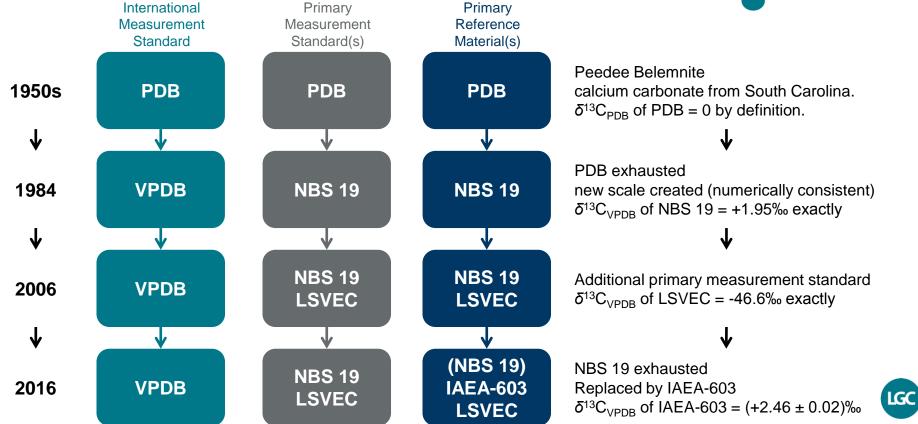
IRWG Meeting, Oct 2019, Bern, Switzerland

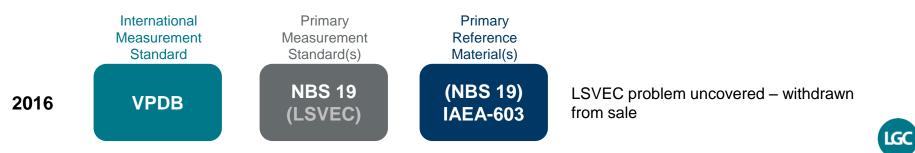
SI-traceable carbon isotope ratios <u>Phil Dunn</u>, Dmitriy Malinovskiy & Heidi Goenaga-Infante Philip.dunn@lgcgroup.com

Measurement standards for isotope delta

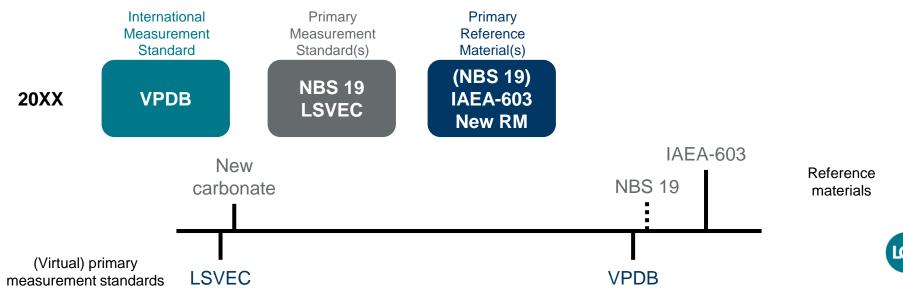

- International Measurement Standards
 - Adopted by convention
 - Zero-point of scale
 - Exact isotope delta
 - Can be a reference material, homogenous natural reservoir or virtual material
 - Can be more than one for each element (e.g. oxygen) but only one per scale
 - E.g. VSMOW, NIST SRM 987, NBS 28, atmospheric nitrogen, SMOB, etc.
- Primary measurement standards
 - Adopted by convention
 - Exact isotope delta (can be non-zero)
 - Can be more than one per scale
 - E.g. SLAP, IAEA-S-1, USGS32, etc.

- Primary reference materials
 - Adopted by convention
 - Exact zero or non-zero isotope delta ("replacement" materials bear uncertainty)
 - Realisations of primary and international measurement standards
 - E.g. VSMOW2, SLAP2, IRMM-014, etc.

Measurement standards for carbon isotope delta



Problem with LSVEC uncovered in 2015-16


- IAEA noticed that carbon isotope ratio of LSVEC varied between different storage containers.
- Result of water present in original material (as well as that adsorbed from the atmosphere during use).
 - Atmospheric CO₂ ($\delta^{13}C_{VPDB} \sim -8$ ‰) absorbed by water and then exchanges with carbonate.
- Withdrawn from sale (for C) but remains within traceability chain

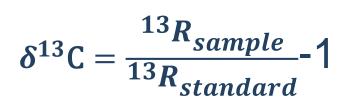
Possible options for addressing the LSVEC problem

- Replace it with another carbonate and maintain the current (2006) scale
 - Effectively defines a "virtual LSVEC" at $\delta^{13}C_{\text{VPDB}}$ = -46.6 ‰
 - All other existing RMs retain their currently-assigned values.
 - LSVEC physical material still not for C isotope analysis potentially very confusing.

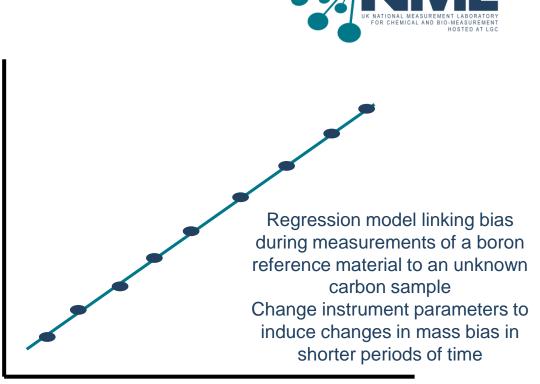
Possible options for addressing the LSVEC problem

- Replace it with other carbonate(s) and change the scale
 - New range of carbonate RMs calibrated to IAEA-603 (secondary RMs)
 - Need to re-assess all other RMs to provide assigned values on new scale.
 - Resultant need to change terminology for scales e.g. include year.

Artefact-based scales vs the SI



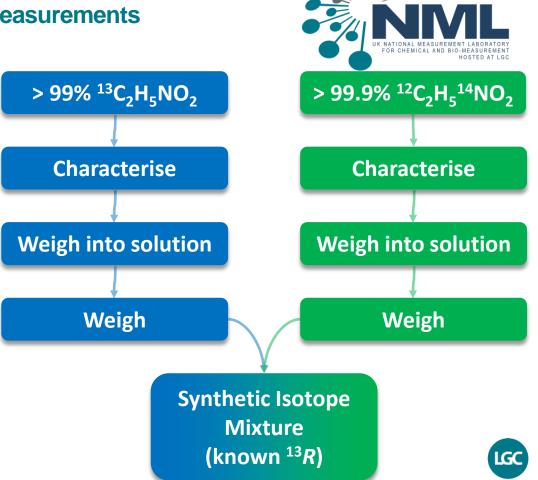
• Scales traceable to an artefact


- Can develop independently (e.g. oxygen isotope-delta scales).
- Need to maintain the scale (drift in reference artefacts, difficult/impossible to regenerate).
- Provide very consistent and precise results.

- Scales traceable the SI (i.e. a measurement process).
 - Provide accurate results.
 - Can have more than one source.
 - Enhanced metrological traceability and/or comparability

 $^{13}R_{sample}$

In(11B/10B)


Alternative to relative (i.e. delta) measurements

- Mass spectrometers are precise but not accurate
- Need materials with known isotope ratio for calibration
 - Reference material(s) with known absolute isotope ratio
 - Reference material <u>of a</u> <u>different element</u> with known isotope ratio

n(¹³C/¹²C)

Alternative to relative (i.e. delta) measurements

- Mass spectrometers are precise but not accurate
- Need materials with known isotope ratio for calibration
 - Reference material(s) with known absolute isotope ratio
 - Reference material <u>of a</u> <u>different element</u> with known isotope ratio
 - Gravimetric preparation of mixtures of isotopes (or isotopologues) with known purity

Absolute carbon isotope ratio measurements at LGC

2008	Anal. Chem. 2008, 80, 5963–5969 Precise and Traceable ¹³ C/ ¹² C Isotope Amount Ratios by Multicollector ICPMS Rebeca Santamaria-Fernandez,* David Carter, and Ruth Hearn LGC, Queens Road, Teddington, Middlesex, TWH J QLY, U.K.	MC-ICP-MS used to determine absolute carbon isotope ratios for the first time. Mass bias corrected using NIST Boron CRM as internal standard
2013	JAAS RSC Publishing PAPER View Article Online Versioned (Versione) Other Michael Ad. Spectrum, 2011, Stat (1990) Determination of absolute ¹³ C/ ¹² C isotope amount ratios by MC-ICPMS using calibration with synthetic isotope mixtures Dmitry Malinovsky,* Phillip J. H. Dunn and Heidi Goenaga-Infante	Use of synthetic isotopologue mixtures of glycine for calibration. RM produced under accreditation to ISO 17025 and 17034
2015	And Bload Over (2015) 6773169-3180 DOI 10.1007/60216-014-7926-1 RESEARCH PAPER Calibration strategies for the determination of stable carbon absolute isotope ratios in a glycine candidate reference material by elemental analyser-isotope ratio mass spectrometry Philip J. H. Dum - Dmitry Maliowsky - Heid General-Induce	Confirmation using EA-IRMS and redetermination of absolute isotope ratio of VPDB international measurement standard.

Limitations of the work

- Parent glycines enriched in ¹³C and ¹²C were not investigated for possible co-enrichment of H, N and O isotopes
 - Potential for molecular weights of the parent glycines to be outside of uncertainty bounds used in calculations (so uncertainty in final ratios may be underestimated)
 - Parent glycines sent to the USGS Stable Isotope Laboratory in Reston, Virginia for analysis
 - No significant enrichment found which would cause the molecular weights we used for the parent glycines to be invalid.
- With one reference material, calibration is not possible as it is preferable to use two or more RMs to allow scale span to be determined.
 - Suite of three glycines with isotopic compositions spanning the natural abundance range prepared as reference materials.

Acknowledgement:

Tyler Coplen and Haiping Qi at the USGS Reston SIL

JAAS

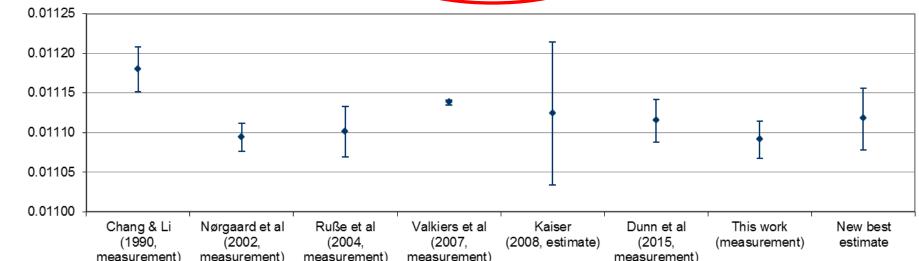
34 147

PAPER

Check for updates

Cite this: J. Anal. At. Spectrom., 2019.

 CIAAW has recognised this work as a new best measurement of the isotopic abundance of carbon



What about VPDB?

R(¹³C/¹²C)_{VPDB}

 Similar approach now adopted by CIAAW but using a slightly different calculation approach to come up with their own best estimate (NIST Consensus Builder – available online)

Impacts of change to recommended absolute isotope ratio of VPDB

- Change to recommended ¹⁷O correction algorithm
 - Impact on measurement of clumped isotopes
- Optical instrumentation
- Conversion of isotope delta to other quantities (absolute ratios, atom fractions, atomic weight)
- Submitted STELLAR project (EURAMET) is hoping to supply more independent measurements of this ratio to reduce the associated uncertainty significantly.

Summary

- LGC has worked towards measuring absolute isotope ratios traceable to the SI for a number of years
 - Achieved ISO/IEC 17025 accreditation for measurement by MC-ICP-MS
 - Produced four RMs under ISO/IEC 17034 accreditation
 - Re-determined the absolute isotope ratio of VPDB (the virtual international standard)
- This body of work has recently been recognised as the best measurement of the isotopic abundance of carbon by IUPAC CIAAW

Acknowledgements

- Gill Holcombe and the RM production team
- Simon Cowen, Steve Ellison and the stats team
- Cailean Clarkson and the purity team
- Ty Coplen and Haiping Qi at the USGS Reston Stable Isotope Laboratory

