRAIN 2016: Page 1 of 14

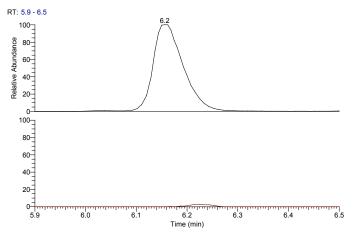
$A\beta_{1\text{-}38,}A\beta_{1\text{-}40}$ and the $A\beta_{1\text{-}42}/A\beta_{1\text{-}40}$ ratio


- Validation of LC-MS $A\beta_{1-38} \& A\beta_{1-40}$
- Comparison to amyloid PET

Validation results - $A\beta_{1-40}$

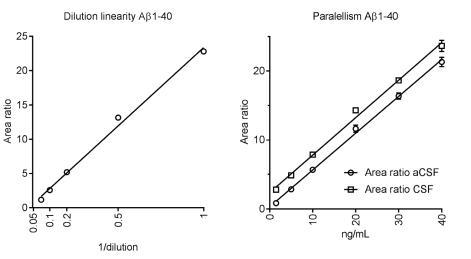

Sample	Average concentration (pg/mL)	s _r (pg/mL)	CV _r (%)	s _{RW} (pg/mL)	CV _{RW} (%)
HIGH	4197	172	4.1	252	6.0
LOW	2738	94	3.4	166	6.1

Imprecision - Repeatability (CV_r) <10% and reproducibility (CV_{RW}) <15% for high & low QC samples.



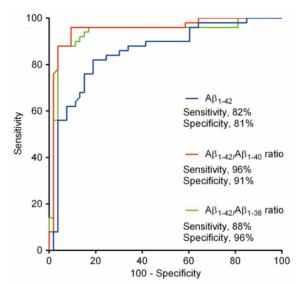
Sample stability - A sample can go through up to five freeze/thaw cycles with no statistically significant effect on the measured concentration of the analyte.

Storage in -80 °C is preferred while storage in -20 °C is acceptable.



Measurement range - The relative errors for the back-calculated calibrators <15% in the whole measurement range defined by the calibrator curve (1 500 – 40 000 pg/mL). Validation results - $A\beta_{1-40}$


Carry over - No carry-over was detected.


Highest calibrator (top panel) followed by a blank injection (bottom panel, Y-axis range adjusted to typical LLOQ-level). No analyte was detected in the blank injection.

Dilution linearity - Human CSF serially diluted with a-CSF (2, 5, 10 & 20 fold) **Parallelism** - Calibrators prepared in human CSF & artificial CSF.

Both matrices can be used

CSF $A\beta_{1-42}/A\beta_{1-40}$ ratios with a cutoff determined at 0.0852 (horizontal dashed line)

Results show that the CSF $A\beta_{1-42}/A\beta_{1-40}$ ratio using LC-MS is strongly associated with cortical A β fibrils measured by ¹⁸F-flutemetamol PET.

Thank you for your attention

