

Developments of RMs on the artefact-based VPDB δ¹³C scale, aiming to address GAW-WMO requirements

Sergey Assonov (IAEA, Vienna) IRWG-GAWG workshop, Bern, Switzerland, 10 October, 2019

Table 1. Recommended network compatibility of measurements withinthe scope of WMO/GAW

Vetwork compatibility	Extended	Range in
goal ¹	network	unpolluted
	compatibility	troposphere
	goal ²	(approx. range for
		2017)
0.01 ‰	0.1 ‰	-9.5 to -7.5 ‰
		(VPDB)
0.02 ‰	0.2 ‰	-51 to -46 ‰
		(VPDB)
C	<i>goal¹</i> 	goal ¹ network compatibility goal ² 0.01 ‰ 0.1 ‰

These are different ranges of the VPDB scale.

Complexities:

- 1. Inter-comparisons can give a snapshot of a compatibility for a year 20XY only.
- 2. The compatibility targets imply the long-term data compatibility. Hence, one shall demonstrate that by reliable calibrations, over years.
- 3. These target values are at the limits of the best modern mass-spectrometry.

Q: How to reach that?

By reliable calibrations against reliable and stable in time reference materials (RMs) only. **There is a need in RMs** with very low uncertainty.

Why the IAEA?

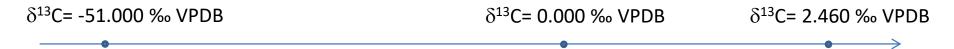
- IAEA operates as custodian of primary RMs (highest realization of several stable isotope scales).
- IAEA keeps & monitors primary RMs and introduces replacements.
- Regular IAEA expert meeting on stable isotope RMs.

What about GAW-WMO?

- A lot of air-CO2 isotope measurements, over may years,
- Since 2006, GAW Central Calibration Lab (CCL) for CO2 isotopes at MPI-Jena (DE), making "community scale-realization" in form of CO2-air mixtures (JRAS) traceable to primary RM from IAEA;
- Biannual WMO/IAEA meetings on CO2 and other greenhouse gas measurement techniques.

The situation:

- Agreement on pure CO2 is (was) shown to be worse compared to CO2-air samples;
- Agreements in inter-comparisons (CO2-air-samples) and in round robins (CO2-air cylinders) are still not satisfactory;
- Still, no independent verification of CCL mixtures;
- CH4-air-samples are mostly analyzed by converting CH4 to CO2. Agreement in inter-comparisons for (CH4-air-samples) is also not satisfactory. There is no CCL


δ -notation: the scale-unit, data reporting and scale-range

 $\delta^{13}C = ({}^{13}C/{}^{12}C_{sample} / {}^{13}C/{}^{12}C_{VPDB} - 1)$

where VPDB (Vienna Pee dee Belemnite) is the reporting scale;

 δ -values are expressed in multiples of 0.001, notation of ‰

We talk about rather a large scale-range and how to pinpoint it.

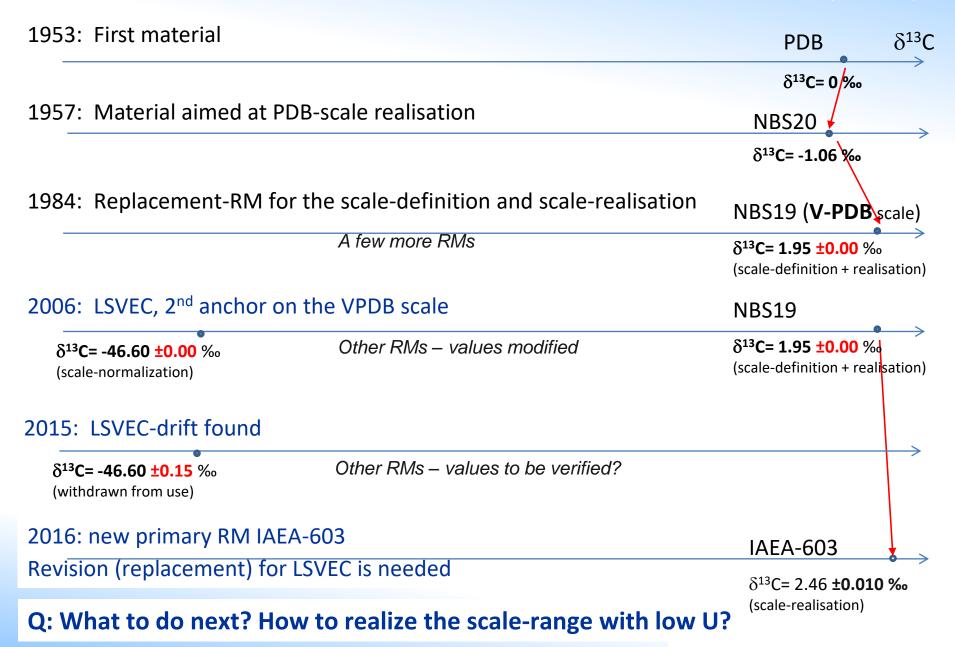
Note: SI-traceability with requested uncertainty is still not realized, there is NO primary method to prepare mixtures of decided $\delta^{13}C-\delta^{18}O$. =>Scale realization is based on the primary RM + reference method.

Practicalities of the scale:

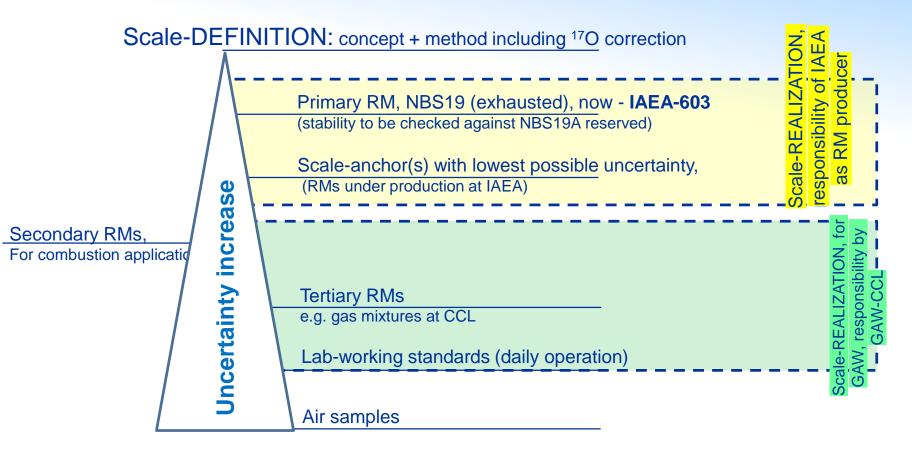
- 1. Based on the primary RM in the form of Ca-carbonate:
 - Historical Pee Dee Belemnite (PDB): biological-geological carbonate;
 - NBS20 (Solenhofen): powdered limestone, <u>δ¹⁸O-drifts reported;</u>
 - NBS19: high-purity, homogeneous marble Ca-carbonate, exhausted;
 - IAEA-603: high-purity, homogeneous marble Ca-carbonate, <u>in current</u> use;

<u>Why carbonates</u>: simple matrix, numerus labs, many aliquots in a single vial, better stability compared to CO_2 .

- 2. Optimised preparation method:
 - CaCO₃ + H₃PO₄ reaction under standard conditions;
- 3. Based on the CO_2 mass-spectrometry (superior method):
 - ¹³C and ¹⁷O contribute to mass 45 (at 93.5 % and 6.5 % respectively),
 - δ^{13} C calculated by correcting the raw data for ¹⁷O-contribution.
- 4. δ^{13} C of CO₂-in-air on the VPDB-CO₂ scale:
 - CO₂ extracted from air, N₂O co-extracted;
 - Corrections: due to mass-spec memory, $\frac{17O-correction}{N_2O-correction}$ and $N_2O-correction$ (~0.2 ‰ for $\delta^{13}C$).
- 5. Optical CO₂ spectrometry developed, still at larger uncertainty.



Depending on the algorithm, δ^{13} Cvalue calculated for the same LSVECraw data differs for 0.13 ‰. *Verkouteren, 2004*


History of major RMs of the δ^{13} C scale and major revisions:

LEA Atoms for Peace and Developmen

Traceability and hierarchy of RMs:

Note: some other RMs are under production at other RM producers.

Additional dimension:

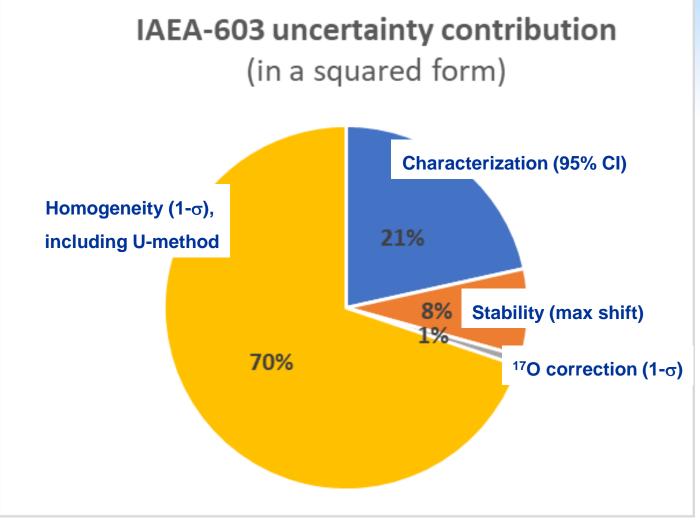
In fact, carbonate RMs provide cover several scales, these are VPDB- δ^{13} C scale, VPDB- δ^{18} O scale and VPDB-CO2 δ^{18} O scale.

With lessons learned, how we apply that to IAEA-603 and new RMs?

- Careful material selection,
- Batch production, large number of fully identical units,
- Understanding & characterizing all major uncertainty components,
- Elimination of undesirable (storage) effects, evaluation of U(storage),

Note, here we discuss RMs in the simple matrixes. Ca-carbonates (most stable) and later pure CO2 – these can address the most critical U-requirements. Organic-matrix RMs are of lower U-tolerance and thus considered separately.

IAEA-603 characterization by H3PO4-reaction under standard conditions


				AEA Atoms for Peace and Development
Component	δ ¹³ C ‰ VPDB	N _{IAEA-603} / N _{NBS19}	δ ¹⁸ O ‰ VPDB-CO ₂	N _{IAEA-603} / N _{NBS19}
Homogeneity (analytical scatter 1-σ, at >95%-Cl on 52000 ampoules produced)	±0.009 (1-σ)	N _{IAEA-603} = 195	±0.035 (1-σ)	N _{IAEA-603} = 148
Characterization (at 95%-CI)	2.460±0.005	N _{IAEA-603} =38 N _{NBS19} =38	-2.373±0.017	N _{IAEA-603} =38 N _{NBS19} =38
Stability (potential effect due to CO_2 in ampoules)	Max shift of 0.003			N2010
Potential bias due to ¹⁷ O correction	~ 0.001		n/a	
Assigned values	2.460±0.010		-2.373±0.039	

- 1. IAEA-603 guarantees the VPDB scale-realization for decades.
- 2. U-estimation includes U-analytical(IAEA-lab).
- 3. Each ampoule, each aliquot shall stay within the assigned uncertainty over years.
- 4. We are at the limits of the best carbonate-reparation method and the factory certificate for MAT253' reproducibility in δ^{13} C.

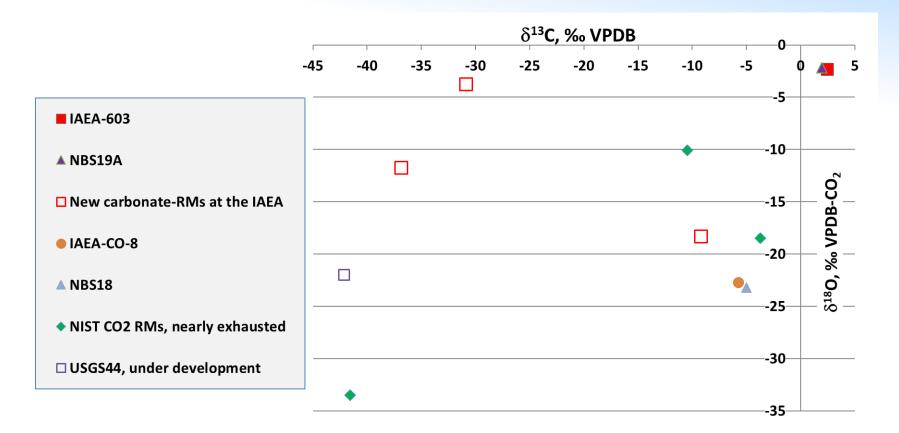
Note, by multiple runs one can reduce the certified uncertainty as related to the material-inhomogeneity.

Traceability and <u>commutability</u> of RMs (closeness of properties)

AEA Atoms for Peace and Developmen

Primary RM for scale-realization	carbonate IAEA-603	
Scale-anchors RMs	3 new carbonate RMs (under	r development)
	Pure CO2 RMs will be develop	ed l <mark>a</mark> ter, <mark>at IAEA</mark>
Scale-transfer mixtures	CO2-in-air	
	e.g. by GAW-CCL	aint
Working lab-standard mixtures	CO2-in-air	Uncertaint
Air-samples		

Current status:


- IAEA-603 is the primary RM, with a reliably estimated uncertainty, in a large quantity.
- 3 new carbonate RMs are under development at IAEA.

Q-1: How to realize the scale by several RMs, namely cover δ^{13} C- δ^{18} O space, based on (traceable to) the primary RM? A: based on referce method, namely well-tested mass-spectrometry + well-understood corrections.

Q-2: How to make the traceability chain (by means of relative measurements only) without essential increase in uncertainty? A: homogeneous materials, optimized measurement procedure(s), taking multiple aliquots of solid-RMs.

δ^{13} C and δ^{18} O values of new carbonate RMs (under characterization):

- Verification of values for new IAEA RMs by expert labs, including runs against remaining NIST RMs 8562-8564.
- RMs will cover δ^{13} C- δ^{18} O space, providing means to cross-check values & verify a drift if any.

Batch preparation of new carbonate-RMs:

RMs	Production, 1 st batch	0.5 g ampoules	Reserved amount
IAEA-603 (available)	5200	1ml ampoules	4 batches
New carbonates:			
IAEA-611	~3750	2ml ampoules	2 batches
IAEA-610	~3000	2ml ampoules	3 batches
IAEA-612	~4100	2ml ampoules	1 batch (+2 batches similar)
NBS19A	~1100	1 ml ampoules	2 batches

IAEA-603 and new IAEA-610, -611 and -612

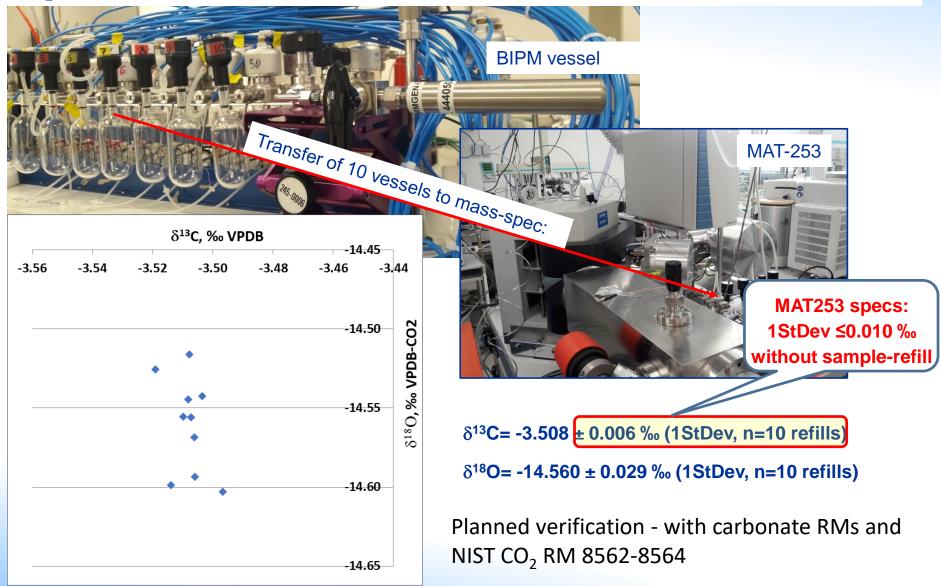
Homogeneity (analytical data-scatter) and potential storage effects:

AEA .		

	δ ¹³ C, ‰	U-homogeneity at 1-σ, ‰	Max δ ¹³ C- shift due to CO₂ in ampoule	δ ¹⁸ Ο, ‰	U-homogeneity at 1-σ, ‰
IAEA-603	+2.46	<mark>±0.009</mark> n=198, >95% CI	~0.003	-2.37	<mark>±0.035</mark> homogeneity n=145, ⊳95% Cl
New carbonates	δ ¹³ C, ‰	U (homogeneity)	$\begin{array}{l} \text{Max } \delta^{13}\text{C-shift} \\ \text{due to CO2 in} \\ \text{ampoules} \end{array}$	δ ¹⁸ Ο, ‰	U (homogeneity)
	δ ¹³ C, ‰ ~ -30.8		due to CO2 in	δ ¹⁸ O, ‰ ~ -3.8	
carbonates		(homogeneity) <u>±0.008</u> n=78	due to CO2 in ampoules		(homogeneity) <u>+0.042</u> n=78

CO₂ potentially available for reaction during storage:

- up to ~0.01 cm³ STP CO₂ in sealed glass ampoules;
- $\sim 1.2 \text{ cm}^3 \text{ STP CO}_2$ reacted with LSVEC in vials (during long storage).


=> Ampoule-sealing is really advantageous option.

Next, works on pure CO₂ gas RMs

Work for CCQM Key Comparison Pilot Study on CO₂ isotopes:

Test: aliquots from BIPM-vessel (~2 bar) taken in glass transfer-vessels (the same as used for CO_2 from carbonate RMs), then connected to MAT253' automated manifold.

- IAEA maintains the primary RM on the VPDB scale and introduces replacements. Well-characterized primary RM IAEA-603 was introduced in 2016 (the highest scalerealisation). IAEA-603 is homogeneous, well preserved in sealed glass ampoules, its large amount is sufficient for decades.
- IAEA works on sustainable realization of the VPDB-scale. 3 new scale-anchors (carbonate RMs) aimed at reliable scale-realisation with lowest possible uncertainty are under development, pure CO₂ RMs will follow.
- Scale-verification over years is foreseen, for this purpose NBS19A is reserved;
- IAEA proposes to highlight revisions of the scale-realization by names, e.g. VPDB2020.
- More metrological understanding of the VPDB scale is needed = the role of Key Comparison Pilot Study for CO₂ isotopes.

Knowledge dissemination:

 IAEA proposes 4-years Technical Cooperation (TC) interregional project (2020-2023) for "Capacity development towards wider use of stable isotopic techniques for source attribution of greenhouse gases in the atmosphere".

BG1.5 Quality control tools in stable isotope measurements: Making your data reliable Co-organized as AS5.27 Convener: Sergey Assonov | Co-conveners: Philip Dunn, Grzegorz Skrzypek, David Soto