

Medicines & Healthcare products Regulatory Agency

SoGAT – Update on Activities

Neil Almond

Standardisation of Genome Amplification Techniques (SoGAT) - AIMS

•Lead the development of WHO Reference Reagents and International Standards (ISs) suitable for NAT and serological infectious disease assays (for screening of blood donations, plasma pool testing and diagnostics)

•Provide guidance on the preparation of external control materials calibrated against the WHO ISs to be included in each run to ensure the reliability of the results

•Understand the relationship between clinical samples and the WHO ISs

•Promote standardisation of NAT and serological assays through inter-laboratory comparison studies or collaborations with EQA providers

•Provide a forum for the exchange of information to develop standards to support new technologies

•Provide a forum to react quickly to the standardisation needs of emerging or re-emerging pathogens

Activities of SoGAT

Forum for scientific and clinical experts, EQA providers and standards producers

- To prioritise public health/clinical need for standards
- To review and assess the impact of new technologies
- To provide early technical expert review of data from collaborative studies for primary standards
- To review issues pertaining to existing standards
- To disseminate outputs to the wider scientific community

Recent WHO Int'l Standards for NAT

New Standards

- JC DNA (14/114)
- Zika RNA (PEI)
- BK DNA (14/212) Dengue 1-4 (CBER)
- Ebola (2 reagents [15/222-NP/VP35/GP] [15/224-VP40/L]
- HHV6

- Chikungunya (PEI)

Replacement Standards

- 4th IS for HIV-1 RNA
- 3rd IS for HAV
- 4th IS for HBV

Ongoing Projects

- HSV1/2
- -VZV
- hu Adenovirus Plasmodium vivax MERScoV
 - Trypanosoma cruzi Enterovirus - WNV
- - TB NAT?

New Priorities – Emerging Infections

- Ebola (2014), Zika (2015) highlights need for preparedness
- Rapid response in diagnostics development benefits from availability of existing standards
- The work of SoGAT supported by WHO, InnovateUK, CEPI
- Identifying the next outbreak is best guess
- Need is beyond NAT techniques alone

New Priorities - AMR

- Anti-Microbial Resistance is one of the greatest challenges facing modern medicine
- Multiple pathways to overcome this issue
 - New antibiotics
 - Better use of antibiotics
 - AMR diagnostics
- Point of Care diagnostics
 - POC/POI use of NAT assays for respiratory viruses
- WHO ECBS endorsed projects to establish Int'l Standards for FluA/FluB/RSV

New Priorities – AMR

- Antimicrobial Resistance also encompasses
 impact of anti-viral resistance
- Accurate/harmonised calibration critical for long term management of chronic viral infections(HIV)/informing virus cure (HCV)
- Detection of specific variants as important as generic load

1st IS for BK Virus – harmonises results

MinION (rolling circle) Sequencing reveals BK IS is heterogeneous

NIST – ddPCR Analysis of BK IS

(Megan Cleveland – NIST)

WHO 14/212 BK IS 5.0E+07 4.5E+07 4.0E+07 3.5E+07 copies/mL 3.0E+07 2.5E+07 212 cut 2.0E+07 212 uncut 1.5E+07 1.0E+07 5.0E+06 0.0E+00 BK-A BK-B BK-D BK-E BK-F BK-G VP2 **T**-antigen

Linear

Optimal Design of Int'l Standard

- Nucleic Acid versus Whole Pathogen in Clinical Matrix?
- Neither approach is perfect

Data from CMV Collaborative Study -2010

Candidate 1- plasmid construct

Candidate 2- Whole virus

Similar data from Interim Ebolavirus IS est 2015 and JC IS est 2015 Consider format of in tube calibrants

1st IS for BK Virus – harmonises results

cf Toxoplasma Standard – single and multi-copy genes standardised

1st IS for HHV-6 - Improving agreement

Sample	Assay	n	Mean	SD	GCV	Min	Max
HHV-6B	Quantitative	29	7.86	0.55	259%	6.16	8.99
Relative pote	ncy						
Sample	Reference	n	Mean	SD	GCV		
HHV-6B	А	34	0.13	<u>0.31</u>	<u>104%</u>		

1st IS for HHV-6 - Matrix assessment

KRAS Collaborative Study Results

- *KRAS* genotypes agreed (8/8 materials)
- Concordance (medians): MassARRAY<Sanger<Pyro<dPCR & NGS

Conclusions

- SoGAT continues in an ongoing programme to harmonise data from NAT based assays for infectious disease diagnostics
 - Priorities are driven by health need and health impact
 - Endeavours to respond to new developments quickly
- Programme of standards development for next 5/6 years along with replacement programmes for popular reagents.
- Principles established for infectious agents now being applied elsewhere eg Genomics
- Key phase of work is the dissemination of the progress and materials made and the impact that their use can bring to improving public health and clinical management.

Acknowledgements

NIBSC **Clare Morris Jacqueline Fryer** Phil Minor Sheila Govind **Rehan Minras** Graham Prescott David Padley

NIST Megan Cleveland Peter Vallone

SoGAT Ctte members

Collaborative Study Participants

Jenny Boyle