

Schweizerische Eidgenossenschaft Fed Confédération suisse Confederazione Svizzera Confederaziun svizra

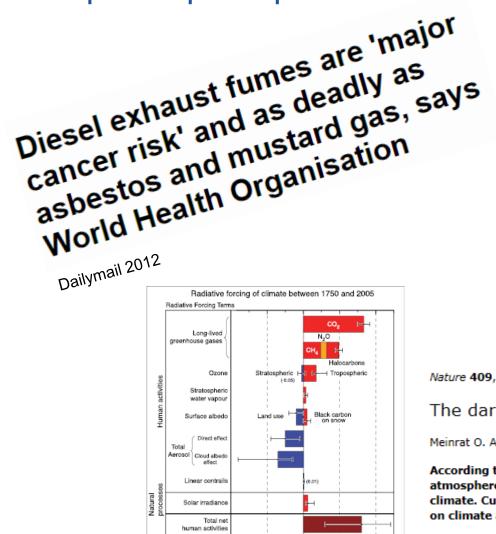
Federal Institute of Metrology METAS

Standardisation of Particulate and Aerosol Measurements

Hanspeter Andres

- 1. Particulates in Aerosols
- 2. Measures for Particulates in Aerosols
- 3. Traceability routes
- 4. International comparability
- 5. Roadmap

Particulates in Aerosols Natural and artificial aerosols


An aerosol is a colloid of fine solid particles or liquid droplets, in air or another gas (Hinds 1999).

- Natural aerosol: e.g. fog, volcanic ash, geyser steam
- Artificial aerosols: e.g. haze, air pollutants, smoke

Particulates in Aerosols public perception

-2

-1

0

Radiative Forcing (watts per square metre)

2

1

Nature 409, 671-672 (8 February 2001) | doi:10.1038/35055640

The dark side of aerosols

Meinrat O. Andreae

According to new modelling calculations, black carbon in the Top atmosphere exerts a large warming influence on global climate. Curbing emissions of this pollutant may be advisable both on climate and on human health grounds.

Particulates in Aerosols European Emission Standards

European emission standards for passenger cars (Category M*), g/km

Tier	Date CO T		THC	NMHC	NOx	HC+NO _x	PM	PN [#/km]
Diesel		1	1					1
Euro 1†	July 1992	2.72 (3.16) 0.97 (1.13)		0.97 (1.13)	0.14 (0.18)	-		
Euro 2	January 1996	1.0	-	-	-	0.7	0.08	-
Euro 3	January 2000	0.64	-	-	0.50	0.56	0.05	-
Euro 4	January 2005	0.50	-	-	0.25	0.30	0.025	-
Euro 5a	September 2009	0.50	-	-	0.180	0.230	0.005	-
Euro 5b	September 2011	0.50	-	-	0.180	0.230	0.005	6 × 10 ¹¹
Euro 6	September 2014	0.50	-	-	0.080	0.170	0.005	6 × 10 ¹¹
Petrol (Gasoline)								1
Euro 1†	July 1992	2.72 (3.16)	-	-	-	0.97 (1.13)	-	-
Euro 2	January 1996	2.2	-	-	-	0.5	-	-
Euro 3	January 2000	2.3	0.20	-	0.15	-	-	-
Euro 4	January 2005	1.0	0.10	-	0.08	-	-	-
Euro 5	September 2009	1.0	0.10	0.068	0.060	-	0.005**	-
Euro 6	September 2014	1.0	0.10	0.068	0.060	-	0.005**	6 × 10 ^{11***}

* Before Euro 5, passenger vehicles > 2500 kg were type approved as light commercial vehicles N₁-I

** Applies only to vehicles with direct injection engines

*** 6 × 10¹²/km within first three years from Euro 6 effective dates

† Values in parentheses are conformity of production (COP) limits

Source (wikipedia)

Measures for Particulates in Aerosols Various Measures

Chemical Measures:

- EC/OC/TC: elemental, organic and total carbon content
- PAHs: persistent aromatic hydrocarbon content
- Water content
- Anion, Cation and Metal content

Optical Measures:

 BC: black carbon content expressed as equivalent black carbon (EBC) or refractive black carbon (ERC)

Physical Measures:

- Particle number and charge concentration
- Particle sizes
- Particle mass concentration (e.g. PM₁₀)

Measures for Particulates in Aerosols Various Measures addressing different effects

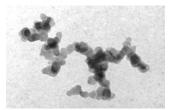
Chemical Measures:

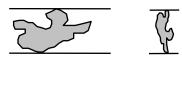
- EC/OC/TC: elemental, organic and total carbon content
- PAHs: persistent aromatic hydrocarbon content
- Water content

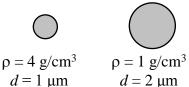
Health

Anion, Cation and Metal content

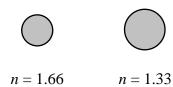
Optical Measures:


BC: black carbon content expressed as equivalent black carbon (EBC) or refractive black carbon (ERC) change change climate change change climate change change climate climate change climate climate


Physical Measures:


- Particle number and charge concentration Air pollution
- Particle sizes
- Particle mass concentration (e.g. PM_{10})

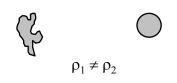
Measures for Particulates in Aerosols Particle sizes differ



Geometric diameter:

Considering their vertical size, the two particles are approximately the same. e.g. microscopy

Aerodynamic diameter:


Considering the sedimentation velocity, the two particles are approximately the same. e.g. impactor

d = 41 nm

Optical diameter:

Considering the light scattering properties, the two particles are approximately the same. e.g. optical particle counter

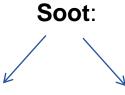
d = 50 nm

Mobility diameter:

Considering the diffusion behavior, the two particles are approx. the same. e.g. diffusion battery, electronic mobility analyzer

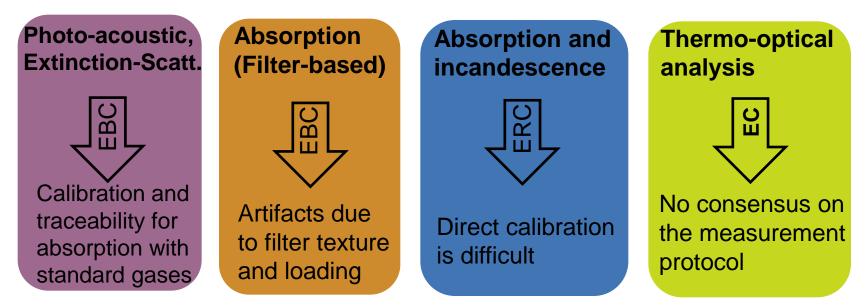
Traceability routes Chemical Measures

EC/OC/TC:


- EC/OC are method defined parameter,
- only TC traceable to SI
- Standardised thermo-optical reference method for EC/OC determination on quartz filters (EN 16909);
- EC/OC/TC agreement in the order of 10 % to 20 %;

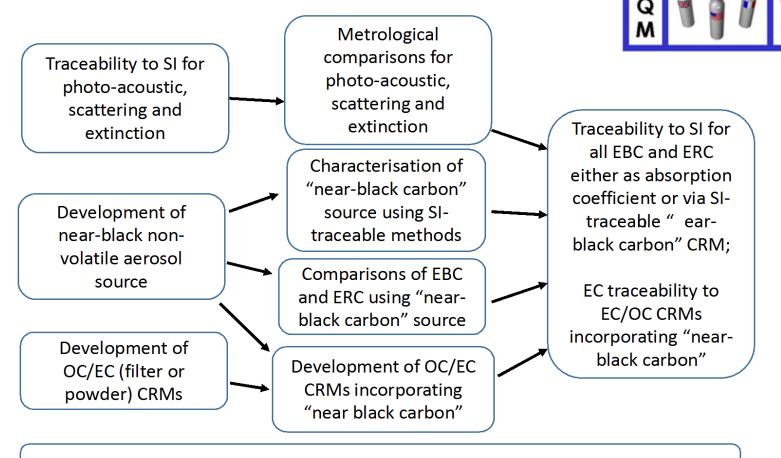
PAHs, water, anions, cations and metals:

- SI traceability established
- specific issues with sampling for semi-volatile PAHs and water
- small sample quantities for chemical analysis
- specific SI-traceable matrix reference materials in development


Traceability routes Optical Measures

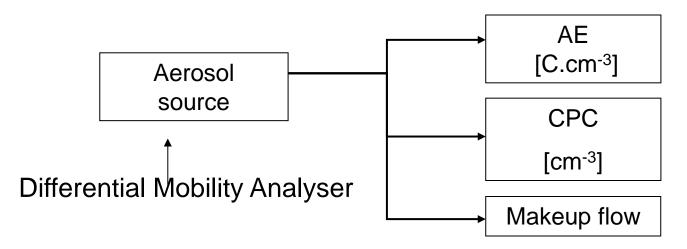
product of incomplete combustion of fossil fuels / biomass linked to adverse health effects and climate change

Organic Carbon Black Carbon (Elemental Carbon)


Measurements of BC (or EC) rely on the following methods:

Measurement results depend strongly on the method and instrument employed 10

Traceability routes Black Carbon Roadmap


Comparisons of EBC, ERC and EC using ambient and existing sources

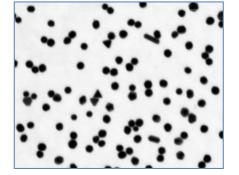
Traceability routes Physical Measures

Particle number and charge concentration:

- Most mature field of particle metrology
- ISO 27891:2015 defines calibration procedure for condensation particle counters (CPCs); most direct traceability to SI via Aerosol Electrometers (AEs)

issues with number counting of particles > 500 nm

Traceability routes Physical Measures


Particle size:

different metrics: aerodynamic, electrical mobility, geometric

Project PartEmission

TSEM image, Au 30 nm particles

Nominal diameter	20 nm	30 nm	40 nm		
TSEM mean diam	21.0 ± 1.9 nm	29.8 ± 2.0 nm	44.5 ± 2.2 nm		
TSEM mode diam	20.4 nm	29.3 nm	42.9 nm		
DMA mode diam	24.0 ± 0.4 nm	33.8 ± 0.6 nm	44.6 ± 1.0 nm		
Factor DMA/TSEM	1.18	1.15	1.04		

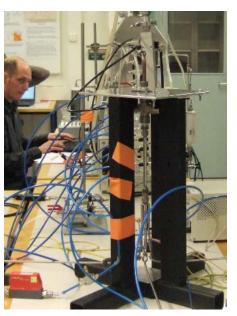
 issues with sizing below 10 nm and at 2.5 and 5 µm (not Europe):

Traceability routes Physical Measures

Particle mass concentration:

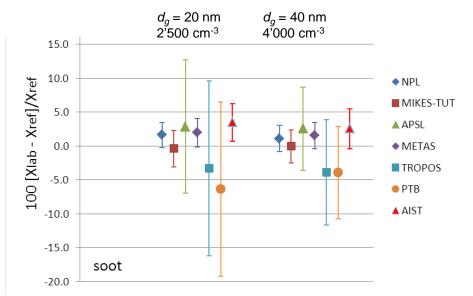
- Most important particle measure
- Traceability to SI straightforward
- Issues with semi-volatiles and water content
- Controlled artificial aerosol lacking

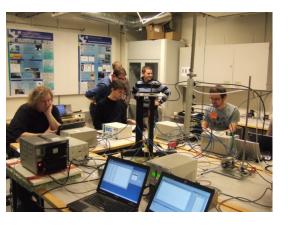
Light scattering


Beta-absorption

TEOM (Tapered Element Oscillating Microbalance)

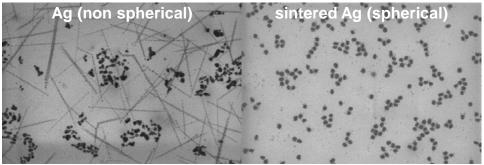
International comparability particle charge concentration EURAMET 1244 - I


- EURAMET 1244 compared measurements of airborne charge concentration (in fC·cm⁻³).
- The comparison was based on measurements of a common aerosol source and was hosted by METAS in Finland on 18-22 March 2013.
- aerosol sources: SCAR (single charge aerosol reference) Multiple charge soot generator
- Particle sizes from 6 nm to 200 nm.
- Concentration range from 0.15 fC·cm⁻³ -3 fC·cm⁻³ (equivalent to around 1,000 particles cm⁻³ to 20,000 particles cm⁻³)



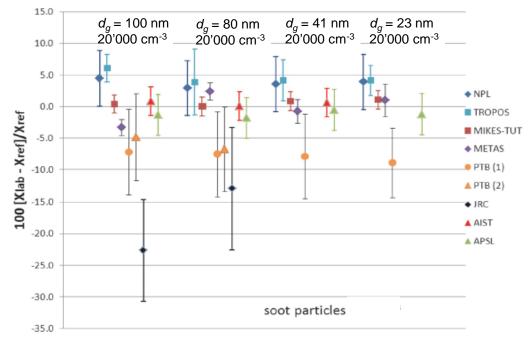
International comparability particle charge concentration EURAMET 1244 - II

- Participants generally agree within 2 % in the size range 20 nm to 100 nm and number concentrations above 5000 cm⁻³ for singly charged synthetic particles.
- JRC results were 10% to 30% lower than the other participants' results; most probably due to commercial instrument design.
- Larger deviations result at lower particle sizes and particle concentrations and soot particles.



International comparability particle number concentration EURAMET 1282 - 1

- EURAMET 1282 compared measurements of particle number concentration (in cm⁻³).
- The comparison was based on measurements of a common aerosol source and was hosted TROPOS in Leipzig on 14-18 October 2013.
- aerosol sources: sintered silver silver soot

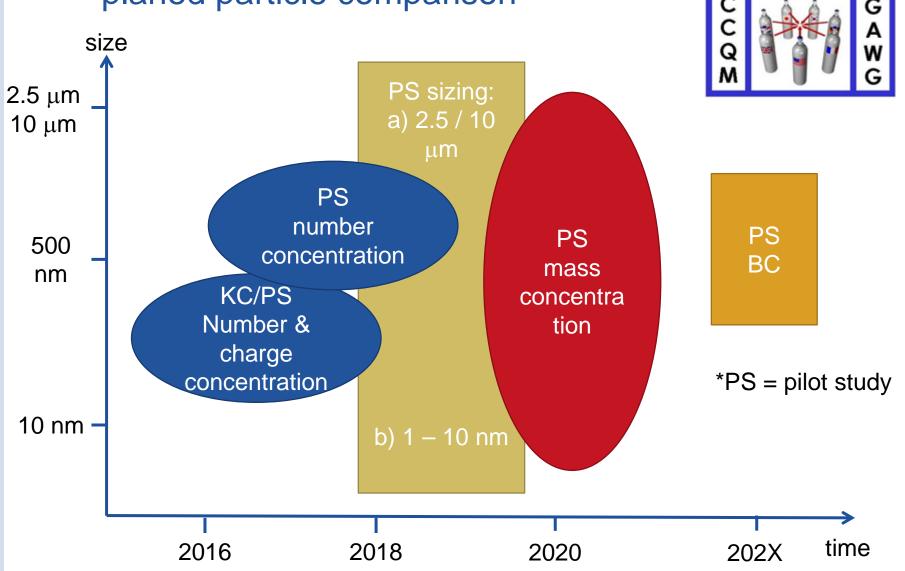


- Particle sizes from 6 nm to 100 nm.
- Concentration range 100 particles cm⁻³ to 20'000 particles cm⁻³

International comparability particle number concentration EURAMET 1282 - 2

- Results show that the agreement of participants is less good than in the AE comparison. Agreement to ±10% between reference laboratories is currently achieved.
- Increased uncertainties down the traceability chain from primary $AE \rightarrow$ reference CPC (ISO/DIS 27891).

International comparability internationally agreed measurement capabilities


- Agreed CMCs of NPL, METAS and PTB on particle number and charge concentration.
- Extract from KCDB for METAS:

Measurement Service Sub- Category	Matrix	Measurand		Dissemination Range of Measurement Capability		Range of Expanded Uncertainties as Disseminated				Mechanism(s) for		
		Analyte or Component	Quantity	From	То	Unit	From	То	Unit	ls the expanded uncertainty a	Measurement Service Delivery	Comments
Other (particulates)	air	airborne particles	Number concentration	100	20000	cm ⁻³	3	5	%	Yes	Calibration	Soot particle size: 23 nm to 500 nm. Approved on 08 July 2015
Other (particulates)	air	airborne particles	Charge concentration	1	3	fC cm ⁻³	2	2	%	Yes	Calibration	Soot particle size: 20 nm to 500 nm

Proposed KC in this area (NPL, PTB at TROPOS)

Roadmap planed particle comparison

Schweizerische Eidgenossenschaft Fed Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Institute of Metrology METAS

Thank you very much for your attention