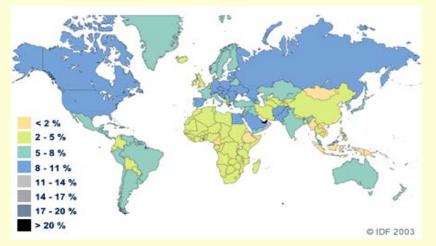


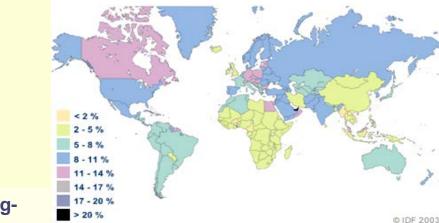
Impact of Reference Measurement Systems on Clinical Evidence : HbA_{1c} and Diabetes

Pr Philippe GILLERY, MD, PhD

IFCC Scientific Division ViceChair


Laboratory of Pediatric Biology and Research, University Hospital FRE CNRS / URCA n°3481, Faculty of Medicine Reims, France

JCTLM Members and Stakeholders Meetings at BIPM December 4th, 2013


Why is HbA_{1c} important in diabetes mellitus ?

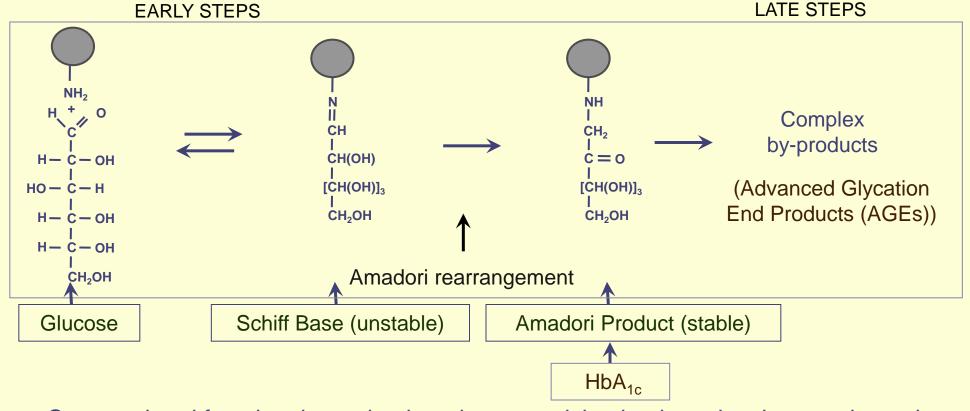
Diabetes Mellitus : a "non infectious epidemic disease"

Prevalence in 2012

371 million patients

552 million patients (+51%)

Estimation in 2030

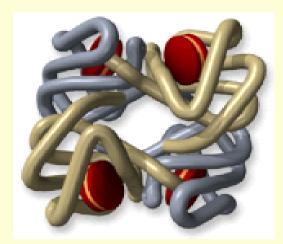

- Challenge : to prevent or delay severe degenerative longterm complications
- Necessity : optimal metabolic control (direct link between glycemic control and occurrence of complications)

HbA_{1c} : a major tool

HbA_{1c} : a glycated protein

Nonenzymatic glycation :

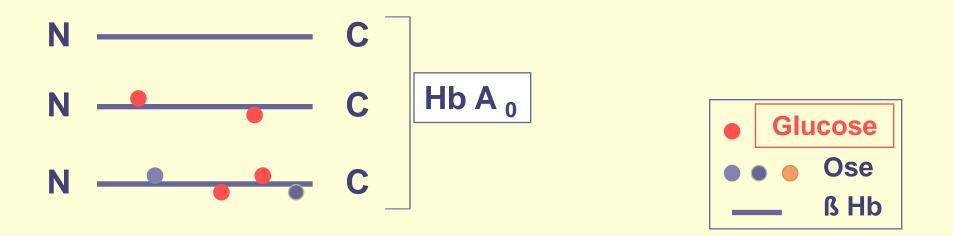
- Spontaneous binding of sugars (glucose) and by-products on aminogroups of proteins
- Cumulative and irreversible process related to red blood cell lifespan (120 days) and glucose concentration

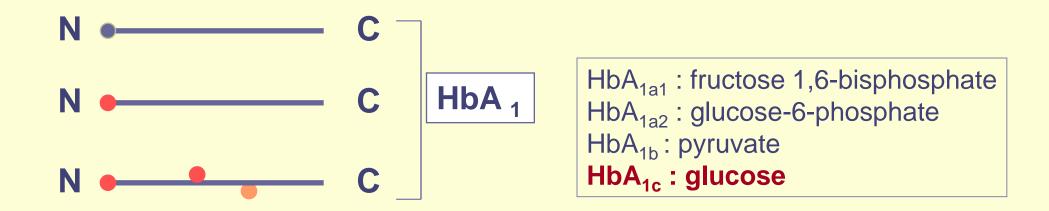

 Structural and functional protein alterations : participation in molecular protein ageing and involved in pathology

December 4th, 2013

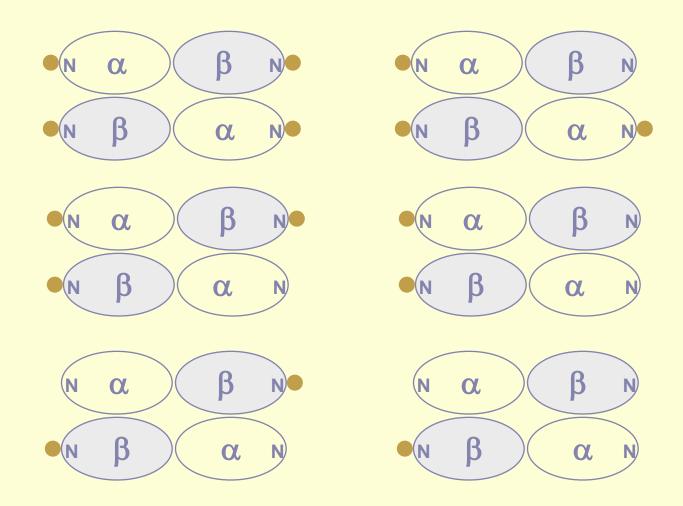
Nonenzymatic glycation of HbA

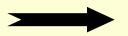
Preferential glycation sites


Hb A (\alpha_2\beta_2) $\alpha = 141$ aminoacids $\beta = 146$ aminoacids



β **- Val - 1**


- α Lys 16
- β Lys 66
- β Lys 17
- α Val 1
- α Lys 7
- β Lys 120


Heterogeneity of glycated HbA

The different theoritical forms of HbA_{1c}

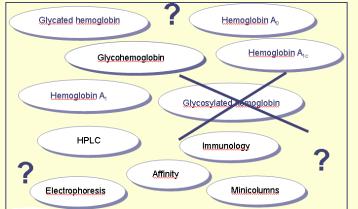
Necessity of a strict definition for standardization purpose

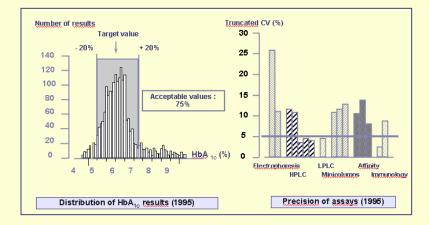
HbA_{1c} : the gold standard of diabetic survey

 Relationship HbA_{1c} / degenerative complications of diabetes mellitus (DCCT and UKPDS large-scale studies)

- HbA_{1c} : retrospective and cumulative index of glycemic balance (4-8 weeks before sample)
- Reference values and therapeutic targets
 - ✓ Reference Range : 4 6% of total Hb
 ✓ Good Glycemic Control : < 6.5% (T2D) < 7.0% (T1D)
 ✓ Poor Glycemic Control : > 8.0%
- Note: HbA_{1c} values were established with reference to the NGSP standardization program (USA/international, non specific "reference method")

HbA_{1c} use before standardization


Disorders in terminology and concepts


Variable quality of methods

Glycated hemoglobin language : another tower of Babel

First quality control assessment in France (1995)

The conditions of the international standardization of HbA_{1c} assays

Prerequisite : Selection of robust field methods

Clinical Chemistry 57:2 205–214 (2011)

Reviews

Status of Hemoglobin A_{1c} Measurement and Goals for Improvement: From Chaos to Order for Improving Diabetes Care

Randie R. Little,^{1*} Curt L. Rohlfing,¹ and David B. Sacks^{2,3*} for the National Glycohemoglobin Standardization Program (NGSP) Steering Committee

REVIEW ARTICLE

Measurement of Hemoglobin A_{1c}

A new twist on the path to harmony

DAVID B. SACKS, MB. CHB. FRCPATH

2674 DIABETES CARE, VOLUME 35, DECEMBER 2012

care.diabetesjournals.org

Clinica Chimica Acta 418 (2013) 63-71

Contents lists available at SciVerse ScienceDirect

Clinica Chimica Acta

journal homepage: www.elsevier.com/locate/clinchim

Invited critical review

The long and winding road to optimal HbA1c measurement

Randie R. Little*, Curt L. Rohlfing

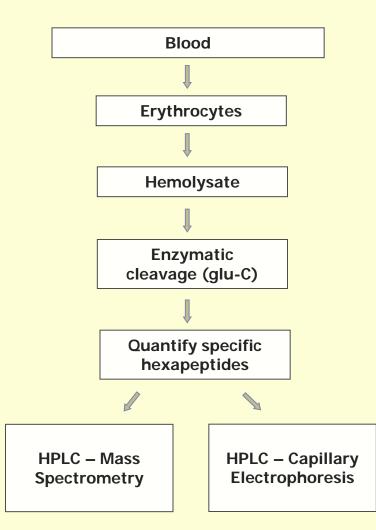
Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, One Hospital Dr., Columbia, MO, United States

The conditions of the international standardization of HbA_{1c} assays

- Prerequisite : Selection of robust field methods, achieved by using intensive proficiency testing and quality assurance schemes
- Rationale : The NGSP standardization program previously used in most clinical studies (for establishing clinically meaningful values)
 - ✓ was based on a non specific reference method for HbA_{1c} assay (ion-exchange chromatography)
 - although having international activities, was only one national program (USA) among other standardization programs (Japan-Sweden)
 - ✓ could not garantee long-term traceability (valid permanent anchor)

The standardization process

- International standardization (achieved by IFCC)
- Aim : Definition of the Hb species measured and of the measurand (HbA_{1c} or glycated Hb ?)
 - Definition and validation of RMP
- 1990s–2000s : IFCC Working Group on HbA_{1c} standardization
- 2002 : The definitive IFCC Reference Method


- Glycated species measured : HbA_{1c}
 - Clearly defined biochemical structure
 - Nonenzymatic binding of glucose
 - ✓ N-terminal extremity of HbA ($\alpha_2\beta_2$) β chains
 - ✓ Amadori rearrangement (glucose \rightarrow deoxyfructose)
 - ✓ $HbA_{1c} = N-(1-deoxyfructose-1-yl) \beta$ chain of hemoglobin

= DOF-hemoglobin (DOF-Hb)

Primary reference materials : Purified HbA₀ and HbA_{1c}

Global IFCC standardization

- Reference method (IFCC) :
 HPLC/MS or HPLC/CE
- Measurand : β-N-terminal
 hexapeptide [(glycated vs non
 glycated (mmol HbA_{1c}/mol HbA₀ + HbA_{1c})]

Jeppsson et al., Clin. Chem. Lab. Med., 2002, 40:78-89

Effect on standardization on long-term stability

- RMP maintained by an international IFCC network of approved laboratories : a valid anchor (especially for calibration of field methods by manufacturers)
- More than 10 years of experience

Missions of the IFCC Network HbA_{1c}

- Guarantee continuity of the IFCC Reference Measurement Procedure (IFCC-RMP)
- Make HbA_{1c} assays wordwide traceable to the IFCC-RMP

IFCC Network Labs HbA_{1c} in 2013

16 approved laboratories

Japan: Tokyo Prof. Izumi Takei

Japan: Kanagawa Dr. Tadao Hoshino Dr. Yashihiro Hishinuma

India: Calcutta Dr Bhaskar Bhattacharya

South Korea: CDC Dr Junghan Song

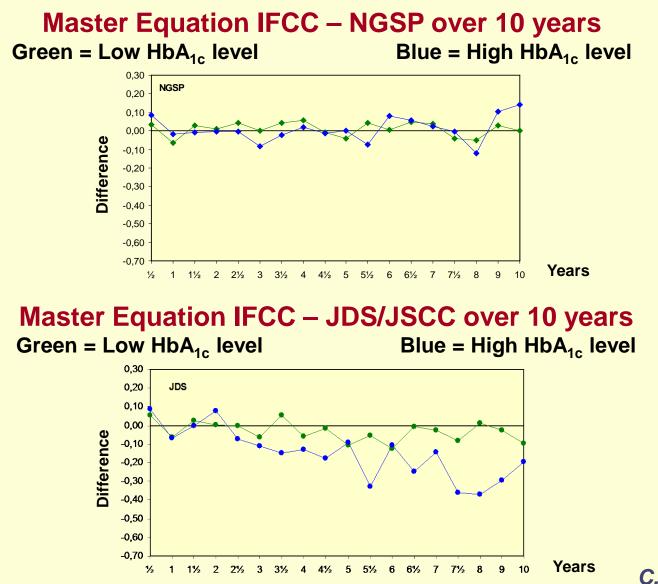
Netherlands: Isala Klinieken Dr. Robbert Slingerland

Netherlands: Queen Beatrix Hospital Dr. Cas Weykamp, Coordinator

Germany: Roche Dr. Angela Puhlmann Dr Roland Thiele

Germany: INSTAND e.v Dr. Patricia Kaiser

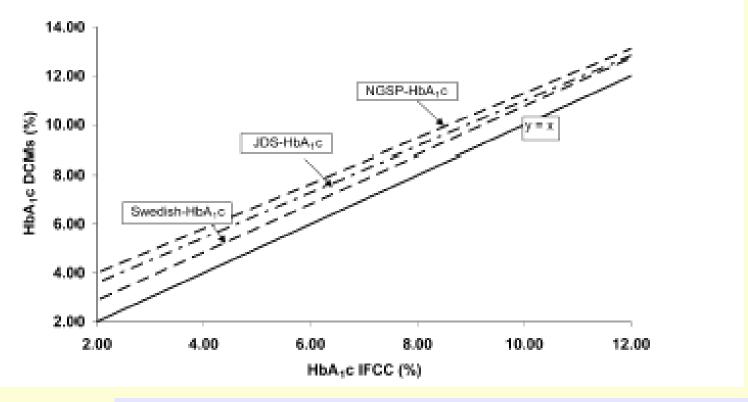
France: Reims Prof. Philippe Gillery


USA: Siemens, Norwood, MA Dr. Yuanfang Deng

USA: Univ. Columbia, MO *Prof. Randie Little*

+ 2 candidate laboratories

www.ifcchba1c.net


Stability

Pr Philippe Gillery December 4th, 2013 C. Weykamp et al

Master Equation IFCC vs other standardization programs

Towards worldwide standardisation of HbA1c determination

NGSP/DCCT HbA_{1c} = ($0.915 \times IFCC HbA_{1c}$) + 2.15

Hoelzel et al., Clin. Chem., 2004, 50:166-174

Effect on result expression and reporting of units

IFCC reference method for HbA_{1c} is more specific than NGSP reference procedure and thus provides lower values in % (e.g. : 4 - 6% NGSP correspond to 2.0 - 4.2% IFCC)

- Keep the previous units (NGSP / DCCT) ?
 - Pro : well known and clinically meaningful values
 - ✓ Con : not "true" value
- Change to IFCC units in % ?
 - ✓ Pro : "true" values
 - ✓ Con : risk of destabilisation and of clinical unefficiency (⇒ not realistic)
- Use another expression mode ?
 - ✓ Other units for HbA_{1c} : mmol HbA_{1c}/mol Hb ("IFCC units" or "SI units") ?

Consensus ADA/EASD/IDF/IFCC (May 2007, updated 2013)

(The American Diabetes Association / European Association for the Study of Diabetes / The International Diabetes Federation / International Federation of Clinical Chemistry and Laboratory Medicine)

- 1. HbA_{1c} results should be standardized worldwide, including the reference system and results reporting
- 2. The new IFCC reference system for HbA_{1c} represents the only valid anchor to implement standardization of the measurement
- 3. HbA_{1c} results are to be reported worldwide in IFCC units (mmol/mol) and derived NGSP units (%), using the IFCC-NGSP master equation
- 4. HbA1c conversion tables easily accessible to the diabetologic community
 - Report in both SI and NGSP/DCCT units in scientific journals
 - HbA_{1c} is the reportable term (A_{1c} may be used in guidelines and educational materials)

Consensus Committe, Diabetes Care, 2007, 30:2399-2400 R Hanas, WG John, Clin Chem Lab Med, 2013, 51, 1041-1042

IFCC standardization of HbA_{1c} assays : What remains to be done ?

- Strategy of implementation of the new international standardization (IFCC Integrated Project) : reporting of units different according to the countries : dual reporting (*e.g.* France), SI reporting only (*e.g.* UK, Italy) or NGSP reporting only (*e.g.* USA, Canada)
- ⇒ Validation of new numbers by large-scale clinical studies

	mmol HbA _{1c} /mol Hb
✓ Reference Range : 4 - 6% of total Hb	20 - 42
 ✓ Good Glycemic Control : < 6.5% (T2D) 	< 48
< 7% (T1D)	< 53
✓ Poor Glycemic Control : > 8%	< 64

Standardization : Effect of result expression on patient outcome

A first experience with percentages

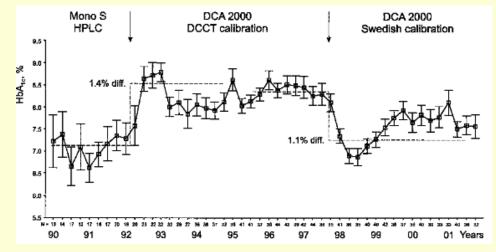
Psychological Impact of Changing the Scale of Reported HbA_{1c} Results Affects Metabolic Control

RAGNAR HANAS, MD, PHD

From the Department of Pediatrics, Uddevalla Hospital, Uddevalla, Sweden.

Address correspondence to Ragnar Hanas, MD, PhD, Department of Pediatrics, Uddevalla Hospital, S-451 80 Sweden. E-mail: ragnar.hanas@bll.se.

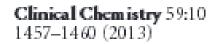
DIABETES CARE, VOLUME 25, NUMBER 11, NOVEMBER 2002


2111

- - Aim : To evaluate the effect on a diabetic patient population of raising the reference scale up to the DCCT level in 1992 and then down to the Swedish National Standard in 1997.

Lab situation

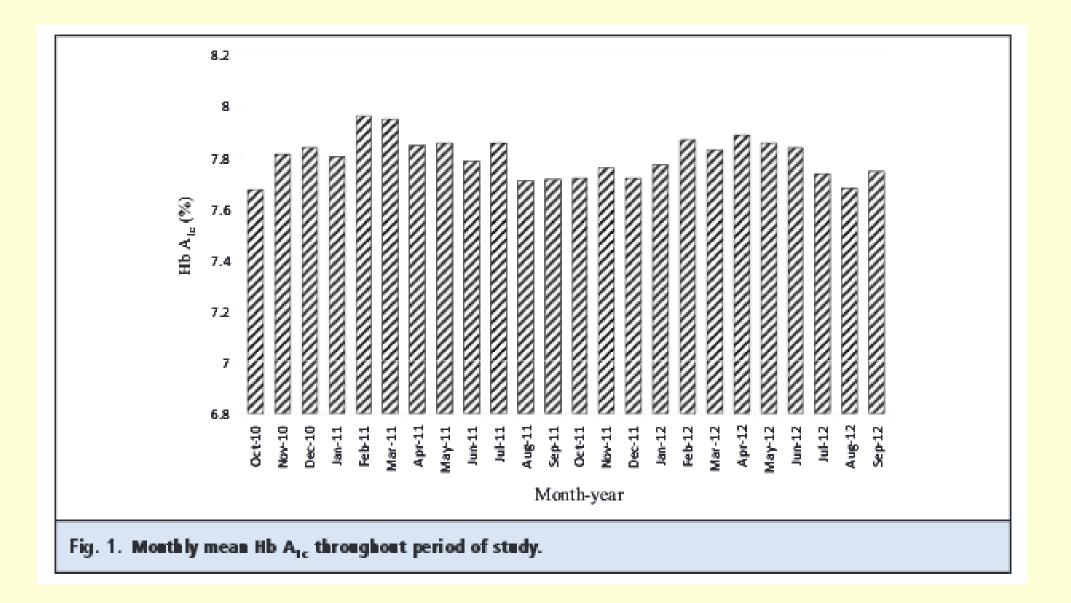
- Before 1992 : Samples sent to central lab (Mono S HPLC method, Pharmacia, reference range 3.0 4.6%)
- **1992**: POCT use of DCA 2000, Bayer, **reference range 4.1 5.7%** DCCT reference
- **1997**: DCA 2000 calibration adjusted to the Swedish National Standard (reference range 3.1 4.6%)
- Patients
 ✓ Diabetes onset at least 3 years after the change in 1997
 ✓ Follow-up for at least 2 years after the change
 ✓ 49 children and adolescents (born 1971 to 1985)
 ✓ Intensive insuline therapy



- 1992 : Expected : 1.4% higher
 - Observed : after 9 12 months, mean HbA_{1c} value decreased \approx 0.5% (i.e. glycemic control improved)
- 1997 : Expected : 1.1% lower
 - Observed : after transient decrease, mean HbA_{1c} values increased again (i.e. glycemic control deteriorated)

Conclusions

- Psychological impact of absolute numbers very high when small changes are made to reference levels.
- Be careful with changes of units ("IFCC perspective").


Endocrinology and Metabolism

Glycemic Control in the 12 Months following a Change to SI Hemoglobin A_{1c} Reporting Units

Eric S. Kilpatrick,^{1*} Alan S. Rigby,² Stephen L. Atkin,³ and Julian H. Barth⁴

UK experience

- June 1st, 2009 : dual reporting (% DCCT and SI units)
- October 1st, 2011 : results reported solely in SI units (mmol/mol)
- 12 months evaluation

	Year before unit change 2010-2011	Year after unit change 2011-2012	Р	
All samples				
n	21 880	22 841		
HbA _{1c}				
%	7.5 (6.6, 8.7)	7.5 (6.5, 8.7)	0.34	
mmol/mol	58 (49, 72)	58 (48, 72)		
HbA _{1c} initially > 8% (64 mol/mol) ^b				
n				
HbA _{1c} change				
%	- 0.2 (-0.9, 0.3)	- 0.2 (-0.8, 0.3)	0.44	
mmol/mol	- 2 (10.3)	- 2 (9.3)		
Days between HbA _{1c} samples	99 (64, 147)	98 (64, 147)	0.45	

successive SI-only values (after unit change) in samples with initial values > 8% (64 mmol/mol)

Use of SI units

- No influence of unit change on quality of glycemic control
- To be confirmed on a longer period

Clinical Chemistry 59:10 1427–1429 (2013) Editorials

Reporting Hemoglobin A_{1c}: Do the Units Matter?

David B. Sacks^{1*}

Standardization : Effect on analytical goals

The Analytical Goals for Hemoglobin A_{1c} Measurement in IFCC Units and National Glycohemoglobin Standardization Program Units Are Different Cas W. Weykamp^{2*} Andrea Mosca³ Philippe Gillery⁴ Mauro Panteghini³

Clinical Chemistry 57:8 (2011) 1205

Result expression and analytical goals

- Could the change of units for reporting HbA_{1c} results impact analytical goals ?
- Example : Repeatability study

	NGSP (%)	IFCC (mmol/mol)
HbA _{1c}	6.8	51
	6.5	48
	7.2	55
	7.0	53
Mean	6.88	51.8
SD	0.30	3.0
CV	4.3%	5.8%

Why this difference ?

Analogy with temperature

Unit variation equivalent to 1°C

- Celsius (°C, Europe)
- Fahrenheit (°F, USA)
- Kelvin (°K, official unit)

 $(^{\circ}F = 1.8^{\circ}C + 32)$ $(^{\circ}K = ^{\circ}C + 273)$

		Variation	Variation in percentage		
Celsius	37°C	1°C	1/37 x 100	=	2.7%
Fahrenheit	99°F	1,8°F	1.8/99 x 100	=	1.8%
Kelvin	310°K	1°K	1/310 x 100	=	0.3%

Could the conclusion be : « Temperature variation is lower in scientists and higher in Europeans » ?

Why this difference ?

- In both case, the conversion equation from one unit system to another is
 y = ax + b, where b (y intercept) is not equal to zero.
- Variation across metrologic systems cannot be compared in terms of relative percentages when b is different from zero.
- A higher y-intercept value has a greater impact (°F = 1,8°C + 32 and °K = °C +273)
- In clinical chemistry, it means that the specificity of both systems is different
- Case of HbA_{1c}
 - . Master equation : NGSP/DCCT = (0.0915 IFCC + 2, 15)
 - . b (2.15%) represents the difference of specificity between the two methods
 - (NB: HbA_{1c} peak in ion-exchange chromatography is not pure)

Result expression and analytical goals

- Result expression mode (IFCC or NGSP units) modifies analytical goals, even when crude results are the same.
- Target values, estimated performance, CVs are concerned.

Different expressions, different goals

Weykamp et al., Clin. Chem., 2011, 57, 1204-1205

Conclusions

- The international standardization of HbA_{1c} assays has brought
 - ✓ a valid anchor for all methods
 - ✓ a long term stability
 - significant changes in unit use and result reporting that necessitate a global strategy of implementation
- This strategy allows the optimal use of a valuable biological test in a important context of public health (and of new indications of HbA_{1c} assay : *e.g.* diagnosis of diabetes mellitus)

Thank you for your attention !