

IGS Clock Products Working Group

Ken Senior U.S. Naval Research Laboratory (NRL) Ken.Senior@nrl.navy.mil

7th meeting of the representatives of Laboratories contributing to TAI

13 September 2006 Bureau International des Poids et Mesures Sèvre, France

Clock RINEX Format Change

- a. "RINEX VERSION / TYPE" header changed to 3.00 and to add satellite system designator.
- b. "PGM / RUN BY / DATE" header date format elaborated.
- c. "SYS / # / OBS TYPES" header added.
- d. Added Galileo and Space-Based Augmentation System (SBAS) satellite designators in Section 5.
- e. "TIME SYSTEM ID" header added.
- f. The satellite antenna phase center offset information has been moved from a mandatory comment to the "SAT ANT PCO / PCV" header and now includes the associated phase center variation information also. It is expected that an external file will be referenced.
- g. "SYS / DCBS APPLIED" header added. [NOTE: The format -- taken from RINEX 3.00 is not adequate to give DCBs for each satellite. Further changes are under discussion.]
- h. Capability of handling inter-system timing biases (possibly as a new type of CR data record) are under consideration.

To view the pending revised version, please see: <u>ftp://www.ngs.noaa.gov/dist/jimr/rinex_clock.30aug06</u>

Send any comments to:

Jim Ray (NGS) jimr@ngs.noaa.gov

Werner Gurtner (AIUB) werner.gurtner@aiub.unibe.ch)

Ken Senior (NRL) <u>ken.senior@nrl.navy.mil</u>

IGS High Performance Clocks

Time Labs

IGS Site	Time Lab	Freq. Std.	Location
AMC2	AMC	H-Maser	Colorado Springs, CO USA
BOR1	AOS	Cesium	Borowiec, Poland
BRUS	ORB	H-Maser	Brussels, Belgium
IENG	IEN	Cesium	Torino, Italy
KGN0	CRL	Cesium	Koganei, Japan
MDVJ	VNIIM	H-Maser	Mendeleevo, Russia
MIZU	NAO	Cesium	Mizusawa, Japan
NISU	NIST	H-Maser	Boulder, CO USA
NPLD	NPL	H-Maser	Teddington, UK
NRC1	NRC	H-Maser	Ottawa, Canada
NRC2	NRC	H-Maser	Ottawa, Canada
OBE2	DLR	Rubidium	Oberpfaffenhofen, Germany
OPMT	OP	H-Maser	Paris, France
PENC	SGO	Rubidium	Penc, Hungary
PTBB	PTB	H-Maser	Braunschweig, Germany
SFER	ROA	Cesium	San Fernando, Spain
SPT0	SP	Cesium	Boras, Sweden
SYDN	NMI	Cesium	Sydney, Australia
TLSE	CNES	Cesium	Toulouse, France
TWTF	TL	Cesium	Taoyuan, Taiwan
USNO	USNO	H-Maser	Washington, DC USA
USN3	USNO	H-Maser	Washington, DC USA
WAB2	СН	H-Maser	Bern, Switzerland
WTZA	IFAG	H-Maser	Wettzell, Germany
WTZR	IFAG	H-Maser	Wettzell, Germany

- IGS Reanalysis underway 2006/2007
 - Will reanalyze data back to 1994
 - Clock densification a high priority
 - PPP at BIPM w/ IGS products still probably necessary though

Ken.Senior@nrl.navy.mil

Day Boundary Clock Jumps

- for 24-hr arc with code σ = 1 m, clock accuracy should be ~120 ps
- independent daily reductions can test accuracy by measuring clock jumps at day boundaries (H-maser stations only)
- observed clock accuracies vary hugely among stations (120 – 1500 ps)
- presumably caused by variable local code multipath conditions
- long-wavelength (*near-field*) code multipath most important
- day-boundary jumps not an issue if station is constructed properly (e.g., ONSA & BRUS)

Metrologia, **40**(3), pp. S270-S288, (2003)

Day-Boundary Clock Discontinuities at NPLD

Day-Boundary Clock Discontinuities for USNO

Day-Boundary Clock Discontinuities at NRC1

https://goby.nrl.navy.mil/IGStime/daybdy/

Day-Boundary Clock Discontinuities at ALGO

Day-Boundary Clock Discontinuities at ONSA

Day-Boundary Clock Discontinuities for SPT0

13°E

https://goby.nrl.navy.mil/IGStime/daybdy/

Near-field Multipath Hypothesis

- <u>Hypothesis</u>: (J. Ray, 2005) Near-field standingwave back reflection a likely cause of dayboundary discontinuities at many sites
- Expect longest-period MP errors when H (phase center to back surface) is smallest [Elósegui et al., 1995]
- Choke-ring design esp sensitive to L2 reflections from below [Byun et al. 2002]
- Most IGS RF stations use antenna mount over surface!
- Other processing techniques may be studied, but we should determine what is already being done (instrumentally) correctly at sites like ONSA & BRUS

Boresight angle (degrees)

Empirical Test of Hypothesis

- 3 nearby, similar Canadian sites provide a test case
- YELL has open gap between antenna & pillar top
 - 10-cm spacing
 - annual: 3.65 ± 0.30 mm
 - **@ 93.3**° ± **4.6**°
- DUBO & FLIN use metal mesh shirts to screen gap
 - DUBO: 10-cm spacing
 - annual: 1.59 ± 0.37 mm
 @ 347.2° ± 14.1°
 - FLIN: 15-cm spacing
 - annual: 1.74 ± 0.35 mm
 @ 355.6° ± 12.7°

Poor Monumentation

