

HbA_{1c} Measurement by IDMS – Current Situation and Future Development

2017 JCTLM Member's and Stakeholder's Meeting Accurate Results for Patient Care Workshop 2017

> Dr Qinde Liu Chemical Metrology Division Applied Sciences Group Health Sciences Authority

5 December 2017

- Importance of haemoglobin A_{1c} (HbA_{1c}) measurement and its standardisation.
- Principle and procedure of IDMS method for HbA_{1c} measurement.
- Current situation of IDMS method.
- Possible key points to ensure the accuracy of IDMS method.
- Planned CCQM comparisons on HbA_{1c} measurement

Map 3.1 Estimated age-adjusted prevalence of diabetes in adults (20-79), 2015

International Diabetes Federation. IDF Diabetes, 7 ed. Brussels, Belgium: International Diabetes Federation, 2015. <u>http://www.diabetesatlas.org</u>

Diabetic Condition in Singapore

- Singapore has a high prevalence of diabetes.
- Aging Population.
- Some complications resulting from diabetes include cardiovascular disease, blindness, kidney failure, and lower limb amputation.²

¹ International Diabetes Federation. IDF Diabetes, 7 ed. Brussels, Belgium: International Diabetes Federation, 2015. <u>http://www.diabetesatlas.org</u> ² IDF. Complications of Diabetes. <u>http://www.idf.org/complications-diabetes</u>

HSA Importance of HbA_{1c} Measurement

 HbA_{1c} is an important biomarker for the diagnosis of diabetes mellitus.

WHO recommendation: a $\rm HbA_{1c}$ level of 6.5% as the cut-off point for diagnosing diabetes.

 HbA_{1c} is an effective biomarker for monitoring the long term blood glucose level in diabetic patients to ensure proper treatment.

In Singapore, one in nine (11.3%) residents aged 18 to 69 has been diagnosed with diabetes mellitus. HbA_{1c} measurement is used to monitor glycemic control to ensure proper treatment and management of the disease.

- HbA_{1c} < 7%: optimal glycemic control Treatment: mainly nutrition therapy and exercise
- HbA_{1c} 7 9%: "sub-optimal" moderate glycemic control Treatment: mainly metformin therapy
- HbA_{1c} > 9%: "poor" glycemic control Treatment: metformin therapy, alternatively insulin therapy

Standardisation of HbA_{1c} Measurement

- Different reference systems with insufficient consistency with one another:
 - US [National Glycohemoglobin Standardisation Program (NGSP)]
 - Japan [Japanese Diabetes Society (JDS)/Japanese Society of Clinical Chemistry (JSCC)]
 - Sweden
- IFCC reference method the accuracy-based reference method for standardisation of HbA_{1c} measurement.
 - Purified HbA_0 and HbA_{1c} as the calibration standards
 - Purity of calibration standards determined by ion exchange chromatography
- Significant biases were found between IFCC and other reference systems.

Master equations are used for conversion, for example: NGSP (%)= 0.09148 × IFCC (mmol/mol) + 2.152

 It would be desirable to have an alternative accuracy-based reference method as an independent support for the IFCC reference method.

IDMS Method for HbA_{1c} Measurement vs IFCC Reference Method

- Similarity
 - Based on proteolysis of HbA₀ and HbA_{1c}, using endoproteinase Glu-C.
- Calibration Standards
 - IDMS Method: Hexapeptides as calibration standards (purity determined by another step of IDMS using amino acid CRMs as the calibration standards)
 - **IFCC Reference Method:** Purified HbA₀ and HbA_{1c} as calibration standards.
- Quantification
 - IDMS Method: Separate quantification of HbA₀ and HbA_{1c} by IDMS method, using two signature hexapeptides as the calibration standards. HbA_{1c} Level = HbA_{1c} /(HbA_{1c} + HbA₀)
 - IFCC Reference Method: External calibration with six levels of HbA_{1c} (0% to 15%). Calibration solutions are prepared by mixing purified HbA₀ and HbA_{1c} solutions.

IDMS Procedure for Determination of the Purity of Hexapeptides as Calibration Standards (VEc and GEc)

Traceability of IDMS Method

Bias between IDMS Method and IFCC Reference Method?

 Average relative deviation between IDMS method and IFCC reference method: 6.5%

T. Nakanishi et al., Clin. Chem., 2003, 49, 829-831.

 Average relative deviation between IDMS method and IFCC reference method: 3.4%.

P. Kaiser et al., Clin. Chem., 2010, 56, 750-754.

Bias between IDMS Method and IFCC Reference Method?

- All IDMS results were found to be lower than ReCCS's certified values with a deviation of about 3% (estimated from this graph)
- Reported MU (5.6 6.0%) can cross y=x
- Negative bias?

T. T. H. Tran et al., J. Chromatogr. A, 2017, 1513, 183-193.

All Rights Reserved, Health Sciences Authority

- With the exception of HSA, all other laboratories used IFCC reference method.
- Relative expanded uncertainties of IDMS method: 2.6 2.8% (IFCC) or 1.6 2.2% (NGSP).
- Inter-laboratory CV in RELA 2013 and 2014: 1.6 3.2% (IFCC) or 1.2 1.9% (NGSP).
- Desirable CVs of HbA_{1c} measurement (NGSP): 2% (intra-laboratory) and 3.5% (Inter-laboratory).
- IDMS method may be comparable with IFCC reference method.

H. Liu et al., Anal. Bioanal. Chem., 2015, 407, 7579-7587.

Preliminary Comparison of IDMS Methods (LNE vs HSA)

Table 1 Concentrations of VE and GE peptides in RELA 2014 External Quality Assessment materials using ID-LC/MS: comparison of the results published by Liu et al. (HSA) [3] and by LNE

Category	2014 RELA A			2014 RELA B			
	Mean		SD	Mean		SD	
VE concentration (µmol/g)							
HSA	3.171		0.021	3.264		0.026	
LNE	2.983		0.112	3.040		0.091	
Bias (LNE vs HSA)		-5.9%			-6.9%		
GE concentration (µmol/g)							
HSA	0.233		0.002	0.118		0.001	
LNE	0.222		0.005	0.109		0.003	
Bias (LNE vs HSA)		-4.8%			-7.5%		
HbA1c (mmol/mol)							
HSA	68.50		1.80	34.75		0.93	
LNE	69.38		2.17	34.48		1.13	
Bias (LNE vs HSA)		1.3%			-0.8%		

- Comparable HbA_{1c} results achieved by HSA and LNE, but significant deviations observed for VE and GE results (about 6%).
- VE and GE peptide calibrators were from different sources and the purities were independently assessed by HSA and LNE.
- Smaller variation may be expected if the same calibrators are used.

N. Clouet-Foraison et al., Anal. Bioanal. Chem., 2017, 407, 5789-5790.

Category	2015 RELA		2014 RELA		2013 RELA		2012 RELA		2011 RELA	
	Sample A	Sample B								
Maximum result (mmol/mol)	36	62.9	69	36.6	36.3	85.46	52.8	69.69	86.7	45.03
Minimum result (mmol/mol)	32.13	58.83	65.23	32.9	33.62	82	49.47	66.27	83.95	41.68
Variation between minimum and maximum results	-10.8%	-6.5%	-5.5%	-10.1%	-7.4%	-4.0%	-6.3%	-4.9%	-3.2%	-7.4%
Average variation	-6.6%									

Table 1 Variati	ns between th	e minimum	and maximum	values ir	1 the	2011	to 2	015 REL	A
-----------------	---------------	-----------	-------------	-----------	-------	------	------	---------	---

- Average variation of the results from Approved IFCC Network Laboratories for HbA_{1c} using same calibrators can be as large as 6.6% (the largest variation: 10.8%)
- All IFCC Network Laboratories that employed the IFCC reference procedure for HbA_{1c} measurement were using the same batch of calibrators.

H. Liu et al., Anal. Bioanal. Chem., 2017, 409, 5791-5793.

Bias between IDMS Method and IFCC Reference Method?

Two Questions:

- Is there systematic bias between IDMS method and IFCC reference method due to different calibration standards (peptides vs protein)?
- Is comparability between these two methods achievable by optimising the procedure of IDMS method?

Condition	1	2	3
6N HCI	\checkmark	×	×
6N HCl with 1% phenol additive	×	\checkmark	\checkmark
Temperature (°C)	110	120	120
Time (h)	69	24	70

H. Liu et al., Anal. Bioanal. Chem., 2015, 407, 7579-7587.

All Rights Reserved, Health Sciences Authority

Possible Key Factor: Condition for Peptide Hydrolysis

	Hydrolysis Conditions
T. Nakanishi <i>et al.</i> , Osaka Medical College	Not reported
P. Kaiser <i>et al.,</i> INSTAND e.V.	6 M HCl, 120 °C, 65 h
J. Bi et al., NIM *	6 M HCl, 110 °C, 48 h
H. Liu <i>et al.,</i> HSA	6 M HCl with 1% phenol, 120 °C, 24 h
N. Clouet-Foraison <i>et al.,</i> LNE	6 M HCl with 1% phenol, 120 °C, 24 h
T. T. H. Tran <i>et al.,</i> KRISS	8 M HCl, 120 °C, 48 h

* J. Bi et al., Anal. Bioanal. Chem., 2012, 403, 549-554.

Amador

rearrangement

= 0

но-с-н

H - C - OH

H-C-OH

CH₂OH

peptide bond

• Amino acids with "Inert" side chain: valine, proline, leucine.

H = C = OH

H-C-OH

H-C-OH

CH₂OH

но-с-н

HO~C-F

H - C - OH

H-C-OH

CH₂OH

- For GE, valine gave much lower results since the C-N amine bond between glucose and valine differs from a regular peptide bond. Hence, the cleavage of valine during hydrolysis could be affected.
- Proline and leucine were chosen for quantification.

Possible Key Factor: Selection of Amino Acid for Quantification

	AA for Quantification
T. Nakanishi <i>et al.,</i> Osaka Medical College	Not reported
P. Kaiser <i>et al.,</i> INSTAND e.V.	Leu, Pro, Thr
J. Bi <i>et al.,</i> NIM	Leu, Val
H. Liu <i>et al.,</i> HSA	Leu, Pro
N. Clouet-Foraison <i>et al.,</i> LNE	Leu, Pro
T. T. H. Tran <i>et al.;</i> KRISS	Leu, Pro

Possible Key Factor:

HSA Identification and Quantification of Peptide Impurities

- VE was found in GEc as a major impurity.
- Another step of IDMS measurement was performed to quantify the amount of VE in Gec using VEc as calibration standard.
- The purity value of GEc from IDMS measurement for amino acids was corrected accordingly.
 - The purity of VEc was found to be satisfactory.
 - The purity value of VEc from IDMS measurement for amino acids was used without correction.

H. Liu et al., Anal. Bioanal. Chem., 2015, 407, 7579-7587.

Identification of each peptide impurity using Orbitrap or QTOF is necessary if more impurities are found in HPLC.

Possible Key Factor: HSA Identification and Quantification of Peptide Impurities

	Impurity Identified	Method of Quantification
T. Nakanishi <i>et al.,</i> Osaka Medical College	Not reported	Not Reported
P. Kaiser <i>et al.,</i> INSTAND e.V.	Not reported	PICAA
J. Bi <i>et al.,</i> NIM	VE as impurity in GE	PICAA
H. Liu <i>et al.,</i> HSA	VE as impurity in GE	PICAA
N. Clouet-Foraison et al., LNE	VE as impurity in GE	PICAA
T. T. H. Tran <i>et al.;</i> KRISS	VE as impurity in GE	PICAA

- How much do other unidentified impurities affect the results?
- Will mass balance approach be more accurate and reduce the MU?

PICAA: Determination of total peptides and subtraction of impurities using amino acid analysis

Possible Key Factor:Is Complete Proteolysis Necessary?

Optimisation of the amount of endoproteinase Glu-C. The error bar of each point was estimated using the pooled CV of VE or GE results in haemolysate samples.

Possible Key Factor: Is Complete Proteolysis Necessary?

	Glu-C Amount (μg per mg Hb)
T. Nakanishi <i>et al.,</i> Osaka Medical College	50
P. Kaiser <i>et al.,</i> INSTAND e.V.	10 (same as IFCC reference method)
J. Bi <i>et al.,</i> NIM	~ 6.7 (assume 15 g/dL Hb in sample)
H. Liu <i>et al.,</i> HSA	125
N. Clouet-Foraison <i>et al.,</i> LNE	125
T. T. H. Tran <i>et al.;</i> KRISS	~ 13.3 (assume 15g/dL Hb in sample)

Possible Key Factor:Is Complete Proteolysis Necessary?

Fig. 6. Optimization of enzyme digestion time. (A) Absolute measured concentration of HbA1c, (B) ratio of HbA1c-to-HbA0with different digestion times.

\simeq 13.3 μg Glu-C per mg Hb

T. T. H. Tran et al., J. Chromatogr. A, 2017, 1513, 183-193.

- Proteolysis was incomplete at 40 h (maybe also 50 h) digestion time.
- HbA_{1c}/HbA₀ ratio was stabilised at 20 h digestion time onwards.

All Rights Reserved, Health Sciences Authority

Planned CCQM PAWG Comparisons

Comparisons jointly coordinated by BIPM, NIM and HSA.
2018: CCQM-K115.c Key comparison on peptide purity of GE.

CCQM-K115.2018 Key Comparison on peptide purity of VE. •Materials have been prepared by HSA, homogeneity and stability studies are being conducted by BIPM.

•Institutes that expressed interest:

LNE, KRISS, PTB, NRC, NMISA, INMETRO, NMIJ, VNIIM

•Coordinating laboratories to use both PICAA and mass balance methods •Participating laboratories to use PICAA method.

Comparisons jointly coordinated by LNE, HSA, KRISS, and NIM.
2019/2020: Key comparison or pilot study on determination of HbA_{1c} using IDMS method.

•RELA samples as the study materials.

•GE and VE materials in CCQM-K115.c and CCQM-K115.2018 as the calibration materials.

Application of IDMS for HbA_{1c} Measurement

HSA EQA Programme

- HbA_{1c} was first included in the 2013 EQA Programme.
- The main objective of the programme is to provide metrologically traceable assigned values to evaluate the results of the participating clinical laboratories.
- Since then, the number of participating laboratories on HbA_{1c} measurement has increased more than twofold (from 15 labs in 2013 to 36 labs in 2017).
- All target HbA_{1c}values are independently determined by HSA using IDMS method

Certification of CRM

• The materials in 2017 HSA EQA Programme have been developed as Certified Reference Materials.

HRM-3003B HbA_{1c} in Frozen Human Blood (two concentration levels).

- HbA_{1c} CRMs from NIM and KRISS were also certified using IDMS method.
- CRMs from other institutes?

- The IDMS method for HbA_{1c} may be comparable with IFCC reference method when possible key factors are taken into consideration.
- The IDMS method can be regarded as an alternative accuracybased reference method for HbA_{1c} measurement, which provides an independent support for the IFCC reference method.
- The IDMS method has been used to provide the assigned/certified values for the HSA EQA Programmes and CRMs for HbA_{1c}.
- CCQM comparisons have been planned to assess the purity of the peptide calibrators and IDMS results of HbA_{1c} from different NMIs/DIs, and to further evaluate the comparability between IDMS method and IFCC reference method.

HSA Colleagues:

- Dr Wong Lingkai, Scientist, Chemical Metrology Laboratory
- Ms Liu Hong, Scientist, Chemical Metrology Laboratory
- Ms Sharon Yong, Scientist, Chemical Metrology Laboratory
- Dr Lee Tong Kooi, Division Director, Chemical Metrology Division
- Dr Teo Tang Lin, Laboratory Director, Chemical Metrology Laboratory

Planning and Organisation of CCQM Comparisons:

- •Dr Ralf Josephs and Dr Robert Wielgosz, BIPM
- •Dr Vincent Delatour, LNE
- •Prof Hongmei Li and Dr Liqing Wu, NIM
- •Dr Sang-Ryoul Park and Dr Ji-Seon Jeong, KRISS

Thank you