

Standards for greenhouse gas monitoring

Paul Brewer Workshop on Standards and Measurements for Clean Air IPQ, Caparica 14th October 2016

Rationale

- Requirement for traceability from the primary realisation of the mole
- Collaboration WMO MRA signatory (quality assurance)

- Legislation aimed at reducing emissions and their measurement
- Long-term observations based on accurate and stable standards
- SI traceability to provide coherence and confidence

Comparability

Comparability

• Uncertainty < 0.05 % for CO₂ and < 0.1 % for CH₄ (k=1)

gas chromatography with helium discharge ionisation detector

Challenges

- Purity and gravimetry
- Stability
- Commutability

Purity

- New method with lower uncertainty
- NPL Adjustable Gas Standard (AGS)
- Quantification by standard addition

Purity

Zero air standards

- More cost effective
- More control over the amount fraction of impurities
- Gravimetric information

- Influence of the matrix composition on the spectroscopy
- More pronounced for CO₂
- NPL focussing on preparation of synthetic air standards

requirement for 0.1 cmol/mol

H. Nara, H. Tanimoto, Y. Tohjima, H. Mukai, Y. Nojiri, K. Katsumata and C. W. Rella, Atmos. Meas. Tech., 5, 2689–2701, (2012).

Work confirms differences in the literature (170 nmol/mol)

P J Brewer, R J C Brown, M N Miller, M D Minarro, A Murugan, M J T Milton, G C Rhoderick, Anal Chem, 86, 1887, (2013).

NP \bigcirc **National Physical Laboratory**

clean air -8 ‰

natural gas well -7 to -2 ‰

Reference standards for isotope ratio

- Support governments to verify emissions and demonstrate national reduction targets we need to discriminate between the natural and various manmade sources of greenhouse gases
- No infrastructure to deliver international gaseous CO₂ reference materials to meet demand or international gaseous N₂O reference materials with stated uncertainties to underpin isotope ratio measurements
- Exploit advances in optical spectroscopy for traceable field deployable techniques

New reference materials, calibration methods and instrumentation

- CO₂ (pure and 400 µmol/mol in air, uncertainties: δ¹³C-CO₂ 0.1 ‰, δ¹⁸O-CO₂ 0.5 ‰)
- Re-measure absolute CO₂ isotope ratios to provide data for SI traceability
- N₂O (pure and 300 1000 nmol/mol in air) reference materials (uncertainties 1.0 ‰ ($\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$) and 0.5 ‰ ($\delta^{15}N$, $\delta^{18}O$))
- Spectroscopic methods for isotope ratio measurements

Conclusions

- Substantial progress made towards developing an infrastructure to provide SI traceability for measurements of CO₂, CH₄, N₂O and CO
- CO₂ and N₂O most challenging and require propagation of existing scales to meet demand until SI traceability is achieved
- Research required to deliver gaseous reference materials for isotope ratio of CO_2 and N_2O

Acknowledgements

- Funding from the EU and department of UK BEIS
- Dave Worton, Ruth Pearce and Kate Resner (NPL)
- Royal Holloway University
- CCQM-GAWG

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

Department for Business, Energy & Industrial Strategy

