Accurate Results for Patient Care Workshop 2017 A JCTLM Members' and Stakeholders' meeting

4-5 December 2017, BIPM

Session 5a: Clinical Challenge – Biomarkers in neurodegenerative disease.

Chair: Graham Beastall (IFCC)

09:00 - 11:00

Preanalytical and analytical aspects of CSF biomarkers assay

Dr Armand Perret-Liaudet

Chef du Service de Biochimie & Biologie Moléculaire Grand Est

Neurobiologie CHU Lyon – France

Centre de recherche en Neurosciences de Lyon, BioRan

Bureau International des Poids et Mesures

F

Accurate Results for Patient Care Workshop 2017 A JCTLM Members' and Stakeholders' meeting

4-5 December 2017, BIPM

- Potential clinical applications of biomarkers of neurodegenerative disease
- Preanalytical and analytical aspects of CSF biomarker assays
- Reference method for b-amyloid in CSF
- Role of metals and metal containing biomolecules in neurodegenerative diseases such as Alzheimer's disease

Sergio Bernardini (University of Rome Tor Vergata)	09.00
Armand Perret-Liaudet (Lyon University Hospital)	09.30
Josef Pannee (Inst. of Neuroscience & Physiology, Sweden)	10.00
Claudia Swart (PTB)	10.30

NO CONFLICT OF INTEREST

Bureau International des Poids et Mesures

Currently used biomarkers Alzheimer (AD) and Creutzfeldt-Jakob (CJD) Diseases

WHO criteria : possible CJD + positivity of p1433 → probable CJD

Neuropathological deposits in AD brain patients Etiological AD markers in the CSF

Tangles containing Phosphorylated Tau Protein (p-TAU)

Increase of both total and p-TAU in CSF

Amyloid and/or Neuritic plaques containing Amyloid Peptides Ab1-42 (Ab42) and +/- Ab1-40 (Ab40)

> Decrease of Ab42 and/or Ab42/Ab40 ratio in CSF

Anti Tau IHC N. Streichenberger Neuropathology CHU Lyon

È

Neuropathological criteria of CJD

1/ Pathological Prion deposits

Anti PrP IHC N. Streichenberger Neuropathology CHU Lyon Anti PrP WB A. Perret-Liaudet CHU Lyon

CSF total PrP by ELISA and CSF PrPsc by PMCA/RT-QUICK \rightarrow Candidates biomarkers \rightarrow outside this topic

Neuropathological criteria of CJD

2/ Astrogliocytosis

Measure of csf GFAP/S100-B : not included for CJD diagnosis criteria

3/ Spongiosis + Neuronal lysis

Detection of 14.3.3 protein in the CSF of CJD patients

HE x 20 N. Streichenberger Neuropathology CHU Lyon

7

Immunometric assays for csf AD biomarkers

Open Classical ELISA assays

Manual or Semi-automated ELISA

Multiplex ELISA assays

Significant variability in AD CSF biomarkers values

—> variability in diagnostic accuracy (grey zone around the clinical cutoff) and in clinical cutoffs

For p1433, high analytical variability (intra and intercentre)

• Variability was reported mainly linked to:

Analytical variability

Existence of pre-analytical confounders

Preanalytical confounders

 Recommendations reports in the field of AD CSF biomarkers

• Vanderstichele H. et al. 2011; Del Campo M. et al , 2012...

• Fourier A. et al. 2015:

	Clinica Chimica Acta 449 (2015) 9–15			
ELSEVIER	Contents lists available at ScienceDirect Clinica Chimica Acta journal homepage: www.elsevier.com/locate/clinchim	CLINICA CHIMICA ACTA		
Invited critical review				
cerebrospinal fluid biomarker variability				
Anthony Fourier ^{a,b} , Erik Portelius ^d , Henrik Zetterberg ^{d,e} , Kaj Blennow ^d , Isabelle Quadrio ^{a,b} , Armand Perret-Liaudet ^{a,b,c,*}				
 ^a Neurobiology Laboratory, Biochemistry and Molecular Biology Department, Hôpitaux de Lyon, Lyon, France ^b University of Lyon 1, CNRS UMRS292, INSERM U1028, BioRan, Lyon, France ^c Société Française de Biologie Clinique (SFBC), Alzheimer Biomarkers group co-coordination, France ^d Clinical, Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Sweden ^e Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK 				

CSF Sampling

Needle diameter and type

 Aim 1: decreasing the % of side effects linked to CSF puncture

 Inverse correlation between the % of side effects and the inner diameter of the needle and / or its atraumatic behaviour

	-0

CSF Sampling

Needle diameter and type

F

•Aim 2: avoiding hemorragic puncture

 High content of p1433 in erythrocytes and/or in blood: high impact of haemolysis on csf levels

Confirmed in Hamlin C 2012

CSF Sampling

Needle diameter and type

- Aim 2: avoiding hemorragic puncture
- Significant impact on csf Ab42 csf in case of hemolysis → levels decrease by 10-30%
- Significant impact when Total protein
 - > 2,5g/L → t-Tau and p-tau
 - Solution > 1 g/L → Ab42 levels decrease by 20-40 %

Using an atraumatic needle with low inner diameter is recommended

Reject the haemolysed csf for these different biomarkers

17

CSF Sampling: the tube

A. Perret-Liaudet et al. / Alzheimer's Disease Biological Misdiagnosis

Ab42csf variability linked to PP tubes

CSF Sampling: the tube

P-tau csf variability near the analytical CV

CSF Sampling: multicenter study in the frame of SFBC task force

Risk of Alzheimer's Disease Biological Misdiagnosis Linked to Cerebrospinal **Collection Tubes**

Journal of Alzheimer's Disease 31 (2012) 13-20

confirmation of the data obtained in the monocentric study

Proposition to standardise the sampling tube

Shifting from local tubes to consensual tube (Lyon, Lille and Montpellier): consequences for Ab42csf

* defined by YOUDEN index

Clear data showing a significant improvement of variability

F

Research Article Impact of harmonization of collection tubes on Alzheimer's disease diagnosis Sylvain Lehmann^{4,*}, Susanna Schraen⁵, Isabelle Quadrig^e, Claire Paquet^{de}, Stéphanie Bombois^f, Constance Delaby^{4,*}, Aline Dorzy⁶, Julien Dumurgiet^d, Christophe Hirtz⁴, Pierre Krolak-Salmon⁴, Jean-Louis Laplanche⁴, Olivier Moreaud⁴, Katell Peoc'h⁴, Olivier Rouaud⁴, Bemard Sablomière⁴, Eric Thouvenot⁴, Jacques Touchon⁴, Olivier Vercruysse^f, Jacques Hugon^{4,e}, Audrey Gabelle¹, Françoise Pasquiet⁷, Armand Perret-Liaude⁶

The ratio Ab42/40 minimizes the samping tube adsorption effect

Using the consensual reported tube is recommended Potentially

Ratio 42/40 could be used in case of another PP tube

Centrifugation of samples

AD biomarkers

Centrifugation or not ?

Yes, to eliminate the possible hemolysis whatever the visual aspect of CSF

Spinning conditions (done for AD csf panel and p1433)

last results : spinning conditions are not a confounder factor

 For AD biomarkers, the recommendation done : 2000g 10min with controlled temperature is enough to ensure stability of CSF AD biomarkers levels

Storage and stability

Storage tube ... plastic Ab42 adsorption

AD biomarkers

 Values expressed as pourcentages of the mean values obtained in CSF Ab1-42 levels with all the tubes

The problem is the same that for sampling tubes

Storage and stability

AD biomarkers

- 5 days at 4 °C : all the biomarkers are stable (supernatant or clear csf without cells)
- Up to 2 years at -80°c, aliquoted in small tubes adapted to 500 ul of CSF (for AD and p1433 biomarkers)
- Number of cycles of freezing/thawing
 - p1433 is stable (up to 5 cycles)
 - AD biomarkers: variablity upon markers (p-Tau>Ab42)

Current Recommendation for AD csf biomarkers: Maximum of 2-3 cycles

Freeze at -80°C supernatants stored at 4°C (max 5 days)

Analytical variability

Analytical variability

•French External Quality Assessment Program for csf 1433 protein:

Organized by the French network of prion Diseases APHP Lariboisière 2007-2017 (Pr JL Laplanche)

--> In 2012, variability of results between 5 laboratories

Analyse du CQ national 2012 pour la détection de la protéine 14-3-3 dans le liquide céphalo rachidien

Laboratoire	1	2 R	3	4	5
CQ1	Positif	Négatif	Traces	Traces	Négatif
CQ2	Négatif	Négatif	Négatif	Négatif	Négatif
CQ3	Positif	Positif	Positif	Positif	Positif

Analyse des résultats rendus par les différents laboratoires sur la base des valeurs brutes

- CQ1 : 60% de concordance sur + et traces
- CQ2: 100% de concordance.
- CQ3: 100% de concordance

Analytical variability

 External Quality Assessment Program: <u>The Alzheimer's Association external quality control</u> <u>program for cerebrospinal fluid biomarkers</u>

--> In 2011, large variability of values between laboratories

Variability linked to assays providers

Aβ40 IBL/Euroimmun

<u>CSF Aβ40</u>: IBL values = x 2 Euroimmun

<u>CSF Aβ42/40 ratio</u>: cutoff is highly modified

<u>1/ Differences between</u> assays providers explained <u>by</u>

a/ difference of antibodiesb/ difference of calibratorsc/ calibration models...

2/ Lot to lot variability (example : t-TAU fujirebio 2011-12)

3/ Quality of Instructions For Use (IFU)

Variability linked to kit users

1/ Non Compliance to the Instructions For Use
2/ Variability in handling lyophilized calibrators (Solubilization, dilution ... in plastic tubes...)
3/ different pipetting methodologies...

—> Lack of training
—> Lack of maintenance

Solving inaccuracy

<u>1/ Bias between different assays</u> <u>2/ Variability inter lots</u>

Inaccuracy —> Reference Methodes—> Certified Reference Material (CRM)

Reference Methods

- Mass Spectrometry
- 2 Validated methods for $A\beta 42$
- Methods accepted by JCTLM
- CRM was prepared

- The Ab42 immunological assays : traceability versus this CRM
 - Native csf was validated
 - Data reported on commutability : 33/36 Ok
 - Stability and homogeneity running

Solving imprecision

Decrease analytical CV by the way of automatization

Shifting from Manual WB to automatized Size separation (Simple Western)

Pipet Samples

Results Automatically

spices Civils de

Shifting from Manual WB to automatized Size separation (Simple Western)

Size-based Assay

Detection of CSF 14-3-3 Protein in Sporadic Creutzfeldt-Jakob Disease Patients Using a New Automated Capillary Western Assay

A. Fourier^{1,2} · A. Dorey^{1,3} · A. Perret-Liaudet^{1,2,3} · I. Quadrio^{1,2,3}

F

Mol Neurobiol DOI 10.1007/s12035-017-0607-2

Received: 14 March 2017 /Accepted: 8 May 2017 © Springer Science+Business Media New York 2017

P1433 Specificity is increased from 85% with Western blot to 95% with simple western

Significant Improvement of both repeatibility and intermediate fidelity CVs

	WP access	SW assay		
	WD assay	Area 14-3-3	Areas Ratio	
Intra-assay variability (n = 5 repeats)				
Positive CSF QC1 (strong 14-3-3 band)	10%	6%	7%	
Positive CSF QC2 (faint 14-3-3 band)	30%	13%	12%	
Inter-assay variability (n = 20 repeats)				
Positive CSF QC1 (strong 14-3-3 band)	34%	22%	17%	
Positive CSF QC2 (faint 14-3-3 band)	39%	29%	25%	

Table 3: SW and WB variability analyzing 2 CSF positive quality controls (QC1 with a strong 14-3-3 protein band and QC2 with a faint 14-3-3 protein band using WB)

Influence of hemoglobin and proteinorachia is confirmed

CSF sample	Size (kDa)	Areas Ratio	Interpretation*
Hemolysis			
Neat CSF (limpid)	35	118	Negative
Likely-visible hemolysis (hemoglobin 0.28 g/L)	35	138	Negative
Strongly-visible hemolysis (hemoglobin 1.42 g/L)	35	919	Positive
Total protein concentration			
Neat CSF (0.43 g/L)	35	118	Negative
Protein-spiked CSF (1 g/L final)	35	102	Negative
Protein-spiked CSF (1.5 g/L final)	33	1109	Positive
Protein-spiked CSF (2.5 g/L final)	33	1560	Positive
Protein-spiked CSF (4 g/L final)	33	3751	Positive

Table 5: CSF hemolysis and protein spiking assays

*Positive 14-3-3 protein result if Areas Ratio \geq 235; Negative 14-3-3 protein result if Areas Ratio \leq 235

Shifting from manual ELISA to others platforms

Semi-automated ELISA

Random Access platforms

Semi-automated ELISA versus manual ELISA

Repeatability

Performance	Αβ42	Αβ40	
Manual ELISA	5.9% Fujirebio	3.9-6.1% IBL	
Semi-automated ELISA old ref Fujirebio (2014)	2.9-3.3% Fujirebio	3.4-4.3% IBL	

Significant decrease of repeatability CV

Solutions found by collaboration between academics and company (JPND)

Consortium BIOMARKAPD, JPND

F

Before : Lyophilised Calibrants to be diluted RT (18-26°C)

Optimization of SOPs

Effect on intermediate Fidelity

Performance Aβ42 Fujirebio	CV	Grey zone 700 ng/L	
Semi-automated ELISA old ref Fujirebio (2014)	10.2-10.3%	630-770	
Semi-automated ELISA new ref Fujirebio (2015)	4.2-8%	660-740	

Improvement of precision •External Quality Assessment Program: -->Longitudinal Aβ42 CQ 2011-2017 (Lyon)

Round(number of labs)

Improvement of precision

•External Quality Assessment Program: --> Comparaison intercentres 2011-2017,

Mean:

All 67 Tabs in this round 738 pg/mL

LVON (Lab 64

2017:23B

Round

0

5

10

15

20

25

40

35

Rank

45

•CV around 30% in 2011 → 15% in 2017

Fully automatized Plateforms

F

Electrochemiluminescence

<u>CSF Aβ42</u>

Aβ42 Performance	CV	Aβ42 Performance	CV
Repetabilité	1 - 1.6%	Repetabilité	1.2 - 4.6%
Inter-module	1.1 - 3.9%	Inter-module	1.2 - 3.7%
Fidélité intermédiaire	1.9 - 4%	Fidélité intermédiaire	

ELISA Manual testing versus random access (internal data of Euroimmun presented in AD/PD)

New automated chemiluminescence immunoassays for CSF beta-amyloid determination

V. Herbst, B. Brix, and M. Block

Institute for Experimental Immunology, affiliated to EUROIMMUN AG, Luebeck, Germany

Poster presented at AD/PD, Wien, May 2017

Sampla		Beta-amyloid 1-42		Beta-amyloid 1-40	
Sample		[pg/ml]	CV [%]	[pg/ml]	CV [%]
Collibratora	30	89	8.6	112	6.2
Calibrators	30	805	3.5	10301	4.9
Controlo	30	170	4.5	192	4.4
Controls	30	950	4.1	13831	7.8
QC1	9	116	7.7	311	1.5
QC2	9	143	4.5	802	3.4
QC3	9	251	9.6	1430	2.8
QC4	9	409	3.0	3239	4.6
QC5	9	449	6.4	5437	2.9
QC6	9	529	2.5	7003	3.1
QC7	9	613	4.5	13553	6.7

Determination of inter-assay precision (triplicates)

Conclusion : analytical aspects

The analytical standardization is running:

- Standardization of SOPs, Ready to use calibrators....
- Semi-automatization ...

→ Precision was improved

- Full Random Access
- RPM + CRM (for Ab42, Ab40...)

Analytical Accuracy and Precision will be improved

Preanalytical aspects : not finished ! Main problems seemed to be over

- Plastic of sampling and storage tubes
- In fact, with the very promising results in repeatability CV obtained with full random acess
- \rightarrow Some points need to be revisited ...

Preanalytical aspects revisited with Full random access machine Assays in Lyon, Sep 2017

Our Storage tube not tested by the company → alternatively manual transfer to Hitachi cupule

Repetability Aβ42	CV range (2 levels of concentration)
0.5 ml Sdt	0.7 % - 1 %
2 ml Sdt	0.4 % - 0.6 %
Cupule of company	0.4 % - 0.6 %
Overall	0.1 % -1.6 % -

A. Perret-Liaudet et al. / Alzheimer's Disease Biological Misdiagnosis

 Between tubes, 10 to 15 % Difference of mean of p-Tau :
 -->need to be revisited with machine at 1-2% repetability CV Significativity at 2.8 x CV

Remerciements

BIOMARKAPD consortium (JPND)

All the different partners

Groupe Travail SFBC Alzheimer

Post mortem confirmation

GG Kovacs (Budapest and Wien) N. Streichenberger (Lyon) D. meyronet (Lyon) S. Engelborghs (Antwerpen)