Improving the accuracy of NO₂ and Ozone monitoring

J. Viallon, E. Flores, F. Idrees, P. Moussay, and R.I. Wielgosz

Standards and Measurements for Clean Air 14 October 2016, IPQ – Caparica, Portugal

METP

Bureau

- International des
 - Poids et

Air Quality, NO₂ and O₃ measurements

Pollutant	Concentration	Averaging period
Ozone	60 nmol/mol	Maximum daily 8 hour mean
Nitrogen dioxide (NO ₂)	100 nmol/mol	1 hour
[20 nmol/mol	1 year

Typical ambient levels nmol mol⁻¹

NO₂ and O₃ at BIPM

NO analyzers under repeatability conditions CCQM-P73 (2006) / CCQM-K137 (2017)

www.bipm.org

Ozone cross-section measurement by gas phase titration Joele Viallon, Philippe Moussay, Edgar Flores, and Robert Ian Wielgosz *Analytical Chemistry* Just Accepted Manuscript DOI: <u>10.1021/acs.analchem.6b03299</u>

Ozone

Bureau International des Poids et Mesures

Ozone SRP, from US to the world

2016: 55 SRPs acting as ozone standard for national, regional or global networks

NIST acting as Central Calibration Laboratory for WMO/GAW

http://www.dmdm.rs/en/Vesti.php

International Bureau of Weights and Measures BIPM has published in the International database new calibration capabilities (CMC) in the field of chemistry (gas analysis)

July 14, 2016

International Bureau of Weights and Measures (BIPM) published in International database new calibration capabilities (CMC) in the field of chemistry (gas analysis) of the Directorate of Measures and Precious Metals (DMDM), Group for metrology in chemistry. Capabilities of calibration in the field of chemistry (gas analysis) for measurement of the concentration of ozone in the atmosphere by applying new national standard – the standard photometer for ozone SRP 54 can be found at:

http://kcdb.bipm.org/appendixC/QM/RS/QM_RS_4.pdf

Operating principal of the NIST Standard Reference Photometer

2003-2005 : first international comparions CCQM-P28

www.bipm.org

BIPM-NIST program to maintain the comparability of the worldwide network of ozone reference standards

2 systems based on Gas Phase Titration of ozone with NO already showed discrepancy

Uncertainty budget revised in 2006

Measurement range [0-1000] nmol mol⁻¹

Typical standard uncertainty 1.12%

Dominated by ozone absorption cross-section

$$x(O_3) = \frac{1}{\alpha(\lambda = 254 \text{nm})L_{opt}} \frac{T}{T_{std}} \frac{P_{std}}{P} \ln(\frac{I}{I_0})$$

Absorption cross-section

Fundamental property of the molecule Measured separately on known amount fractions Measured by ~ 15 groups www.bipm.org Conventional value to be adopted

2007: launch of International Comparison BIPM.QM.K1

http://kcdb.bipm.org/appendixB/

BIPM Bureau International des Poid	s et Mesures					
Home Key and supplementary comparisons Calibration and Measurement Capabilities - CMCs						
Home > Comparisons Search > Results of the search > Information						
Key and supplementary comparisons - Information						
₽ BIPM.OM-K1	BIPM.QM-K1					
• Information	▶ Information					
<u>Pilot / Contact</u>	Metrology area, branch	Amount of Substance, Gases				
<u>Participants</u>	Description	Ozone at ambient level				
<u>Results</u>	Time of measurement	2007 -				
• Print out	Status	Ongoing, approved for equivalence, Results available				
	Reference(s)	see BIPM.QM-K1 Participants list				
◄ Related links	Measurand	Amount fraction of ozone, in nmol/mol				
KCDB Statistics KCDB EAOs	Transfer device(s)	Measurements made at the BIPM by comparison with the BIPM Reference Photometer SRP27				
• CIPM MRA	Comparison type	Key comparison				
• JCRB	Consultative Committee	CCQM (Consultative Committee for Amount of Substance)				
Find my NMI	Conducted by	BIPM (Bureau International des Poids et Mesures)				
• <u>Metrologia</u>	Comments	Further information on key comparison BIPM.QM-K1 may be found by clicking <u>here.</u> The comparison is organized according to cycles; the second				
Contact us BIPM.KCDB@bipm.org		cycle started in March 2009 and will last until end 2012.				

On-going = series of bilateral comparisons between BIPM and participants, directly or using transfer

standards

Degrees of equivalence at 420 nmol/mol of ozone in air:

Improved comparability and traceability

2002-2013: improved comparability between institutes taking part in BIPM comparisons

www.bipm.org

GAW Report No. 209 2013: BIPM.QM-K1 comparison recognised as the way to demonstrate metrological traceability in surface ozone measurements for WMO

Measuring Ozone Cross-Sections at the BIPM

A laser ozone photometer measuring at 244,nm, 248 nm, 257 nm

Pure liquid ozone at

 $T = 73 \, \text{K}$

Values of the ozone absorption cross-section at 253.65 nm reported in the literature

Viallon, J., Lee, S., Moussay, P., Tworek, K., Petersen, M., and Wielgosz, R. I. Accurate measurements of ozone absorption cross-sections in the Hartley band, Atmos. Meas. Tech., 8, 1245-1257, doi:10.5194/amt-8-1245-2015, **2015**.

Impact of Ozone Cross Sections on Monitoring Programs

Other sites (compliant/missing data)

Nitrogen dioxide

Gas Standards for long term monitoring of nitrogen oxides

WMO/GAW Expert Workshop on Global Long-term Measurements of Nitrogen Oxides and Recommendations for GAW Nitrogen Oxides Network NPL is WMO/GAW Central Calibration Laboratory for NO

(Hohenpeissenberg, Germany, 8-9 October 2009)

 $\textcircled{\textcircled{}}$

http://www.wmo.int/pages/prog/ arep/gaw/documents/Final_GAW_1 95_TD_No_1570_web.pdf

Table 2 - Data Quality Objectives (DQOs) for NO and NO ₂ under differing conditions					
Level	1 (basic)	2 (enhanced)	3 (high)		
Site characteristics	Continental basic	Continental background	Pristine, marine background, free troposphere		
Mean mixing ratio NO _x	> 1 ppb	0.1 – 1 ppb	< 0.1 ppb		
Scope	long term monitoring, trends (1 hour)				
(corresponding	source-receptor-relationship, transport processes (hour-minute)				
time resolution)	photochemical process studies (minute)				
Detection Limit	NO: 50 ppt	NO: 10 ppt	NO: 1 ppt		
(1 hour, 3-σ)	NO ₂ :100 ppt	NO ₂ :20 ppt	NO ₂ :5 ppt		
uncertainty	NO: 40 ppt or 3%	NO: 8 ppt or 3%	NO: 1 ppt or 3%		
(1 hour, 2-σ) ¹	NO ₂ :80 ppt or 5%	NO ₂ :15 ppt or 5%	NO ₂ :3 ppt or 5%		
uncertainty	NO: 2.5%	NO: 2.5%	NO: 1 ppt or 2.5%		
(1 month, 2-σ) ²	NO ₂ : 3%	NO ₂ : 3%	NO ₂ :3 ppt or 3%		
data coverage	66%				
suggested method	CLD / PLC	CLD / PLC	CLD / PLC		
alternative method (backup or QC reasons)	CRDS, LIF ; DOAS ; TDLAS	CRDS, LIF ; TDLAS	LIF		

Nitrogen dioxide measurements

Dynamic gas standards to underpin international comparisons

Reference = NO₂ mole fraction as generated + measured by BIPM dynamic system

Permeation/diffusion tubes as sources

- Regular/constant weighing
- Matrix gas flow control
- Purity analysis

Magnetic Suspension Balance

CCQM-K74 International comparison of nitrogen dioxide in nitrogen standards (2010)

- NO_2/N_2 , nominal amount fraction 10 µmol mol⁻¹
- Set of 17 transfer standards prepared by VSL

Flores E., Viallon J., Moussay P., Idrees F. and Wielgosz R.I.,<u>2012</u>, *Analytical Chemistry* Highly Accurate Nitrogen Dioxide (NO₂) in Nitrogen Standards Based on Permeation,

CCQM-K74 BIPM typical uncertainties

Quantity	Value	unit	Standard relative uncertainty
q_m	8357.30	ng min ⁻¹	5.00×10 ⁻⁴
Vm	22.40037	L mol ⁻¹	1.52×10 ⁻⁵
q_{v}	0.452	L min ⁻¹	1.00×10 ⁻³
M _{NO2}	46.0055	g mol ⁻¹	3.04×10 ⁻⁵
X _{HNO3}	104.00	nmol mol ⁻¹	2.02×10 ⁻¹
M _{HNO3}	63.013	g mol⁻¹	1.86×10 ⁻⁵
X N2O4	0	µmol mol⁻¹	0.866 nmol/mol

HNO₃ quantification by FTIR referenced to molecular parameters (HITRAN)

BIPM and VSL agreed to work together again to coordinate **CCQM-K74.2018**

Conclusions

- Standards for air quality are challenging due to the reactivity of target compounds
- Maintenance of dynamic standards is a valuable solution, either based on spectroscopy or continuous weighing of a source material
- The BIPM has been maintaining dynamic generation facilities to underpin international comparisons to demonstrate NMIs comparability
- Within the last 15 years, important progress have been made in global comparability of standards at the national level

Acknowledgements

NIST

James Norris, Frank Guenther, Joseph Hodges

BIPM

Philippe Moussay, Faraz Idrees, Edgar Flores, Robert Wielgosz

Secondees from NMIs

M. Sega (INRIM, Italy), A. Rakowska (GUM, Poland), C. Pascale (METAS)

S.Lee (KRISS, Korea), K. Tworek (GUM, Poland)

Bureau International des Poids et Mesures