

Multi-Technique Combination for UTC/TAI Time/Frequency Transfers

-- example of Combining GPS PPP and TW

Z. Jiang and G. Petit
Time, Frequency and Gravimetry Section

Techniques for UTC/TAI transfers

<u>TW:</u> Two-Way Satellite Time Frequency transfer (Geostationary Telecommunication Satellites)

GNSS: Global Navigation Satellite System: GPS, Glonass, Galileo ...

At present

29 labs operate more than the two techniques; 9 operate the three;

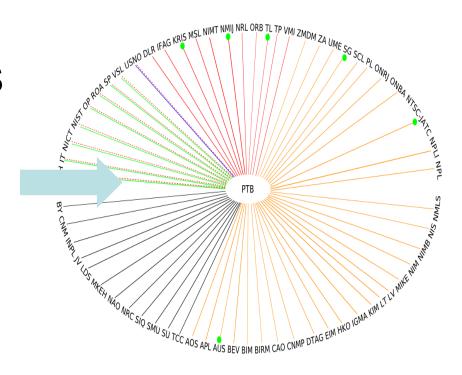
In the coming future

Galileo, Compass, T2L2

Lab	GPS	GLN	TW
AOS	GPS	GLN	TW
AUS	GPS		TW
CH	GPS		TW
<u>IT</u>	GPS	GLN	TW
KIM	GPS	GLN	
<u>KRIS</u>	GPS	GLN	TW
KZ	GPS	GLN	
LDS	GPS	GLN	
MIKE	GPS	GLN	
NICT	GPS		TW
NIM	GPS		TW *
NIS	GPS	GLN	
<u>NIST</u>	GPS	GLN	TW
NMIJ	GPS		TW
NPL	GPS	_	TW
NRL	GPS	GLN	TW
NPLI	GPS	GLN	
NTSC	GPS		TW
OP	GPS	GLN	TW
PTB	GPS	GLN	TW
ROA	GPS	01.11	TW
<u>SG</u>	GPS	GLN	TW
SP	GPS	01.11	TW
SU	GPS	GLN	
TL	GPS		TW
UME	GPS	GLN	T\ A /
<u>USNO</u>	GPS	GLN	TW
VSL 7	GPS	GLN	TW
<u>ZA</u>	GPS	GLN	1

BIPM Annul Report 2007/8

State of the art in the study (single-link combination)


- 1. Weighted average of TW and GPS during the TAI generation, Petit and Jiang EFTF 2006
- Use TW as a constraint in a GPS CP CV leastsquare algorithm, Defraigne and Martinez, EFTF/PTTI 2008
- 3. Use TW as the absolute scale of a time link and GNSS CP as its derivatives, Jiang and Petit, EFTF2006 and Metrologia 2009
- 4. ... ?

The Primary Link Strategy

- 1. Use either TW or GPS
- 2. Use TW before GPS

→ Single-technique-Single-link strategy

68 UTC/TAI Labs and the 67 primary links

Advantages of TW and GNSS

• <u>TW :</u>

- Calibration and reproducibility ≈ 1ns
- Long term stability
- Atmosphere delay free symmetric trajectories
- uA: 0.2~0.5 ns when diurnals off

· GNSS:

- World-wide transfer without geometric limit GPST
- Short term stability carrier phase information
- Hardware-manpower less cost
- uA: ≤ 0.3 ns (ĠPS PPP)

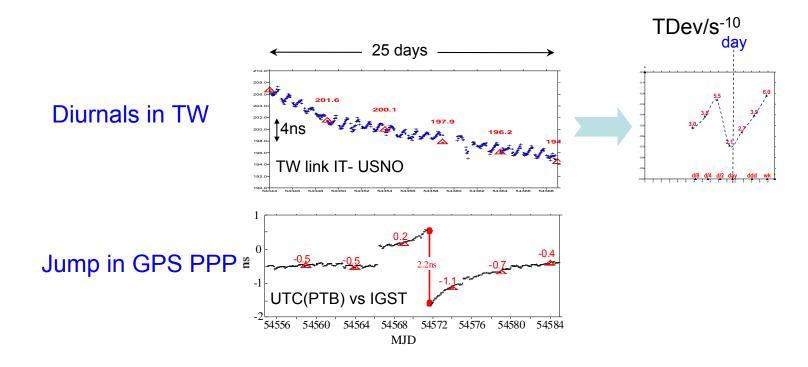
disAdvantages of TW and GNSS

• <u>TW :</u>

- Diurnals (dominant error source)
- Baseline fixed (geometric limit)
- Hardware-manpower cost vs. GNSS

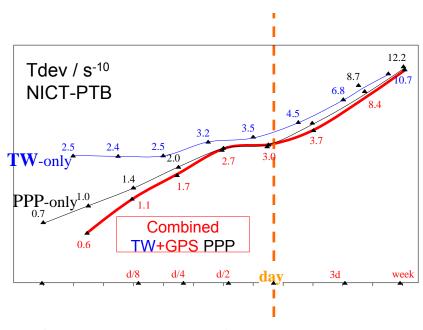
GNSS :

- Less accurate calibration vs. TW
- Complex data treatment-Software depending on IGS



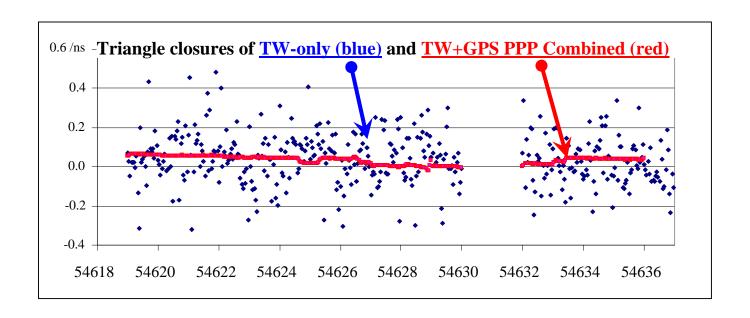
Comparison of TW and GNSS

Terms	TW	GNSS .
Calibration	~1ns	~5ns
Transfer limit	baseline	global
Distance	~dependent	~independent
Atmosphere effect	free	correction
Diurnals	yes	free
Data processing	simple/independ.	complex/depend.
Cost	expensive	less



Examples of the faults in TW and GPS

Gain in the Tdev



- Repair/Reduce the faults in raw data
- Improve short term stability

Gain in the Triangle Closures

Single link Closure Δ: TL-NICT-KRIS

Combination of TW and GNSS (Single-Link)

- Combining Advantages and Reducing disAdvantages
- 1. Give a better robustness thanks to independence of TW and GNSS;
- 2. Repair the faults: gaps, jumps, discontinuities and drift in both TW and GNSS;
- 3. Keep the TW calibration and GNSS short term stability;
- Reduce the diurnals in TW;
- 5. Both TW and GPS PPP data are available at BIPM.

Can the combination improve UTC/TAI?

An example of Combining TW and GPS PPP:

- → 19 labs (29% of 68 labs) operate both TW and PPP
- → They contribute to UTC/TAI with
- 253 clocks (71% of total)
- 88% of total clock weight
- 12 Primary Frequency Standards (100%)

Any improvement in T/F transfer of these 19 links will have a direct gain of 88% in UTC/TAI

→ TW+PPP is an Effective strategy to improve UTC/TAI

19 Labs operate TW & GPS PPP and their contribution to UTC/TAL

	Lab.	Nomb.	Clock	Weight	
No.	TW+PPP	Clock	%	%	PFS
1	AOS	13	3.7	4.0	
2	AUS	5	1.4	0.9	
3	CH	4	1.1	1.0	
4	OP	29	8.1	7.5	yes
5	IT	6	1.7	2.6	yes
6	KRIS	6	1.7	1.2	
7	NICT	27	7.6	10.9	yes
8	NIM	4	1.1	0.1	
9	NIST	12	3.4	5.7	yes
10	NMIJ	3	0.8	1.4	yes
11	NPL	4	1.1	1.7	yes
12	NTSC	22	6.2	8.0	
13	PTB	6	1.7	2.6	yes
14	ROA	6	1.7	1.8	
15	SG	3	0.8	0.4	
16	SP	14	3.9	3.2	
17	${ t TL}$	15	4.2	5.8	
18	USNO	70	19.7	27.6	
19	VSL	4	1.1	1.4	
	Total	253	71%	88%	•

Summary

- 1. Multi-techniques dada are available but the present strategy is *Single-Technique-Single-Link transfer*
- 2. The multi-technique combination is an *effective strategy* to improve the UTC/TAI
- 3. GPS PPP and TW combination proves considerable gains in Robustness, Accuracy and Precision
- 4. Mathematic model and software are developed at BIPM

