

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Workshop on "Developments in isotope ratio measurements for gas analysis", Bern, 10.10.2019

Insights into the new tracer ¹⁷O-excess: results from the Swiss precipitation network

Markus Leuenberger, Shyam Ranjan, Stéphane Affolter, Rüdiger Schanda and Peter Nyfeler

Climate and Environmental Physics Division, Physics Institute, University of Bern, Switzerland and Oeschger Centre for Climate Change Research

Isotopologues of water: Tool to retrieve information about the water cycle

^b UNIVERSITÄT BERN

Early steps in water isotope research R. Gonfiantini, H. Craig and L. I. Gordon

UNIVERSITÄT BERN

Water cycle processes and its implication on isotopologues

D UNIVERSITÄT BERN

Isotopologues of water: Second order effects

^b UNIVERSITÄT BERN

16

1

1

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

d-excess in ice cores as tracer of

18

- Moisture source temperature (Ciais and Jouzel, 1994)
- Precipitation site temperature (Stenni et al., 2010, Vimeux et al., 2002)
- Relative humidity at evaporation site (Jouzel, 1982, Pfahl and Sodemann, 2014, Aemisegger and Soltje 2018)

 $\delta D - 8 \cdot \delta^{18}O = d$ -excess

(Dansgaard, 1964)

1

Conclusion first part

D UNIVERSITÄT BERN

- Tools such as ¹⁷O-excess and d-excess are helpful in disentangling kinetic from equilibration processes.
- > We observed a clear anti-correlation between ¹⁷O-excess and the stable isotopes ($\delta^{17}O$, $\delta^{18}O$ and δD) in precipitation samples in contrast to
- > no or a slight positive correlation between ¹⁷O-excess and the stable isotopes $(\delta^{17}O, \delta^{18}O \text{ and } \delta D)$ in water vapor.
- The mean value of ¹⁷O-excess of the water vapor of about +20 per meg points to an important but rather weak (10 %) kinetic (diffusive) fractionation at the source location which might probably be present during the complete vapor path from the source location to the site of precipitation.
- The correspondent value for precipitation is about +45 per meg and is expected due to the higher slope of the equilibration fractionation of 0.529 between ¹⁷O and ¹⁸O.

$\delta \textbf{D}$ and d-excess values on Dome Fuji ice

Anti-correlation between δD and d-excess Could indicate an increased continentality effect!

 u^{b}

D UNIVERSITÄT BERN

OESCHGER CENTRE

d-excess correlations with humidity and sea surface temperatures

FIG. 8. Correlation of (a) dc with SST and (b) dc with hs using monthly mean data and ak(MJ79) during SLOE. Both patterns look similar when using SLH-weighted monthly means. Land areas, regions with seasonal mean SLOE frequencies below 1% (tropics), or areas with seasonal sea ice are masked. \rightarrow proxy for relative humidity

21 October 2019

UNIVERSITÄT

OESCHGER CENTRE

BERN

Water cycle processes and its implication on isotopologues

^b UNIVERSITÄT BERN

Isotopologues of water: Second order effects

^b Universität Bern

16

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

¹⁷O-excess in vapour over the ocean is

18

- Anitcorrelated with the relative humidity (RH) (Uemura, 2010)
- Can it act as RH tracer?
- Is there more to say?

$^{17}\text{O-excess} = \ln (\delta^{17}\text{O} + 1) - 0.528 \cdot \ln (\delta^{18}\text{O} + 1)$

(Barkan and Luz, 2004)

1

17

1

Primary and second-order effects

^D UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

$$1^{17}O-excess = -\ln({}^{18}\alpha_{eq}^{0.529}({}^{18}\alpha_{diff}^{0.518}(1-h_n)+h_n)) + 0.528 \cdot \ln({}^{18}\alpha_{eq}({}^{18}\alpha_{diff}(1-h)+h_n))$$

$$3004 \text{ E. Barkan and B. Luz}$$

From equation above: about -0.001 %/% = -1 permeg /%!!

21 October 2019

Demands on well-calibrated and precise instrumentations are high!!

Figure 1. The ¹⁷O-excess of atmospheric vapor in the ocean versus normalized humidity (h_n). Observed data (solid circles) with two outliers (open circles) are shown. The solid line is based on model calculations with optimized ¹⁸ α_{diff} (1.008). The chain line is based on model calculations with the generally accepted ¹⁸ α_{diff} values of 1.005.

Slope of -0.64permeg/%

UNIVERSITÄT BERN

OESCHGER CENTRE

Slightly negative values for high humidities

Jungfraujoch monthly precipitation using a Picarro L2140-i instrument

 u^{b}

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Mean of 47 ± 30 per meg \rightarrow 43 (+ 23, - 28) % humidity

21 October 2019

Jungfraujoch monthly precipitation and temperature

[⊅] UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Anticorrelation with temperature indirect effect

Jungfraujoch precipitation vs. temperature

 u^{b}

UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Jungfraujoch precipitation

Anticorrelation with temperature indirect effect

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Seasonality of Jungfraujoch precipitation

Seasonality with an amplitude of 34 per meg and a monthly uncertainty of ±3 per meg i.e. relative humidity changes 43 (+ 17, -14) %.

21 October 2019

Jungfraujoch monthly precipitation variations around the mean

 u^{b}

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Decadal and interannual variations

Jungfraujoch monthly precipitation variations around the mean

 u^{b}

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Dedacal trend (reason yet unkonwn)

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Jungfraujoch precipitation

Interannual variations (might be connected to NAO)

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Jungfraujoch precipitation

Intermonthly variations and measurement uncertainty

Swiss precipitation stations

^b UNIVERSITÄT BERN

Station	Abbreviation	Alt.m (a.s.l)	Long. WGS (deg)	Lat. WGS (deg)
Basel	BAS	292	7.582	47.541
Locarno	LOC	379	8.787	46.172
Bern	BER	541	7.439	46.951
Meirengen	MER	598	8.178	46.727
Guttannen	GUT	1055	8.292	46.656
Grimsel	GRI	1980	8.332	46.571
Jungfraujoch	$_{ m JFJ}$	3580	7.985	46.548

Swiss precipitation stations

D UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Seasonalities of Swiss precipitation stations

Amplitudes are between 28 and 52 per meg, means between 30 and 65 per meg.

Swiss precipitation stations

[⊅] UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Seasonality of Jungfraujoch precipitation

There might be constrasting dependencies at low and high altitudes, respectively (boundary layer influence, e. g. Kern et al, 2014)

21 October 2019

Difficulty of measurements, in particular at lower concentrations (vertical profile)

^b UNIVERSITÄT BERN

Difficulty of measurements, in particular at low concentrations

Figure 1. Total uncertainty of δD , $\delta^{18}O$, and *d* excess over the range of H₂O_v mole fractions observed in flight.

D UNIVERSITÄT BERN

D UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

¹⁷O-excess is anticorrelated with $\delta^{18}O_{precip}$

[⊅] UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

¹⁷O-excess is anticorrelated with $\delta^{18}O_{precip}$

D UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

¹⁷O-excess is anticorrelated with $\delta^{18}O_{precip}$

Jungfraujoch trapped water vapor

 $\boldsymbol{u}^{\scriptscriptstyle b}$

^D UNIVERSITÄT BERN

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

21 October 2019

Thank you for your attention

D UNIVERSITÄT BERN

