Traceability in External Quality Assessment:

How Weqas ensures traceability in EQA and stresses its importance to users

David Ducroq

Weqas

Unit 6, Parc Tŷ Glas

Llanishen

Cardiff

UK

www.weqas.com

Programme Design: Lab and PoCT

Serum Chemistry

Lipids / Bilirubin

ED Toxicology

Common Report format (quantitative)

Urine Chemistry / Oxalate & Citrate

Blood Gases / Co-oximetry

Endocrine / Haematinics / Cardiac Marker / BNP

Homocysteine / Bile Acids / Serum ACE / Serum HCG / Porphyrin / Ammonia / CRP / TDM / IS

HbA1c

POCT Creatinine

Urine Drugs of Abuse

Multiple samples are important

- Identifies components of both Imprecision and Inaccuracy (traceability across the measurement range)
- Identifies systematic errors
- Assesses method linearity required for ISO 15189
- Powerful error detection tool

Value of Reference Targets

- Traceable to higher order
- Establishes method traceability for the lab requirement of ISO 15189
- Highlights the pitfalls of using the trimmed overall
 mean as an accuracy target in EQA Schemes
- Useful in the post market vigilance of the IVD -Directive

Detailed in Participants Manual and on website

Reference Methods

Flame Atomic Absorption/ Emission

Spectrometry

- Sodium, Potassium, Calcium
- Magnesium, Lithium

IFCC Enzymes

• AST, ALT, LDH, GGT

• HbA1c * * Provided by IFCC Ref lab, Netherlands

ID-MS

- Progesterone
- •Testosterone
- Cortisol
- •Bile Acids
- Creatinine
- Cholesterol**
- Glucose
- •Urate
- Triglyceride
- •HDL ***

** Currently provided by CDC lab Rotterdam & Weqas Ref Lab

***Currently provided by CDC lab Rotterdam

Drugs Of Abuse / Therapeutic Drug Monitoring: Gravimetric values

Measurand (DOA; Urine)	Range Covered	Measurand (TDM; Serum)	Range Covered
Amphetamine	0 – 3000 μg/L	Amikacin	0 – 35 mg/L
Benzodiazepine	0 – 1000 μg/L	Carbamazepine	0 – 20 mg/L
Barbiturate	0 - 1000 µg/L	Digoxin	0 – 6 ug/L
Buprenorphine	0 - 50 μg/L	Gentamicin	0 - 20 mg/L
Cocaine	0 - 1000 µg/L	*Lamotrigine	0- 30 mg/L
Cannabis	0 - 150 μg/L	Lithium	0 – 2.5 mmol/L
6-Acetylmorphine (heroin)	0 - 50 μg/L	Methotrexate	0 -1.5 umol/L
Ketamine	0 - 3000 µg/L	Phenobarbital	0 - 65 mg/L
Methadone	0 - 1000 µg/L	Phenytoin	0 - 30 mg/L
EDDP	0 - 1000 µg/L	*Teicoplanin	0 - 70 mg/L
Methamphetamine	0 - 3000 µg/L	Theophylline	0 - 30 mg/L
Opiates	0 – 3000 μg/L	Tobramycin	0 - 15 mg/L
Phencyclidine (PCP)	0 - 100 μg/L	Valproic acid	0 - 175 mg/L
Tricyclic antidepressants	0 - 3000 µg/L	Vancomycin	0 - 50 mg/L
MDMA	0 – 3000 μg/L		
Amphetamines Group Screen	Qualitative only		

- High order drug/metabolite gravimetrically added to base material
- Pools mixed with the negative base material to produce a panel of intermediate pools.
- The "weighed-in" value incorporating purity of the spike used as target value.
- All microbalances are calibrated by ISO17025 accredited organisation Weqas

The WEQAS Report Target values used in Statistical Analysis

Reference values – used for bias plot /SDI calculation and σ score

Method mean – used for SDI calc if no ref and n>8

Hierarchy

Overall mean – used for SDI calc and bias plot if no ref and n <8

Analyser mean – on report for information only

Analytical Specification Requirements

The National QA Advisory Panel in the UK has devised a **M**inimum **A**nalytical **P**erformance **S**pecification (MAPS) which has been adopted since 2010

	Concentration	Allowable Bias vs Reference Value	Allowable variability	Allowable Total Error
Total Cholesterol	5.0 mmol/L [Desirable ¹]	4.00%	2.70%	8.50%
HDL-Cholesterol	1.0 mmol/L [Desirable ¹]	5.20%	3.60%	11.10%
	1.0 mmol/L [Achievable]	10.00%	3.60%	15.90%
Glucose	7.0 mmol/L [Desirable ¹]	2.20%	2.90%	6.90%
	2.0 mmol/L [Achievable]	+/- 10% absolute		
HbA1c	50 mmol/mol [Desirable ¹]	2.2%*	2.5%*	6.3%*
	50 mmol/mol [Achievable]	3.60%	2.50%	7.70%
Creatinine	75 umol/L [Desirable ¹]	3.80%	2.70%	8.20%
	75 umol/L [Achievable]	5.00%	2.70%	9.50%

	ab	Code: AE	 Section: 	Architect	T2 ·	Instrument:	Architec
--	----	----------	------------------------------	-----------	------	-------------	----------

Total Error

SDI is a measurement of your total error and will include both in

.... Median ___ Your SDI 97.5th

Please note: Linear regression uses CF corrected data

This Distribution PQ

Assesses how far the lab's results are away from the "true" value and general performance over time.

Previous Distributions

Traceability Communication to Users

Reports sent to participants, published at conferences, journals, website etc.

Annual Participant Meeting often features talks on traceability

Example: Creatinine (presented at Euromedlab, Athens)

EQA Assigned Method Groups

Overall Method Groups Bias Plot

Weqas

Jaffe ID-MS Traceable Bias Plot

Enzymatic: Bias Plot

Weqas

In Summary

- Laboratories are scored against Reference Measurement
 Values where available
- Gravimetric spiking of material with higher order material is used as an alternative traceable target
- Both Reference Measurement and gravimetric target values aid in identification of methods where traceable calibration may be an issue
- Traceability of methods is therefore assured aiding ISO
 15189 accreditation for laboratories
- The use of reference targets as opposed to comparison with mean data eloquently highlights the variability of results and reduces the pitfalls of laboratory trimmed data comparisons

Thank you for your attention

