Status of UTC Presented to the 10th meeting of contributing laboratories

Elisa Felicitas Arias

10h Meeting of laboratories contributing to UTC Sèvres, 16 September 2015

Programme of Work and Budget 2012-2015

- Establishment of TAI/UTC/UTCr
- Time and frequency transfer studies
 - For TAI/UTC
 - For application in optical standards comparisons
- Time transfer equipment calibration
 - GPS/TWSTFT guidelines
 - Progress in calibrations
- Improvement of TAI frequency accuracy and stability
 - Evolution of the algorithm
- Publications
 - BIPM publications
 - Scientific publications and reports
- Coordination and international liason
 - CCs, WGs, CIPM MRA KCs
 - Regional and international organizations
- Internal services
 - Frequency reference

Staff of the Time Department (2012-2015)

Permanent	
Felicitas Arias	director
Aurélie Harmegnies #	calculation, software development, t. transfer
Zhiheng Jiang [#]	time transfer, calibration
Hawaï Konaté	calculation, data management, publications
Włodek Lewandowski *	time transfer, international liaison, calibration
Gianna Panfilo	algorithms, pfs, MRA
Gérard Petit	time transfer, PFS/SFS, calibration, international liaison
Lennart Robertsson	freq. transfer, internal services, project support
Laurent Tisserand	laboratory management, software development, t transfer
* Retired since June 2014	# T-Soft maintenance

Visitors/secondees

Amale Kanj (post-Doc, BIPM/CNES) Wenjun Wu (visiting scientist, NTSC) Federica Parisi (student, Torino Univ.) Julia Leute (student, PTB) time transfer and GPS absolute calibration (2013/14) time transfer and calibration (06/2014-06/2015) algorithms, time scales (6 months in 2014/15) time/frequency transfer (3 months in 2015)

Achievements

Algorithm for TAI

- New model of clock weighting implemented January 2014
- Rapid UTC
 - Continuous publication on Wednesdays before 18 h UTC
- Time transfer
 - Validation of GPS PPP and GPS calibration on 420 km optical fibre link
 - Comparison of optical fibre link with « classic techniques »
 - Improved GPS frequency transfer with integer ambiguities (with CNES)

Characterization of delays in time transfer equipment/links

- New calibration scheme in coordination with RMOs has been implemented (Guidelines for GNSS calibrations)
- BIPM calibrations trips in EURAMET, APMP, SIM, COOMET concluded

• Redefinition of UTC

- BIPM interacted with ITU-R, URSI, IAU, IUGG

Bureau

Mesures

Rapid UTC (UTCr)

- Uninterrupted publication since July 2013 (weekly)
- 42 participants

Bureau

Poids et

Aesures

- ~ 70% of the clocks in UTC
- Difference [UTC-UTCr] is minimized (steering to UTC after publication of BIPM Circular T)

 $UTC = 3 \times 10^{-16}$ Stability @ 1 month UTCr= 4×10^{-16} International des

Time transfer

Use of fibre links for link comparison and validation

Bureau
International des
Poids et
Mesures

BIPM calibrator

IPPP and PPP vs. 420-km fibre link

- IPPP technique: 100% success at solving integer λ_c boundaries over ~6 months
- A 41-day period (longest continuous operation for all systems):
 - Stability of IPPP better at few hours and at long term : 5.3x10⁻¹⁷ @ 7.1 days
 - PPP apparent slope of order 1x10⁻¹⁶, IPPP has no significant slope

Guidelines for GNSS equipment calibration Coordination of the BIPM with RMOs

Key comparison CCTF-K001.UTC

Following the discussions at the 19th Meeting of the CCTF (2012) , in agreement with the CCTF WG MRA and in concertation with the staff of the BIPM KCDB, the monthly publication of results of the key comparison CCTF-K001.UTC in the BIPM KCDB has been re-iniciated in 2015. Degrees of equivalence are provided for laboratories contributing to UTC operating in NMIs and DIs signatories of the CIPM MRA.

ne > Comparisons Search	> CCTF-K001.UTC results			
y and supplement	tary comparisons - Results		KCDB	
CCTF-K001.UTC	CCI	F-K001.UTC		-
nformation	ک Results			
ilot / Contact articipants	Laboratory individual Equivalence statements	Degrees of equivalence	Graph(s) of equivalence	
<u>esults</u> • March 2015 • April 2015	The key comparison reference val UTC, as decided by the CCTF at its	lue of the key comparisor 15th meeting held in 200	CCTF-K001.UTC is	
• May 2015 • June 2015	The degree of equivalence of each reference value is given by a pair of $D_{L} = [UTC - UTC(k)]$, where UTC(laboratory k with respect f terms both expressed in k) is the local representa	to the key comparison ns: ation of UTC	
· July 2015 rint out	maintained by laboratory k_r and U_{k_r} the expanded uncertainty (cover	erage factor equal to 2), (of D_k .	
Related links	The KCDB gives access to the deg	rees of equivalence for	the last month.	
<u>CDB Statistics</u> <u>CDB FAQs</u> CDB Reports	$U_k = 2 u_k$ where u_k is the combine U_k does not include the <i>prediction c</i> [UTC - UTC(k)].	d standard uncertainty o component due to the dela	f [UTC - UTC(k)]. ay of publication of	
IPM MRA	The u _k values are valid for the who	le month of calculation.		
CRB ind my NMI	No pair-wise degrees of equivalenc	e are computed for this k	ey comparison.	
ecologia				
Contact us				
IPM.KCDB@bipm.org				

Coordinated Universal	Fime UTC an	d its local re	ealizations U	TC(k) in N	ational Metr	ology Instit	utes and Des	ignated Institutes.	
Computed values of [U	TC - UTC(k)]	and uncerta	ainties valid	for the perio	od of this pu	blication			
Date 2015 0h UTC	JUL 1	JUL 6	JUL 11	JUL 16	JUL 21	JUL 26	JUL 31	Uncertainty/ns	
Laboratory k	57204	[UTC - UTC(k)]/ns						U_k	
BelGIM	6.3	5.3	4.9	6.1	7.1	6.5	7.0	14.4	
BEV	-28.3	-23.8	-23.0	-17.3	-3.0	12.2	27.3	6.2	
BIM	2481.7	2494.3	2506.8	2503.8	2516.5	2525.3	2537.7	14.4	
CENAM	1.8	4.5	6.1	8.2	11.2	-1.1	-3.6	11.6	
CENAMEP AIP	-	-	-	-57.2	-104.3	-150.6	-90.5	12.4	
DEF-NAT	10630.8	10818.7	11016.0	11191.6	11358.9	11547.1	11741.1	40.0	

BUREAU INTERNATIONAL DES POIDS ET MESURES Key comparison CCTF-K001.UTC - Results Degrees of equivalence $D_k = [UTC - UTC(k)]$ for July 2015 Computed 2015 AUGUST 10, 10h UTC

CERTAINES AI	-	-	-	-37.2	-104.5	-150.0	- 20.5	12.4	
DEF-NAT	10630.8	10818.7	11016.0	11191.6	11358.9	11547.1	11741.1	40.0	
DMDM	-12.1	2.8	7.6	-6.0	-7.4	-6.8	-5.0	14.0	
EIM	7.5	18.2	9.3	17.5	5.3	5.7	14.7	18.0	
ESA	1.3	3.4	1.1	-1.6	1.0	0.6	-0.5	10.0	
FMTC	919.2	913.5	933.7	939.0	918.3	925.3	952.1	10.8	
GUM	-29.9	-40.3	-32.6	-24.9	-12.0	-3.8	-3.3	10.0	
IMBIH	-185.0	-102.1	-17.8	-20.0	-13.2	-10.2	-1.3	14.2	
INM	1054.6	1064.5	1077.3	1082.0	1089.1	1079.1	1069.8	41.0	
INMETRO	-24.6	-24.8	-38.1	-34.0	-34.2	-34.1	-32.4	40.0	
INPL	36.7	42.2	44.3	37.3	31.4	33.5	42.2	40.0	
INRIM	-3.8	-2.9	-2.1	-1.3	-1.7	-1.8	-1.4	2.6	
INTI	16.8	36.9	45.5	46.1	58.9	56.4	65.6	40.4	
IPE/ASCR	-29.4	-31.7	-30.0	-32.7	-34.7	-	-38.4	10.2	
JV	-43.2	-44.3	-47.0	-47.0	-39.2	-22.8	-39.5	41.2	
KazInMetr	-811.7	-799.8	-784.2	-778.9	-763.5	-753.6	-750.9	14.4	
KEBS	-45.1	-334.5	-612.2	-894.1	-1173.7	-1460.5	-1753.5	40.2	
KIM-LIPI	494.8	504.4	526.6	546.6	573.6	584.2	620.6	40.2	
KRISS	18.5	20.6	22.0	23.1	23.2	24.2	26.0	10.0	
LNE/SYRTE	-1.9	-1.7	-1.8	-1.6	-1.5	-1.7	-1.7	2.6	
MASM	-	-	-	-	-	-	-		
METAS	21.7	20.6	17.2	13.7	10.9	8.8	7.0	2.6	

Publications

- BIPM Publications
 - BIPM Annual Report on Time Activities 2012, 2013, 2014
 - Electronic <u>http://www.bipm.org/metrology/time-frequency/publications.html</u>
 - BIPM Circular T, monthly http://www.bipm.org/en/bipm-services/timescales/time-ftp/publication.html
 - UTCr, weekly
 <u>http://www.bipm.org/en/bipm-services/timescales/time-ftp/publication.html</u>
 - <u>ftp://62.161.69.5/pub/tai/publication/utcr/</u>
 - TT(BIPMXY) for 2012, 2013, 2014
 <u>ftp://tai.bipm.org/TFG/TT(BIPM)/</u>
 - Scientific publications (staff)
 - About 50 in the period
- Web/ftp server of the <u>Time Department</u>

Bureau International des Poids et Mesures

THANKS FOR YOUR ATTENTION

