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Atmospheric CO, isotope research:
History, analysis, reference materials, the SIRS project (and beyond?)

Harro A.J. Meijer
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Developments in Isotope Ratio Measurements for Gas Analysis Workshop
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Contents: . _ .
- History of atmospheric CO2 isotopes

- SIRS WP1: COz2 isotopic reference materials
- SIRS WP3: Optical isotope measurements
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Short recall: why CO, isotopes?

13CO, and C'®0O0 are valuable additional parameters in Carbon Cycle research!

Fossil Fuel
Pa.rtltlomng of land and ocean processes cO2 13C05
using 13CO,
inar different from atm. CO2 by =-20%.
CO»2 13C02

fractionation = +2 %o

. fractionation = -17 %o
In water
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C'80O0 couples the carbon and water cycles

Welp, L. R., Keeling, R. F., Meijer, H. A. J., Bollenbacher, A. F., Piper, S. C., Yoshimura, K., Francey, R. J., Allison, C. E. and Wahlen, M.: Interannual
variability in the oxygen isotopes of atmospheric CO2 driven by EI Nino, Nature, 477(7366), 579-582, doi:10.1038/nature10421, 2011.
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Signals are small: good calibration and long term stability of scales is necessary
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Welp, et al: Interannual variability in the oxygen isotopes of atmospheric
CO2 driven by El Nino, Nature, 477(7366), 579-582, 2011
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Pioneered by:

Scripps and CIO/RUG from end

of the

1970’s

CSIRO from end of 1970’s
NOAA came later (early 1990’s)
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calibration procedure: spline fits of all reference calibration data
individual points: all days with atmospheric CO2 measurements

SIRA

jumps in splines: sudden changes of Mass Specs

(repairs, leaks, power failure...)
Spline result uncertainty indicated.
| | 3 f
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Frequent intercomparisons between

networks
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Figure 2. (a-f) Differences (CSIRO minus NQAA) betv

Masarie et al., J Geoph Res 106 (2001)

1990’s: step from pure CO, to
“whole air” calibration

1997-2002: IAEA-CSIRO
“Classic” exercise: shipping
cylinders (and pure CO,)
around the world

What have we learnt about stable isotope
measurements from the IAEA CLASSIC?

Allison et al, 11t WMO CO2 Measurement Experts
Meeting: Tokyo 25-28 September 2001
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Classic conclusions:

Ten high-pressure cylinders of chemically modified air were prepared in order to assess the
comparability of CO, stable isotope measurements in four key laboratories. Two circulations of five
of the prepared high-pressure cylinders of air and two canisters of high purity CO, gas between the
four laboratories have revealed significant differences in reported 6'°C and 5'%0. The mean
differences between laboratories are significantly greater, by up to a factor of 10 or more, than the
accepted target precisions required for merging data from these laboratories. These differences are
consistent with various problems in assigning isotopic compositions onto the VPDB-CO, reference
scale. From repeat circulations through each laboratory, measurements of the pure CO, gases relative
to in-house CO, standards exhibit poorer consistency than those of the high-pressure cylinders of air
measured relative to in-house CO,-in-air standards as a consequence of systematic instrument effects,
such as cross contamination between sample and reference gases in the ion source of each mass
spectrometer. The influence of these systematic effects, as well as differences due to cryogenic
extraction systems, are minimised by the use of air standards, subject to correct assignment of
isotopic values to the standards. Suggestions to reduce uncertainties in merged data from different
sampling networks include an improved diagnostic and monitoring strategy, GLOBALHUBS, and
development of more effective links to primary reference calibration materials. In the interim, the
CLASSIC suite of gases can play a valuable role in providing consistent links between major CO,
isotope monitoring networks over decadal timescales.
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Landmark achievement

“As a result of the experiments, a new standard reference material (SRM), which consists of two 5-L glass
flasks containing air at 1.6 bar and the CO2 evolved from two different carbonate materials, is available for
distribution. These ‘J-RAS’ SRM flasks (‘Jena-Reference Air Set’) are designed to serve as a high-precision
link to VPDB for improving inter-laboratory comparability. “

Classical Principle of Identical Treatment

JRAS-06 scale, tightly

NBS 19
R ; coupled to VPDB-CO,
Ref. air Ref. air Ci)_
4
CO, extraction CO, extraction Mix to . .
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Figure 1. Comparison of the classical strategy for relating CO,-in-air to the
international VPDB scale and the one pursued in this work.
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So, why SIRS (CO, part)?

- JRAS-06 is excellent, but cannot serve an ever increasing community

- So, more streamlined production of reliable reference gases for the
isotopes of CO, in air is necessary:

- Typically a task for NMTI’s

- There is a new kid on the block: optical measurements!

- SIRS will “re-invent the wheel” to some extent, but now properly
documented, and aimed at routine production of references gases, at an
affordable price

- SIRS is the first project, with still “relaxed” uncertainty goals

- If successful, a follow-up will hopefully fly with stricter uncertainty goals
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Al1l.33: - Referencing CO,-in-air to VPDB

- Uncertainty budget
/ 1 Syntheses = 3 x 5L Flask

(~380 ppm CO, in Syn. Air) MAT 252 with BGC Air Trap (Cora): Dual
Inlet measurements

A1.3.3: -Referencing CO,-in-air to VPDB
- Uncertainty budget

= .1 (WMO) Central
sais - capescionns srwrgsen—— Calibration Laboratory
AL3L: - erscingpurs CO;to OB (MPG-Jena) instrumental
for SIRS

Max Planck Institute
for Biogeochemistry

Heiko.moossen@bgc-jena.mpg.de

SIRS overview (CO, part, D
also N,O -> Joachim Mohn) [ [t

WP1: New reference materials for 6:3C-CO,,
to uphold the global measurement infrastructure
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Gas reference materials of pure CO, for 8:3C-CO, and 8'¥0-CO,

Develop static and dynamic stable isotope reference gas mixtures of CO, at 400
umol/mol (later this morning also: Adnan SIMSEK)

Validation of reference materials and comparisons to uphold VPDB scale for

CO,- air mixtures T
Exploratory absolute measurements -> Lukas Flier a

Braunschweig und Berlin
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Super ratio method (SRM)

“the IRMS persons’s choice”
ws1+2 4 target Sailzple
[ \ S

= Arare HEEEEE BEEe
Aabundant
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ScaL = (1 + 6ref)6m + 6ref Y
(L e
In addition however: 10X 120= 1920 seconds
CO2 Mlel’lg ratio Dependence (MD)' ref sample Experiment of 20 measurements :

23 x 1920 = ~ 12 hours
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» Caused by incorrect prescription

..... of the absorption lines
1005 ye.. ., m  Reduction of the slope is possible
'h"l"l' * However, next to impossible to
1000 1 S fully annihilate this.
2 +’++|- « Stability is more important.
© 0995 -.... sope:-0.021 %oppm™ e +
- slope-0.032 %eppm™ e e In addition, the MD is dependent on
0990 -**** slope:-0.032 %sppm™? the exact composition of the “air”:
D ber 2017 LI L R L :
i Do o 018 Synthetic ”air” with or without Ar
0985 - + May 2019 (and N,0), or CO,-free natural air.
250 300 350 400 450 500 550 600 650 700
CO: (ppm)
Change of MD trough time
626 N " Change of MD _
r63 slope st. error through time NN

Dec.2017  -2.13E-5 6.50E-8 | caused by cavity
Dec.2018  -3.16E-5 7.00E-§ | ransmission

deterioration?
May 2019 -3.20E-5 4.06E-7
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SICAS performance over time
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Isotopologue Abundance Method (IAM)

“The optical spectroscopist’s choice”

ws1+2 + target samples

| A
L'J

[T
AR

ref 1 sample ref 2

/

Two references with similar, known
isotopic composition, but different CO,
concentrations (low;350 ppm and
high;430 ppm)

For every measurement a calibration
curve is calculated for the assigned and
measured isotopologue abundance

From the isotopologue abundance the
isotopic composition can be calculated
(following Flores et al. 2017)

1 measurement:
16 x 120 = 1920 seconds

Experiment of 20 measurements :
23 x 1920 = ~ 12 hours
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Preliminary results...

After IAM calibration (using
350 ppm and 440 ppm
atmospheric cylinders, IMAU
Utrecht ), still some MD

d13C residual (%o) vs CO2 (ppm)

0-04380 390 400 410 420
-0.01 .
...
-0.06
.
0.11
-0.16 -

d180 residuals (%o) vs CO2 (ppm)

seems to be present...

o

_0.005380 390 400 410 420
-0.01 .
-0.015
-0.02
-0.025
-0.03
-0.035 °
-0.04 "_.
-0.045
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o s d13C residual (per mille) vs d13C
Preliminary results... assigned (VPDB)
(6]
9.2 9 8.8 -8.6 8.4 ._0.02-8 2
............. -0.04
............. 0.06
After IAM calibration (using L 0.08
...... -0.1
350 ppmand 440ppm
atmospheric cylinders, IMAU T 014
Utrecht ), still some MD 0.16
seems to be present... d180 residual (per mille) vs d180
assigned (VPDB-CO2)
(6}
. . -5 4 -3 2 1 _0.005 9
... or are these scale issues in 00096 -00026,® 0,01
the references> - T oot
""""""" -0.02
. -0.025
More tests are needed: . 0.0
o« -0.035
...... e -0.04
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Next steps within SIRS

Proficiency test What do we want to test?
» Sample gases (3x)
» CO, concentration within the range of
300-500ppm
« §13C within range of -48%o to -8%0 VPDB
« §180 within range of -27%o to +2%0 VPDB

CO, mixing ratio dependence is one of
the most challenging factors in OIRS

™ measurements, so we will include one
low (~380ppm) and one high (~430
ppm) sample

» Calibration gases (2x)

* One close to background concentrations, Scale contraction due to cross
one with a more contaminated (depleted) contamination occurs in every
signal? measurement and can be tested by

including a sample with deviating

* Distribution of the gases isotopic composition

* Gases will be subsampled from high
pressure cylinders, into sample flasks
provided by the participants so pressure
reducer effects are minimized

university of faculty of science centre for
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Too early for conclusions, but

Considerations

The isotope super-ratio method has been developed for IRMS, because:
* Alot of common factors cancel (drifts!!), making the ratios less vulnerable
and more stable

This also applies to the optical method, only:
» Several factors are not in common, and thus won’t cancel (mass
dependence vs absorption characteristics)

The Isotopologue abundance method implicitly corrects for mixing ratio

dependence

« but is more sensitive to drifts, as all differences between the two ref gases
become part of the calibration

* does it lead to a linear isotope ratio scale?
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