

Environmental Measurements: How to Improve Accuracy

Tracey Jacksier, Adelino Fernandes, Antonio Carreira

October 14th 2016

Stable Isotopes & The Environment

- ■Alphagaz™ Natural Air
- Summary

Air Liquide, world leader in gases for industry, health and the environment

Research & Development

Stable Isotopes & The Environment

2016

Stable Isotopes

- Significant component of environmental research
 - Used to detect, age dating of groundwater, monitoring of landfill contamination, determining source of stray gas in soils.....
 - Isotopes in precipitation, combustion, respiration, volcanic activity, etc...
 - Concentrations for greenhouse gas determination
 - Natural air monitoring

Predicted oxygen isotope ratios of plant leaf water (credit: J. West)

Research & Development

Carbon Reservoirs

The Global Carbon Cycle

- 1. Carbon in the atmosphere
- 2. Carbon dissolved in oceans
- 3. Carbon contained in terrestrial plants
- 4. Soil

Coupling of these reservoirs is very fast

- 5. Earths crust
 - Very large reservoir, but interacts very slowly with other reservoirs

During one year about 25% of atmospheric carbon gets exchanged with one of the other reservoirs

5

Research & Development

Global Carbon Cycle

Global Carbon Cycle

C-Cycle ProcessesRespiration $C_{org} \rightarrow CO_2$ Oxidation $CH_4 \rightarrow CO_2$ Fermentation $C_{org} \rightarrow CH_4$ Methanogenesis $CO_2 \rightarrow C_{org}$ Fixation $CO_2 \rightarrow C_{org}$

2016

7

Research & Development

Air Liquide, world leader in gases for industry, health and the environment

Understanding Changes in Earth's Climate

- Long-term and high-precision measurements of GHG are necessary to understand changes in the Earth's climate
 - Assess and monitor the influence of human activity on changes on the worlds climate
 - The most accurate scientific observations are required
- National & International legislation focuses on measurement and reduction of GHG's
 - Significant financial implications for mitigation and process adaptation

2016

Research & Development

World leader in gases, technologies and services for Industry and Health

Understanding Changes in Earth's Climate

- Global observation networks provide the required observations to monitor the climate and detect small changes
 - Reliable measurement technologies and standards with well characterized uncertainties are essential
 - Stable reference gas standards
 - Metrologically traceable
 - -Currently a challenge

Izana Atmospheric Research Center, Spain

Issue

Many stations from the monitoring networks as well as R&D centers which study the greenhouse effect are using synthetic air instead of natural air standards

- Synthetic air has a different isotopic ratio compared to atmospheric natural air
- Significant errors in the analysis of the greenhouse gas effect

A reliable source of Natural air will reduce measurement errors!

Jungfraujoch high-Alpine station (3580 m); in the GAW program of the WMO included in the Swiss National Air Pollution Monitoring Network

AlphagazTM Natural Air

Research & Development

Tropospheric Natural Air

Natural Air collected at an altitude >2300 meters

- Natural Air is filled in situ
- AL supported with Technology developed by NOAA
 - Property of AL

Natural Air

■ ALPHAGAZTM Natural Air

\blacksquare Purification to eliminate traces of CO₂

AIR LIQUID

Development of new standard material suites to certify

 \square CO₂ at ambient levels (available)

Target uncertainties

World Metrological Organization Data Quality Objectives between 0.01% and 0.05% relative

Production of trace gases

■ALPHAGAZ[™] Natural Air

Correct isotopic ratio ¹³C/¹²C for CO, CO₂, CH₄, N₂O and SF₆

Validated by GAW & ICOS

Research & Development

GHG Atmospheric Research

	δ ¹³ C _{VPDB} [‰]	δ ¹⁸ Ο _{VPDB} [‰]	δ ¹⁸ O _{SMOW} [‰]
Natural Air (batch 1)	-8.46	-2.66	28.16
Natural Air (batch 2)	-8.93	-2.76	28.06

	Natural Air				
Component	Sample 1	Sample 2			
O ₂	20.97%	20.97%			
N ₂ O	306 ppb	328.5 ppb			
Ar	0.957%	0.964%			
CH ₄	1,828 ppm	1,819 ppm			
СО	0.17 ppm	0.157 ppm			
CO ₂	29.8 ppb	402.7 ppm			
SF ₆	8.62 ppt	8.64 ppt			

Sample 1: CO₂ purification **Sample 2:** CO₂ concentration in the natural air

Analysis by The University of Salamanca, Spain

Adjusting Ratios in Natural Air

Adjusting CO₂ Ratios in Natural Air

NOAA & GAW

 δ^{13} C in the unpolluted troposphere: -7.5 \rightarrow -9 vs. VPDB

Can adjust the δ^{13} C ratio

		$\delta^{13} \mathbf{C}_{VPDB}$ [‰]
Natural Air		-8.46
Natural Air	Doped with a fossil source of CO ₂	-9.01
Natural Air	Doped with a natural source of CO ₂	-8.87

Analysis by The University of Salamanca, Spain

17

2016

Research & Development

World leader in gases, technologies and services for Industry and Health

Natural Sources of CO₂

Refinery source

- ¹³C = -40 per mil
- ¹⁸O = -24 per mil

Natural CO₂ Dome

- ${}^{13}C = -3 \text{ per mil}$
- ${}^{18}O = -6 \text{ per mil}$

Grain alcohol processing facility

- ¹³C = -11 per mil
- ¹⁸O = -3 per mil

Ammonia plant

- ¹³C = -44 per mil
- ¹⁸O = -27 per mil

Available Ranges
δ¹³C: -44 to +50

δ¹⁸Ο: -27 to +50

- Does fractionation occur when making batches of identical mixtures?
 - Does the difference in mass and therefore weight play a roll?
 - Can flow pathways: Direct vs. tortuous play a role?
- Can the ratios be adjusted?
 - What about homogeneity of the mixture?
- What about the stability of the isotopes & composition of the mixture?

Research & Development

Concentration Uniformity

Do cylinders from the same batch have the same δ values?

¹⁵N₂O / N₂¹⁸O

	δ ¹⁵ N avg	δ^{15} N stdev	δ ¹⁸ O avg	δ^{18} O stdev	Ν
A1	0.063	0.039	-3.143	0.067	15
A2	0.057	0.049	-3.152	0.045	20
A3	0.056	0.042	-3.140	0.064	28
Total	0.058	0.043	-3.145	0.059	63

Fractionation does not appear to be an issue during cylinder filling

Values are relative to a standard gas used in the lab.

Brian N. Popp, Professor University of Hawaii, SOEST, Department of Geology & Geophysics1680 East-West Road, Honolulu, Hawaii 96822

Concentration Uniformity

Cylinder filling as a function of manifold cylinder position vs. direct filling from mother cylinder

	δ^{13} C Methane					δ^2 H Methane							
	Cylinder	#1	#2	#3	avg	stdev	RSD	#1	#2	#3	avg	stdev	RSD
Direct 1	519	-40.4	-40.4	-40.5	-40.4	0.06	0.14%	-59	-59	-59	-59	0.00	0%
Direct 2	521	-40.5	-40.5	-40.5	-40.5	0.00	0%	-60	-59	-59	-59.3	0.58	0.97%
Manifold 1	560	-40.5	-40.4	-40.4	-40.4	0.06	0.14%	-58	-58	-58	-58	0.00	0%
Manifold 2	596	-40.4	-40.5	-40.3	-40.4	0.10	0.25%	-59	-60	-59	-59.3	0.58	0.97%
Manifold 3	597	-40.4	-40.4	-40.4	-40.4	0.00	0%	-59	-61	-60	-60	1.00	1.67%
Pooled					-40.4	0.06	0.15%)			-59.1	0.83	1.41%

Manifold position does not appear to impact $\delta^{13}C$ and $\delta^{2}H$ in methane

Compares well with direct filling from the mother cylinder

2016

Adjusting Isotope Ratios

C-H Atomic Permutations

Characterization of source material required!

10 Different Molecules!

Adjusting Isotope Concentrations

World leader in gases, technologies and services for Industry and Health

23

Stability of CO₂ Concentration

Stability of CO₂ LICOR (NIDR)

Shelflife Study Summary

Compositional Analysis

Uncertainty of mixture ±1%

Mixture is within analytical uncertainty over the shelf life

Isotopic Stability

- Uncertainty of δ^{13} C: 0.3 per mil
- Isotopic composition is stable over the shelf life

2016

Research & Development

Stable Isotope Analysis

Managing analytical uncertainty
 Eliminate All Excess Error Sources
 Minimize "Basic" Analysis Uncertainty Sources

Reference Material (U _S)	1.0%
Analyzer Calibration (U _C)	0.8%
Analyzer Precisions (U _P)	0.4%

"Propagation of Error" Calculation
Accuracy $(U_T) = \pm \sqrt{(1.0)^2 + (0.8)^2 + (0.4)^2}$ Accuracy $(U_T) = \pm 1.3 \%$

Air Liquide Stable Isotopes

Component and Isotope Ranges Available

Concentration / Accuracy	Molecular Composition	Isotopes / Ranges	Repeatability	
ppm to %	C ₁ -C ₅ Hydrocarbons	δ ¹³ C: -70 to +25; δD: -300 to +50	Component	
	CO ₂ / CO	δ^{13} C: -60 to +50	Dependent	
. 1 to 5%	H ₂ S	δ^{34} S: -50 to +50	0.02 to 10 ‰	
± 1 10 5 %	N ₂	δ^{15} N: -25 to +25		
Compositi	on Analysis	Isotope A	Analysis	

Research & Development

World leader in gases, technologies and services for Industry and Health

Summary

- Air Liquide is developing new technologies and applications which
 - Enable our customers to accurately measure emissions, process streams & product quality

"Off the Shelf"

Pure gases

Mixtures with fixed composition and isotope ratios

Custom Mixtures

Customer Selected Components and Concentrations

Customer Specified Isotope Ratios

• "Adjusted" by Individual Component

Questions?

THANK YOU FOR YOUR ATTENTION!

antonio.carreira@airliquide.com adelino.fernandes@airliquide.com

www.airliquide.com

Air Liquide, world leader in gases for industry, health and the environment

Research & Development

2016

Back-up

Stability of δ^{13} C in CO₂

δ¹³C

Stability of δ^{18} O in CO₂

0¹⁸O (VPDB)

34

δ¹⁸Ο

