

SI Traceable Isotope Ratios of Carbon Dioxide

- a Feasibility Study

Lukas Flierl, Anne Stoll-Werian, Olaf Rienitz, Janine Noordmann, Axel Pramann

- Advancing Optical Isotope Ratio Spectroscopy

Ivan Prokhorov, Gang Li, Olav Werhahn, Volker Ebert

Physikalisch-Technische Bundesanstalt (PTB)

Characterisation of optical isotope analysers for carbon dioxide in the framework of the EMPIR project SIRS

Ivan Prokhorov¹, <u>Gang Li¹</u>, Olav Werhahn¹, Volker Ebert¹, Farilde Steur², Harro Meijer², Francesca Rolle³, Michela Sega³, Jan Petersen⁴, David Balslev-Harder⁴, Tuomas Poikonen⁵, Joachim Mohn⁶

Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
 Centre for Isotope Research (CIO), University of Groningen, Groningen, Netherlands
 Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy
 Danish Fundamental Metrology (DFM), Hørsholm, Denmark
 VTT Technical Research Centre of Finland Ltd, Espoo, Finland

6 Laboratory for Air Pollution and Environmental Technology, Empa, Dübendorf, Switzerland

Introduction

EMPIR review conference, SIRS poster, by P. Brewer

Isotopic composition of carbon dioxide δ^{13} C and δ^{18} O can be used to discriminate between natural and various manmade sources of CO_2 [1]. Within the EMPIR project "Metrology for Stable Isotope Reference Standards" (SIRS) [2,3] advanced spectroscopic methods are applied.

[1]GAW report, 242. 19th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2017) (27-31 August 2017; Dübendorf, Switzerland)
 [2] https://www.vtt.fi/sites/SIRS

[3] https://www.euramet.org/research-innovation/research-empir

SI Traceability of CO₂ Isotope Ratios – PTB (3)

$$\delta^{13}C = \frac{{}^{13}r}{{}^{13}r_{ref}} - 1 = \frac{{}^{13}R}{{}^{13}r_{ref}} - 1$$

$${}^{13}\mathrm{R} = \frac{x({}^{13}\mathrm{C}{}^{16}\mathrm{O}_2)}{x({}^{12}\mathrm{C}{}^{16}\mathrm{O}_2)}$$

$$x ({}^{13}\mathrm{C}^{16}\mathrm{O}_2) = \frac{A({}^{13}\mathrm{C}^{16}\mathrm{O}_2)}{S_T({}^{13}\mathrm{C}^{16}\mathrm{O}_2)} \times \frac{k_B \cdot T}{L \cdot p}$$

Isotope ratio and "delta" value

Isotopologue ratio

Spectroscopic measurement of isotopologue amount fraction A – absorption line area, S_T – line strength, p – gas pressure, T – gas temperature, L – optical path length

Optical isotope analysers

LASER

SCAN

Optical isotope ratio spectrometer at RUG

Optical isotope ratio spectrometer at PTB

PHOTO DIODE

	OIRS at RUG [4]	OIRS at PTB [5]
Light source	ICL	DFG PPLN
Center wavelength	4.3 µm	4.3 µm
Gas cell pathlength	36 m	5.4 m
Gas cell pressure	50 hPa	100 hPa
Gas cell temperature	294 K	311 K

[4] Aerodyne TILDAS, e.g. J. B. McManus, D. D. Nelson, and M. S. Zahniser, Opt. Exp., 23, 6569 (2015)
[5] Thermo Delta Ray, e.g. J. Braden-Behrens, Y. Yan, A. Knohl, Atoms. Meas. Tech., 10, 4537–4560 (2017)

SI Traceability of CO₂ Isotope Ratios – PTB (5)

© PTB 2019

Measured spectra

Instrument stability

Study of matrix effects

 δ^{13} C / ‰

20th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases, and Related Measurement Techniques (GGMT-2019), September 2-5, 2019, Jeju, Korea.

© PTB 2019

OIRS in VTT

CO₂ optical isotope ratio spectrometer under construction in VTT. It deploys a 4.3 µm ICL and Aerodyne multi-pass cell with 36 m path length [6].

• Two-stage thermal control system will be used to reach the target uncertainties of 0.1 ‰ for δ^{13} C-CO₂ and 0.5 ‰ for δ^{18} O-CO₂.

FTIR in INRIM

- FTIR calibration based on synthetic spectra, generated by means of a radiative transfer calculation code MALT. B-FOS, a software developed at the BIPM allowed to interface MALT and the FTIR management software.
- The uncertainty obtained for δ^{13} C-CO₂ measurements is around 0.1 ‰, at a nominal CO₂ mole fraction of 400 µmol mol⁻¹ in air.

Results:

- Two commercial optical isotope ratio spectrometers for δ^{13} C and δ^{18} O measurements of CO₂ at ambient air concentrations have been characterized at PTB and RUG, normalized precision 1.35 and 5.4 ‰ m Hz^{1/2}, respectively.
- Extensive studies of matrix gas effects and CO₂ concentration have been conducted.
 Observed dependence of δ-values on matrice can be partially eliminated by improved spectral fit.
- An OIRS is being developed in VTT.
- INRIM developed FTIR method for δ^{13} C.

Plans:

- Comparison of OIRS measurement results between partners.
- Comparison of OIRS and IRMS for several reference materials.

12

