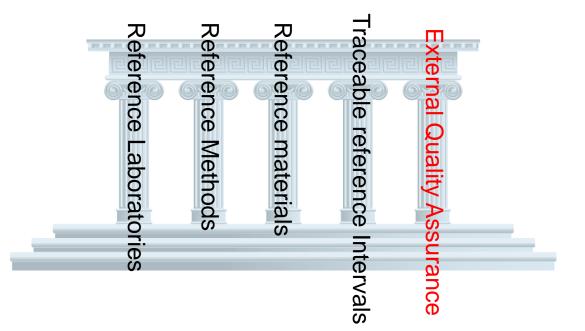
Session 3:

Traceability in external quality assessment.


Why traceability is important to EQA providers?

Tony Badrick and Graham Jones (RCPAQAP)

EQA – the more you look the more you see!

Laboratory Method Standardisation

Federica Braga, Mauro Panteghini

Clinica Chimica Acta, Volume 432, 2014, 55-61

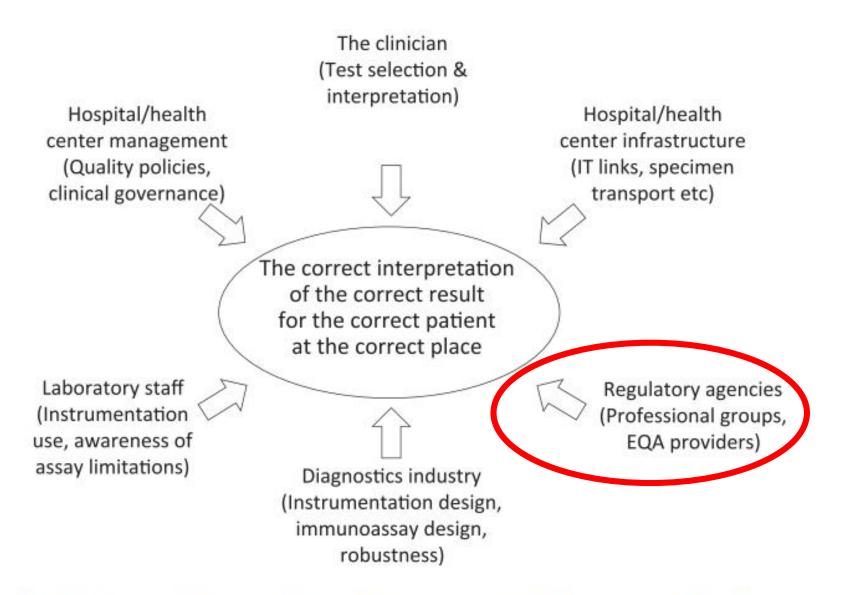
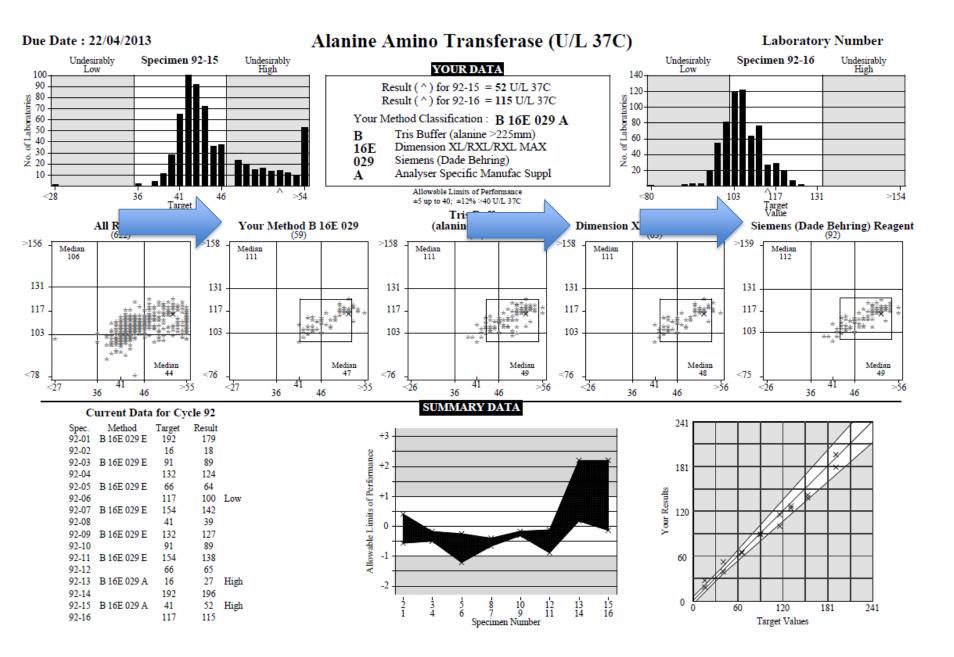
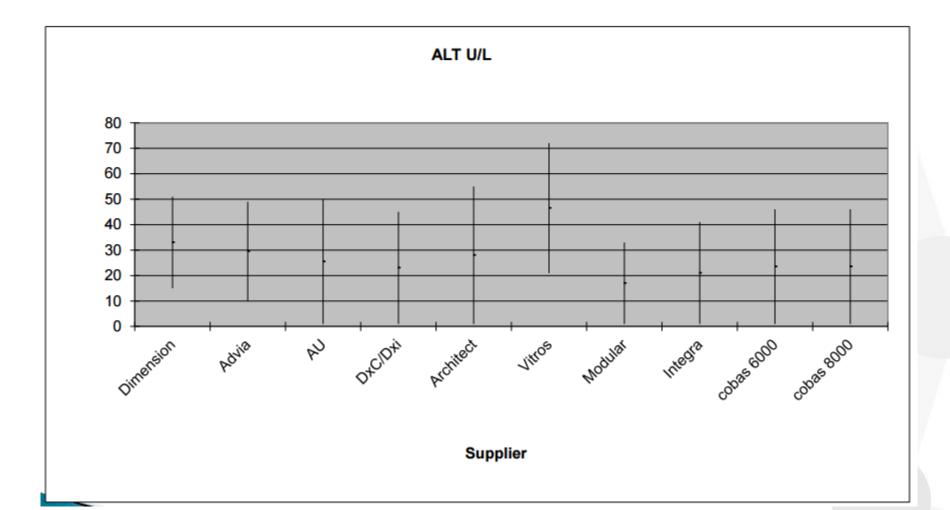



Fig. 1. Parties contributing to the effective use of endocrine tests in clinical care.

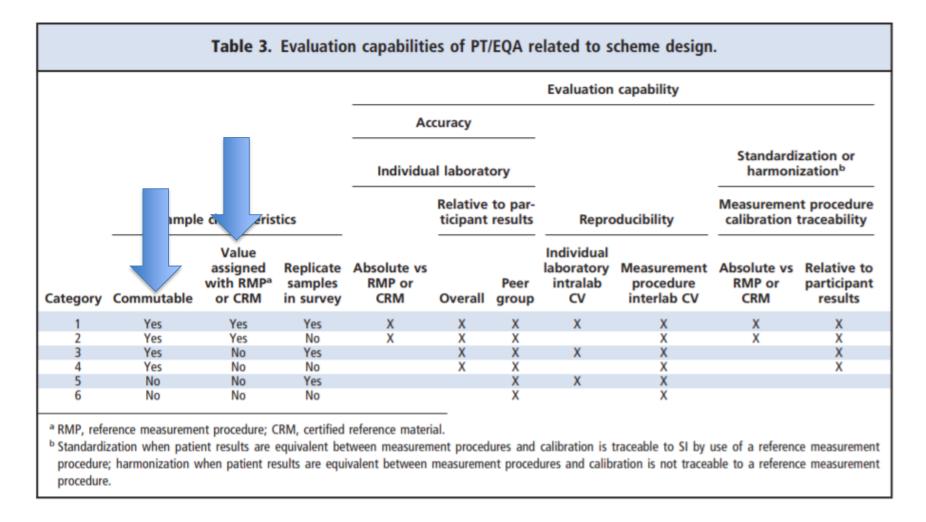

External quality assessment of hormone determinations. Sturgeon, Catharine M. Best Practice & Research Clinical Endocrinology & Metabolism , Volume 27 , Issue 6 , 803 - 822

Traceability in EQA

- All QAP results are traceable, it is just a matter of what to.
- For many the way the QAP works is to answer the question (is my X analyser working like an X analyser should). This is traceability to the X analyser group.
- If your reference interval and clinical decision points come from other X analysers, this is very useful.

Reference limits and flagging abnormal results ALT Reference Intervals

Clinical Chemistry 57:12 1670–1680 (2011)


Proficiency Testing/External Quality Assessment: Current Challenges and Future Directions

W. Greg Miller,1* Graham R.D. Jones,2 Gary L. Horowitz,3 and Cas Weykamp4

BACKGROUND: Proficiency testing (PT), or external quality assessment (EQA), is intended to verify on a recurring basis that laboratory results conform to expectations for the quality required for patient care.

or harmonization among different measurement procedures.

© 2011 American Association for Clinical Chemistry

Clinical Chemistry 57:12 (2011)

What is the QAP doing now in this area?

A. Target value assignment.

B. Commutability.

C. Acceptable Performance Specifications - these provide meaningful limits from targets.

Target Setting

- The QAP has reference method value assignment for some tests;
- Use of CRMs in field methods for some;
- Weighed in for some;
- "best performing labs" for some;
- Overall median for some (with method specific medians for all).

High order / reference method target setting

Where available – the RCPAQAP sends their EQA material to Reference Laboratories to determine targets e.g.:

ALT, AST, CK, GGT and LDH values were assigned by the DGKL Reference Institute of Bioanalysis, Calibration Laboratory for Clinical Chemistry, Bonn, Germany, using the 37°C IFCC reference methods.

Total Bilirubin (General Chem and Neonatal) values were assigned by the Childrens Hospital Wisconsin (USA) Reference Laboratory using the Doumas Reference Method.

High order target setting

WEQAS Reference Laboratory, Cardiff & Vale University Health Board Wales UK

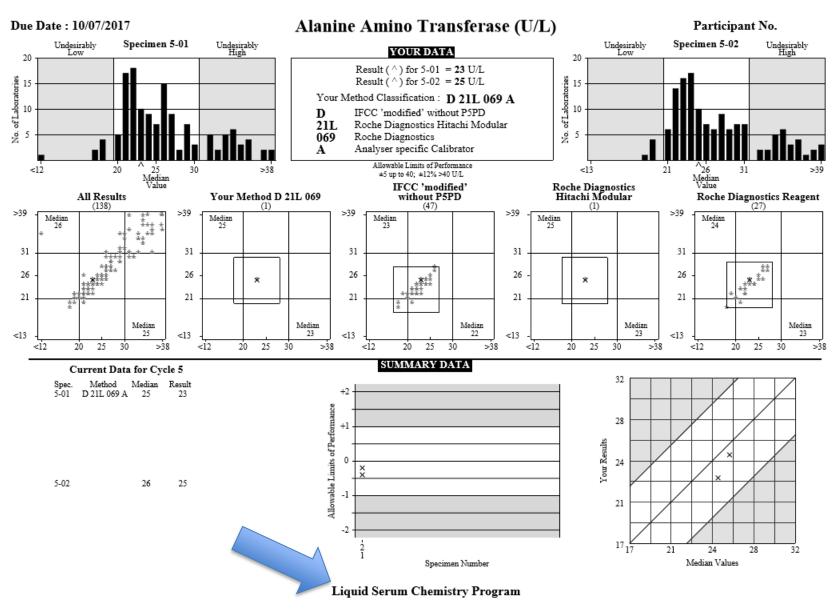
- Glucose by Isotope Dilution-Gas Chromatography Mass Spectrometry (ID-CGMS)
- Creatinine by ID-GCMS
- Uric Acid by ID-GCMS
- Sodium by Flame Atomic Emission Spectrometry
- Potassium by Flame Atomic Emission Spectrometry
- Calcium by Atomic Absorption Spectrometry
- Magnesium by Flame Atomic Emission Spectrometry
- Lithium by Flame Atomic Emission Spectrometry
- Cholesterol by ID- GCMS
- Triglycerides by ID-GCMS

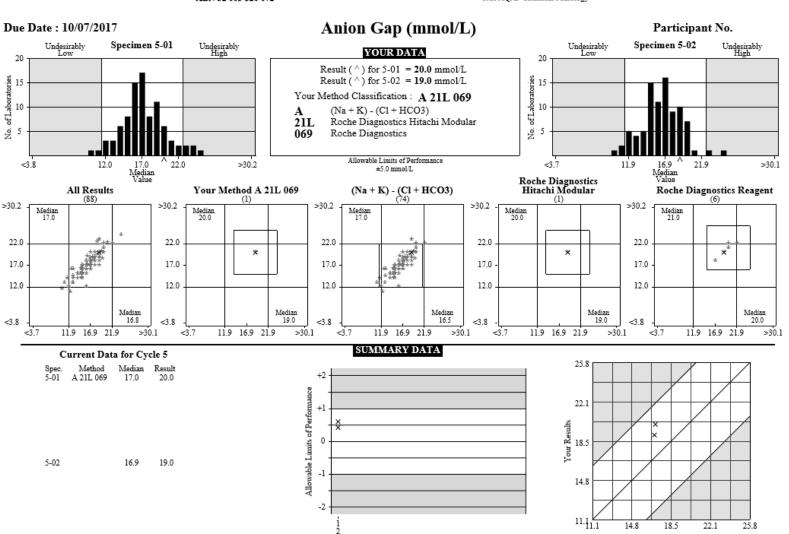
High order target setting

National Measurement Institute, Sydney Australia

- Cortisol
- Oestradiol,
- Testosterone
- Vitamin D3

"Reference values were determined using Reference Measurement Procedures (RMPs) based on the technique of isotope dilution with ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analysis. The reference values are metrologically traceable to the SI units for mass (kg), volume (mL) and amount of substance (mole) within their stated uncertainties".

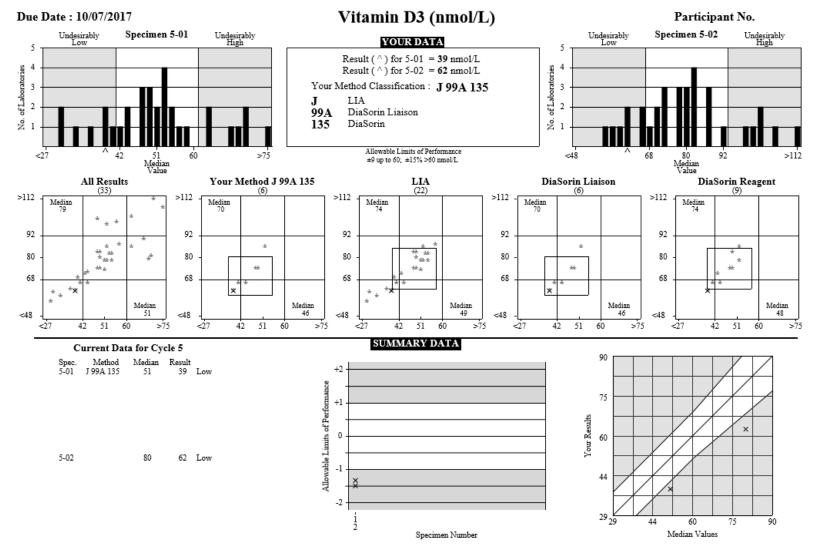




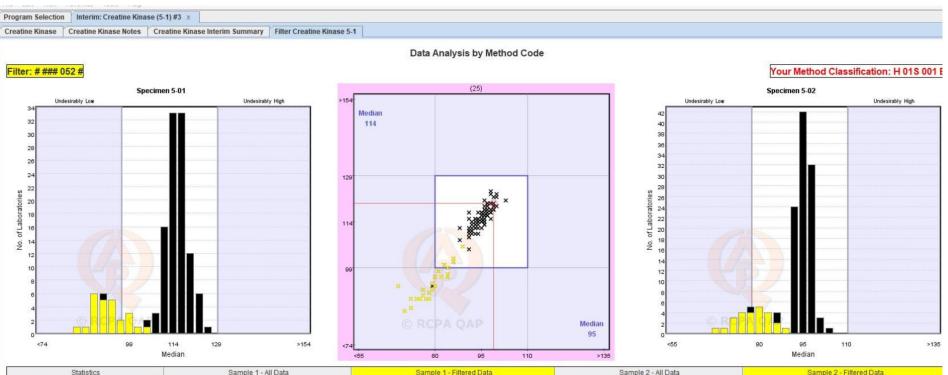
Commutability

- Liquid serum chemistry commutable (but no target assignment);
 - other materials may be single patient,
 - pooled material,
 - correct matrix base (serum, CSF or urine base).
- Other effects are stripping (some), spiking (many), lyophilised (most).
- The QAP are working on assessing the effects of these on commutability.

Printed Nov 21 10:59:44 2017 Prepared by: RCPAQAP Chemical Pathology


Liquid Serum Chemistry Program

Specimen Number


Printed Nov 21 10:59:45 2017 ©RCPA Quality Assurance Programs Pty. Limited ABN 32 003 520 072 Prepared by: RCPAQAP Chemical Pathology

Median Values

Printed Nov 21 10:59:52 2017 Prepared by: RCPAQAP Chemical Pathology

Liquid Serum Chemistry Program

Statistics	Sample 1 - All Data	Sample 1 - Filtered Data	Sample 2 - All Data	Sample 2 - Filtered Data
Median	114.0	93.0	95.0	79.0
Total	131	25	130	25
Low	21 (16%)	20 (80%)	14 (10%)	13 (52%)
High	0 (0%)	0 (0%)	0 (0%)	0 (0%)

1	Analytical Principle	Instrument		Reagent	Calibrator	
	<no selection=""></no>	<no selection=""></no>	-	52 - Ortho-Clinical Diagnostics	<no selection=""></no>	
			-			

Acceptable Performance Specifications (APS)

- APS based on BV
- Used to allow rapid, standardised assessment of QAP results in both numerical and graphical report formats
- Results outside APS should alert a laboratory that their assay may produce results that are at risk of detrimentally affecting clinical decision making.

Programs, Analytes and Allowable Limits of Performance

ALCOHOL/AMMONIA	Reviewed January 2012	Basis	Level
Alcohol	± 2.0 up to 20.0 mmol/L; 10% > 20.0 mmol/L	Prof. Opinion	
Ammonia	± 5 up to 50 μmol/L; 10% > 50 μmol/L	Prof. Opinion	
ANTIBIOTICS	Reviewed April 2013	Basis	Level
Amikacin	± 2.0 up to 19.9 mg/L; 10% > 19.9 mg/L	Prof. Opinion	
Gentamicin	± 0.2 up to 2.0 mg/L; 10% > 2.0 mg/L	Prof. Opinion	
Tobramycin	± 0.2 up to 2.0 mg/L; 10% > 2.0 mg/L	Prof. Opinion	
Vancomycin	± 2.0 up to 20.3 mg/L; 10% > 20.3 mg/L	Prof. Opinion	
	P	D !.	1
BILE ACIDS	Reviewed January 2012	Basis	Level
Total Bile Acids	± 4 up to 40 μmol/L; 10% > 40 μmol/L	Prof. Opinion	
	Devision di Annelli 2042	De ele	1 1
BIOGENIC AMINES	Reviewed April 2012	Basis	Level
Adrenaline	± 30 up to 100 nmol/L; 30% > 100 nmol/L	Total Error	Optimal
Dopamine	± 0.20 up to 2.0 μmol/L; 10% > 2.0 μmol/L	Imprecision	Optimal
5HIAA	± 8 up to 40 μmol/L; 20% > 40 μmol/L	Imprecision	Desirable
HMMA	± 6 up to 40 μmol/L; 15% > 40 μmol/L	Total Error	Optimal
HVA	± 6 up to 40 μmol/L; 15% > 40 μmol/L	Imprecision	Desirable
Metanephrine	± 0.2 up to 1.0 μmol/L; 20% > 1.0 μmol/L	Total Error	Optimal
Noradrenaline	± 75 up to 500 nmol/L; 15% > 500 nmol/L	Total Error	Optimal
Normetanephrine	± 0.4 up to 2.0 μmol/L; 20% > 2.0 μmol/L	Total Error	Optimal
3 - Methoxytyramine	± 0.3 up to 2.0 μmol/L; 15% > 2.0 μmol/L	Total Error	Optimal
Serotonin	± 0.2 up to 1.0 μmol/L; 20% > 1.0 μmol/L	Prof. Opinion	
BLOOD GASES	Reviewed January 2015	Basis	Level
Chloride	± 3 up to 100 mmol/L; 3% > 100 μmol/L	Total Error	Minimal
Glucose	± 0.4 up to 5.0 mmol/L; 8% > 5.0 mmol/L		Desirable
Ionised Calcium	± 0.4 up to 5.0 mmol/L; 8% > 5.0 mmol/L ± 0.04 up to 1.00 mmol/L; 4% >1.00 mmol/L	Imprecision Total Error	Minimal
Lactate	± 0.5 up to 5.0 mmol/L; 8% > 5.0 mmol/L	Imprecision	Optimal
pH	± 0.04	Prof. Opinion	Device
pCO2	± 2.0 up to 34.0 mm Hg; 6% > 34.0 mm Hg	Total Error CO2 CVi	Desirable
pO2	± 2.0 up to 34.0 mm Hg; 6% > 34.0 mm Hg	&CVg	Desirable
Potassium	± 0.2 up to 4.0 mmol/L; 5% > 4.0 mmol/L	Imprecision	Desirable
Sodium	± 3 up to 150 mmol/L; 2% > 150 mmol/L	Total Error	Minimal
Urea	± 0.5 up to 4.0 mmol/L; 12% > 4.0 mmol/L	Imprecision	Desirable
Creatinine	± 8.0 up to 100.0 μmol/L; 8% > 100.0 μmol/L	Imprecision	Minimal
	Deviance of Lancients 2015	Daria	Lawal
CO-OXIMETRY	Reviewed January 2015	Basis	Level
Haemoglobin Concentration	± 5 up to 100 g/L; 5% > 100 g/L	Total Error	Desirable

				1 61
CO-OXIMETRY	Reviewed January 2015	Basis	Level	S
Haemoglobin Concentration	± 5 up to 100 g/L; 5% > 100 g/L	Total Error	Desirable	Te
Fractional Oxyhaemoglobin	± 3 up to 75.0%; 4% > 75.0%	Prof. Opinion		T
Fractional	± 1.0 up to 5.0%; 20% > 5.0%	Prof. Opinion		Fr
Carboxyhaemoglobin	_ 110 up to 51070 2070 * 51070	TTOIL Opinion		FI

BNP	Reviewed January 2012	Basis	Level
NT-Pro BNP	± 25 up to 125 ng/L; 20% > 125 ng/L	Total Error	Optimal
BNP	± 20 up to 100 ng/L; 20% > 100 ng/L	Prof. Opinion	
CSF	Reviewed April 2013	Basis	Level
Albumin	± 0.02 up to 0.1 g/L; 20% > 0.1 g/L	Prof. Opinion	
Glucose	± 0.2 up to 2.0 mmol/L; 10% > 2.0 mmol/L	Prof. Opinion	
Immunoglobulin G	± 0.02 up to 0.10 g/L; 20% > 0.10 g/L	Prof. Opinion	
Lactate	± 0.3 up to 3.0 mmol/L; 10% > 3.0 mmol/L	Prof. Opinion	
Total Protein	± 0.05 up to 0.50 g/L; 10% > 0.50 g/L	Prof. Opinion	
Bilirubin Concentration	± 0.12 up to 0.60 μmol/L; 20% > 0.60 μmol/L	Prof. Opinion	
Xanthochromia-Bilirubin	± 0.002 up to 0.007 AU; 20% > 0.007 AU	Prof. Opinion	
screen			
Xanthochromia – Haemoglobin	± 0.02 up to 0.100 AU; 20% > 0.100 AU	Prof. Opinion	
screen	1 7	-	

ENDOCRINE	Reviewed January 2012	Basis	Level
AFP	± 2 up to 17 kIU/L; 12% > 17 kIU/L	Imprecision	Desirable
Aldosterone	± 24 up to 160 pmol/L; 15% > 160 pmol/L	Imprecision	Optimal
Androstenedione	± 1.5 up to 10 nmol/L; 15% > 10 nmol/L	Total Error	Optimal
CA125	± 6 up to 50 kU/L; 12% > 50 kU/L	Imprecision	Optimal
CEA	± 0.6 up to 5.0 μg/L; 12% > 5.0 μg/L	Imprecision	Desirable
Cortisol	± 15 up to 100 nmol/L; 15% > 100 nmol/L	Imprecision	Optimal
DHEA Sulphate	± 1.2 up to 10.0 μmol/L; 12% > 10.0 μmol/L	Total Error	Desirable
Ferritin	± 4.0 up to 27.0 μg/L; 15% > 27.0 μg/L	Imprecision	Desirable
Folate	± 1.5 up to 6.0 nmol/L; 25% > 6.0 nmol/L	Imprecision	Desirable
FSH	± 1.0 up to 10.0 IU/L; 10% > 10.0 IU/L	Imprecision	Desirable
Growth Hormone	± 1 up to 7 mU/L; 15% > 7 mU/L	Imprecision	Optimal
hCG	± 1 up to 10 IU/L; 10% > 10 IU/L	Prof. Opinion	
Homocysteine	± 1.5 up to 15.0 μmol/L; 10% > 15.0 μmol/L	Total Error	Optimal
17-Hydroxyprogesterone	± 2.0 up to 10.0 nmol/L; 20% > 10.0 nmol/L	Total Error	Optimal
Insulin	± 0.6 up to 5.0 mU/L; 12% > 5.0 mU/L	Imprecision	Optimal
LH	± 1.5 up to 10.0 IU/L; 15% > 10.0 IU/L	Imprecision	Desirable
Oestradiol	± 25 up to 100 pmol/Ll; 25% > 100 pmol/L	Total Error	Desirable
Oestriol(Unconjugated)	± 0.9 up to 6.0 nmol/L; 15% > 6.0 nmol/L	Prof. Opinion	
PTH	± 1.0 up to 8.0 pmol/L; 12% > 8.0 pmol/L	Imprecision	Optimal
Progesterone	± 2 up to 10 nmol/L; 15% > 10 nmol/L	Imprecision	Optimal
Prolactin	± 40 up to 400 mIU/L; 10% > 400 mIU/L	Imprecision	Minimal
SHBG	± 6 up to 50 nmol/L; 12% > 50 nmol/L	Imprecision	Desirable
Testosterone	± 0.4 up to 2.7 nmol/L; 15% > 2.7 nmol/L	Imprecision	Minimal
TSH	± 0.10 up to 0.50 mU/L; 20% > 0.50 mU/L	Imprecision	Desirable
Free T3	± 0.7 up to 3.5 pmol/L; 20% > 3.5 pmol/L	Total Error	Desirable
Free T4	± 1.5 up to 12 pmol/L; 12% > 12 pmol/L	Total Error	Desirable

Basis

- Total Error Diagnosis
 - Can share reference interval
- Imprecision Monitoring
 - Can monitor patient across laboratories

	Monitoring (ALP = 2 x CV _a)	Diagnosis (ALP = TE)
Optimal CV _a = ¼ CV _i TE = 0.125		TE = 0.125 $(CV_i^2 + CV_g^2)^{\frac{1}{2}}$ + 2.33 x ¼ CV_i
Desirable	CV _a = ½ CV _i	TE = 0.250 $(CV_i^2 + CV_g^2)^{\frac{1}{2}} + 2.33 \times \frac{1}{2} CV_i$
Minimal CV _a = ¾ CV _i		TE = 0.375 $(CV_i^2 + CV_g^2)^{\frac{1}{2}} + 2.33 \times \frac{3}{4} CV_i$

	EQA Program	Interlab
Control samples	Different from IQC and in accordance with quality specifications	IQC sample
Sample	Desirable treatment as patient sample	Identifiable immediately
Manufacturer of sample	Not traceable and, if possible, independent	Traceable and conflict of interest
Concentration samples	Unknown and different in the time	Known and the same all the time
Data treatment	Same among participants	Different among participants; selection of results to communicate on the basis of different laboratory criteria
Statistical processing	Entrusted to laboratory professionals	Entrusted to manufacturers (conflict of interest)
Report information	Statistical data and assessment of analytical performance	Only statistical data
Improvement stimulus	High: communication of unsatisfactory performance; advice to resolve problems; promotion of work groups to carry out improvement projects	None
Education and training	Available and continuous	Unavailable
Advisory service to laboratories	Available and continuous	Unavailable
Advisory service to manufacturers		Unavailable
Attention to pre-analytical phase	Possibility of specific surveys	None
Attention to post-analytical phase	Possibility of specific surveys	None
Assessment of clinical cases	Possibility of specific surveys	None

Review

Risk management in laboratory medicine: quality assurance programs and professional competence

Laura Sciacovelli^{1,*}, Sandra Secchiero¹, Lorena Zardo¹, Alessandra D'Osualdo¹ and Mario Plebani^{1,2}

implement procedures to minimize further risks c errors. Quality Assurance Programs (QAPs) represen an important tool that allows us to identify errors an

Opinion Paper

Graham R.D. Jones*, Stephanie Albarede, Dagmar Kesseler, Finlay MacKenzie, Joy Mammen, Morten Pedersen, Anne Stavelin, Marc Thelen, Annette Thomas, Patrick J. Twomey, Emma Ventura and Mauro Panteghini, for the EFLM Task Finish Group – Analytical Performance Specifications for EQAS (TFG-APSEQA)

Analytical performance specifications for external quality assessment – definitions and descriptions

 Table 2: Example of summary description of analytical performance specifications (APS) based on the RCPAQAP General Serum Chemistry

 External Quality Assurance (EQA) Scheme.

- 1. The EQA material is not validated as commutable
- The overall target-setting method for each measurand is shown below. In addition, method, instrument, reagent manufacturer-based consensus targets are provided based on returned results
- 3. The APS are to be applied to each Individual measurement result
- 4. The APS are applied for assessment of total error (i.e. the effects of imprecision and bias combined)
- The rationale for the APS is 'Aspirational' (to Improve performance) where this is required. The response of the laboratory to 'out of range' results should be to review performance and seek Improvement
- 6. The APS are established based on biological variation and state of the art (levels 2 and 3 from Milan conference). The components of biological variation and the level (optimal, desirable, or minimal) are shown below

Measurand	Assignment of target	Analytical performance specifications	Employed component(s) of biological variation	Quality level
S/P-ALT	IFCC reference procedure in a JCTLM-listed reference laboratory	±5 U/L up to 40 U/L; ±12%>40 U/L	Within-individual (Imprecision)	Optimal
S/P-BIcarbonate	Selected well-controlled commercial measuring system by an ISO 15189 accredited clinical laboratories	±2.0 mmol/L up to 20.0 mmol/L; ±10% >20.0 mmol/L	Within- and between- individual (total error)	Minimal
S-Transferrin	Median of laboratories participating in EQA	±0.20 g/L up to 2.50 g/L; ±8% >2.50 g/L	Within- and between- Individual (total error)	Minimal

Further details on the RCPAQAP process used to establish these APS are available [9, 15]

General Serum Chemistry Program – Target Setting Document 2017 – Page 3

FRUCTOSAMINE

2. Consensus survey median for each QAP specimen.

GGT

- 1. IFCC primary reference method.
- Linear regression of values determined by DGKL Reference Institute for levels 2 to 8 and the DGKL assigned value for level 1.

GLUCOSE

- 1. Hexokinase or Glucose Oxidase.
- Linear regression of values determined by WEQAS Reference Laboratory for levels 2 to 8 and the WEQAS assigned value for level 1.

HDL CHOLESTEROL

2. Target set from consensus survey median for levels 1 to 8.

IRON

- 1. Colorimetric-Ferrozine/Ferene or other colour reagent.
- 2. Linear regression of data from selected target setting laboratories.

LACTATE

- 1. Enzymatic, Enzyme Electrode Sensor.
- 2. Linear regression of data from selected target setting laboratories.

LACTATE DEHYDROGENASE

Three values are provided:

<u>LD (L \rightarrow P)</u>

- 1. IFCC reference method.
- Linear regression of values determined by DGKL Reference Institute for levels 2 to 8 and the DGKL assigned value for level 1.

<u>LD (P \rightarrow L) - pyruvate>0.7mmol/L</u>

- 1. Pyruvate Substrate > 0.7 mmolar
- 2. Consensus survey median for each QAP specimen.

LD (P \rightarrow L) - pyruvate<0.7mmol/L and Non-rate reactions

- 1. Pyruvate Substrate < 0.7 mmolar and pyruvate substrates using a non-rate reaction.
- 2. Consensus survey median for each QAP specimen.

Two values are provided:

Lipase (Reference Range > 300 U/L).

- 1. Siemens (Dade Behring) users & Ortho Clinical Diagnostics users.
- Consensus survey median for each QAP specimen Lipase (Reference Range < 300 U/L).
- 1. All other methods (excluding above).
- 2. Consensus survey median for each QAP specimen

LITHIUM

- 1. Flame Atomic Absorption Spectrometry reference method.
- 2. Linear regression of values determined by WEQAS Reference Laboratory.

MAGNESIUM

- 1. Flame Atomic Absorption Spectrometry reference method.
- 2. Linear regression of values determined by WEQAS Reference Laboratory.

OSMOLALITY

2. Consensus survey median for each QAP specimen.

PHOSPHATE

- 1. Phosphomolybdate formation and phosphomolydbdate reduction.
- 2. Linear regression of data from selected target setting laboratories.

POTASSIUM

- Flame Atomic Emission Spectrometry reference method (WEQAS) and Indirect (Diluted) Ion Selective Electrode (selected target setting laboratories).
- 2. Linear regression of data from selected target setting laboratories.

PROTEIN

- 1. Biuret end point with blank or end point no blank.
- 2. Linear regression of data from selected target setting laboratories.

SODIUM

- 1. Flame Atomic Emission Spectrometry reference method.
- 2. Linear regression of values determined by WEQAS Reference Laboratory.

TIBC

2. Consensus survey median for each QAP specimen.

