Implementing Traceable Calibration for Heterogeneous Analytes

Abbott Laboratories AdvaMed Representative

15 Dec 2004 JCTLM David Sogin: Abbott Laboratories

Diagnostic Tests Serve to Improve the Probability of a Correct Diagnosis

- How is the test going to be used
- What type of information
 - Qualitative or Semi-quantitative (numerical signal generated used to determine a positive cutoff)
 - Quantitative measurement of a biological activity
 - Quantitative value of the amount of material

Types of Biological Assays

- Use of living organisms to test a sample
- Measuring the biological function contained within the samples
 - Coagulation tests
 - Enzyme activities
 - Complement Fixation
- Identification of infected and disease free populations
- Estimating the amount of a biological marker-usually protein

Why do we care about Traceability?

Traceability is an approach to standardize assay results through calibration to a common reference material or reference method.

If we can measure the "true" value we should have comparability.

What do we Measure?

- A Protein is identified as a marker that can yield information on a disease state.
- Across different individuals a protein shares common attributes
- Usually no assay can measure the attributes as a whole
- Obstacles to defining a common attribute
- Need to define what is being measured

Defining the Measurand

- Define the analyte as Protein X with the measurand expressed as moles (or mass) per unit volume.
- The measurand we actually have for most immuno-assays using monoclonal antibodies is the following:
 - The amount of protein captured by epitope "A"
 - Detect the amount of epitope "B" detected by the signal generating end of the assay.

Immunological Reactions are Complicated but do follow Chemical Kinetics

15 Dec 2004 JCTLM

Calibration Versus Standardization

- Belief is that traceability can result in comparability of results across time and place. - Usually works with small molecules
- With large biological markers, the standardization is often driven by the first assay to market
- All subsequent assays use the predicate device to drive standardization
- International standards that follow can fall into a "Standardization Trap"

The Standardization Trap

- Have a collection of assays exist that do not have well anchored or traceable calibration.
- Introduce a material for use as the basis of calibration without taking into account the actual measurement equations that may have been developed to achieve some level of harmonization.
- Do not sufficiently characterized materials (including materials and matrix) or pay attention to their generation of signal in relationship to human specimens

Commutability

- An attribute of the calibration (reference) material not the result
- Manufactures must establish that their calibrators are commutable across different lots of reagents and instruments for which the calibrator is intended.
- The standard need not be identical to the intended analyte, it must simply maintain a constant numerical relationship with patient samples.
- International Standards must demonstrate that they are commutable to some level.

Commutability Starts with Specimens

15 Dec 2004 JCTLM

David Sogin: Abbott Laboratories

Replacement Standards Create a Dilemma for Reported Results

Compare Standard	IMx % Difference	Architect % Difference
Edition 1 to 2	8-10	23
Edition 2 to 3	5-14	23-32
Edition 3 to 1	15-22	46-54

15 Dec 2004 JCTLM

What we Ultimately Need for the Diagnosis

Laboratories require assays that will rank order patient samples with a consistent relative quantitative relationship. A recognized biological reference standard should facilitate maintaining that rank order through calibration of the available assays.

Traceable calibration may not be sufficient.

Ideal System for Calibration and Validation – Small Molecule Example

- Cortisol Standards from IRMM
 - Value assigned by LC-MS to within 2%
 - Not ideal since concentrations do not cover full range of the assay
 - A complete set of samples that have values assigned and can form the basis of a validation study

An Approach to Replacing Existing Standards

- Assign a preliminary value to a new standard.
- Manufactures prepare calibrators with both the new and earlier recognized standard.
- Provide a common set of authentic human specimens for the analyte with minimum additions
- All instrumentation to be run with curve fitting weights as appropriate but with any post calibration factors removed.
- Report results for the the panel samples based on both the old and new standards and relate to specimen panel.

We All Desire the Same "Result"

- Over space and time the same reported result will consistently indicate aid in an unambiguous diagnosis.
- Our customers believe in SI units. Their perception is one of authenticity.
- Manufacturers will actively participate in effort of standardization through calibration
- Probability of success increases with the degree of participation of all interested parties in planning, execution and interpretation of the results.

