

[⊅] UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

New method for high precision measurements of water inclusions in speleothems based laser absorption spectroscopy and its application

Stéphane Affolter and Markus Leuenberger

Climate and Environmental Physics, Physics Institute and Oeschger Center for Climate Change Research, University of Bern, Switzerland

Workshop on "Developments in isotope ratio measurements for gas analysis", Bern, 10.10.2019

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

INTRODUCTION

What are speleothems?

D UNIVERSITÄT BERN

Naracoorte Caves National Park, Australia

The water cycle and its connection to speleothems

^D UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Speleothem = recorder of the hydrological cycle

5

Advantages of speleothems as paleoclimate archive

- Growth for a long time interval during the Quaternary and earlier than 1 Ma (or older...).
- They can be **precisely dated** with laminae counting or U-Th decay method (up to 500,000 years). The precision can be better than 100 years for a sample aged of 129 ka *(Cheng et al., 2013).*
- They allow **multi-proxy study on one sample** such as: δ^{18} O and δ^{13} C of the calcite, δ D, δ^{18} O of fluid inclusions, clumped isotopes, trace elements, nobles gases, etc.
- **They are well conserved** in cave environments and protected from erosion by physico-chemical processes occuring at the surface.
- They are found **all over the Globe**.

^b UNIVERSITÄT BERN

Repartition of carbonate rocks

D UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

http://web.env.auckland.ac.nz/our_research/karst/

STALCLIM project Investigated caves in Switzerland

U

D UNIVERSITÄT BERN

Milandre cave settings

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Affolter et al., Quaternary Science Reviews, 2015

From cave to analysis Sample selection & transport

D UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Milandre Cave, Switzerland

\boldsymbol{u}^{\prime}

Dating of fluid inclusion samples

• 3780 ± 2164 9423 ± 179 8377 ± 1005 10200 ± 519 $^{4}9240 \pm 1413$ 11441 ± 89 11703 ± 97 12870±124 13390± 137 $90270 \pm 97'$ \bullet 14292 ± 130 [10 mm

M8 stalagmite Interval measured: 14 ka- 9 ka B.P. 7 Th ages 20 cm 15 FI measurements M6 stalagmite Interval measured 12 ka B.P. - recent 42 Th ages 269 FI measurements + ~30 samples replicated **Total of 314 samples** + ~3340 $\delta^{18}O_c$ measurements

^b UNIVERSITÄT BERN

Affolter et al., Science Advances, 2019

Fluid inclusions

D UNIVERSITÄT BERN

M8 stalagmite (photo: Y. Krüger)

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

METHOD

Laboratory work

u^{b}

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

~ 1 gram

ě

Heraeus

Anthony Residence In Resident And Anthony Hinders Anthony

Extraction line connected to a CRDS instrument

Affolter et al., Climate of the Past, 2014

^b UNIVERSITÄT BERN

u^{t}

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Measurement sequence

Affolter et al., Climate of the Past, 2014

Water content determination

u^{b}

^b UNIVERSITÄT BERN

Affolter et al., Climate of the Past, 2014

Isotope values calculation

D UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

$$\overline{\delta^{18}O_{j}} = \frac{\int_{t_{0}}^{t_{1}} \delta^{18}O_{j}(t) \cdot H_{2}O_{j}(t)}{\int_{t_{0}}^{t_{1}} H_{2}O_{j}(t)}$$

$$\overline{H_2O_j} = \frac{\int_{t_o}^{t_1} H_2O_j(t)dt}{\int_{t_o}^{t_1} dt} = \frac{\int_{t_o}^{t_1} H_2O_j(t)dt}{t_1 - t_0}$$

where j is either the mixture, the background or the sample

$$\delta_{s} = \frac{\overline{\delta^{18}O_{mix}} \cdot \overline{H_{2}O_{mix}} - \overline{\delta^{18}O_{b}} \cdot \overline{H_{2}O_{b}}}{\overline{H_{2}O_{mix}} - \overline{H_{2}O_{b}}}$$

17

Measurement precision with L1102-i

D UNIVERSITÄT BERN

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

RESULTS

$\delta^{18} \textbf{O} \ \textbf{vs} \ \delta \textbf{D}$

^D UNIVERSITÄT BERN

Results

b U

^b UNIVERSITÄT BERN

Affolter et al., Science Advances, 2019

Affolter et al., Science Advances, 2019

Comparison with Greenland reconstruction

UNIVERSITÄT Bern

Affolter et al., Science Advances, 2019

^{10000 8000 6000 4000 2000} Time (years before present)

Comparison with proxies and model simulations

